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Abstract

The theory of nonuniform transmission lines is extended to lines which strongly deviate from
uniformity. Based on differential geometry the wires are described as curves in threedimensional
space. The electric field is derived from a very general mixed potential ansatz. Only minor
approximations are introduced in the course of the derivation. Terms, which describe the
curvature of the wires. are explicitly taken into account. The result is a system of linear first

order differential equations with position dependent coefficients. It is presented in supermatrix
notation.




Introduction

Nenuniform or irregular wire configurations are very common in modern cable networks and
transmission line systems. The majority consists of several coupled wires and they are designed
to transmit high frequency signals. This situation differs significantly from the early applications
of nonuniform transmission lines, where adapters and matching circuits in simple transmission
lines were of main interest. The early papers, [1] through [5], reflect these facts. In more modern
applications complex structures dominate. One of the first thorough concepts to analyse
multiconductor transmission line networks has become known under BLT equations, [6]. It has
been developed on the basis of topology and is able to describe networks in terms of
transmission-line sections, named tubes, and in terms of junctions. In its original form the BLT
concept was limited to uniform transmission lines, but it became kind of a framework for the
later developed general theory of nonuniform multiconductor transmission lines NMTL). In [7}
circulant NMTLs were studied. Stress was laid on symmetry and other foundamental aspects
involved with symmetry. When applicable, the method developed there significantly reduces the
numerical effort, since it allows to decouple the equations. Also limited is the class of NMTLs,
which was studied in [8]. The idea behind that paper was to assemble lines of analytically
solvable sections. The limiting factor of this model is the fact, that only a small number of
solvable NMTLs exist. A first step towards genera] NMTL was done in [9]. Starting from a
general nonuniform ansatz an approximation was introduced in the course of the paper. Roughly
speaking, the position dependence of the characteristic impedance matrix (and with it the
reflections) were first neglected within certain sections, and reestablished later in a corrective
step at the junctions. This limitation was overcome in [10]. In this paper the position
dependence of the characteristic impedance matrix was fully considered and a new system of
NMTL-equations was presented as a set of coupled linear first order differential equations. the
coefficients of which are position dependent. This system was solved and an exact solution was
presented it {10]). These results were then integrated in the BLT concept, {11]. In this way a
very versatile concept for analysing networks of nonuniform multiconductor transmission lines
was obtained.

In the cource of the development, just described, the major part of the work was devoted to the
mathematical and numerical problems. The main reason is the fact that, compared to the
uniform case, the solution of the nonuniform one is much more complex. Moreover, it is not
straight forward to apply the solution presented in [10] to real cases and therefore further
adaptation to established standard functions and methods seems to be desirable. In a currently
published paper [12] a single wire structure (one conductor plus current return) has been
studied. Compared to [10], the complexity of the solution was considerably reduced.

In contrast to the intense endeavour to solve the mathematical problems which are involved with
the modified transmission line equations, the physical aspects did not gain the same degree of
attention. The classical transmission line model represents an idealized case based on far-
reaching assumptions. The wires are straight and parallel. The propagation is therefore position
independent and independent of direction. The only mode which is considered is the TEM
mode. The interaction between two wires reduces to the interaction between two adjacent
differential length elements of the wires. Consequently, capacitance and inductance per unit
length are the only characteristics of the line. This is no longer true when strong departures from
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uniformity are considered. Then the elements of the matrices characterizing the transmission
line can no longer be interpreted in terms of capacitance and inductance per unit length, only. A
theory which would allow an alternative interpretation is still missing. For slight departures
from uniformity one might rely upon perturbation theory. It says that the results of the uniform
model are conserved in an approximate sense. )

There is still another unsolved question. At high frequences, particularly when strong
nonuniformities are involved longitudinal modes may significantly contribute to the total field.
The integral over the electric field will then strongly depend on the integration path. This means
that the variable “voltage” becomes an illdefined quantity.

Résumé: when developing a theory of nonuniform tranmission lines with strong deviations from
uniformity in mind the uniform transmission [ine theory seems no longer to be a good basis to
start with. More appropriate seems to be a general ansatz which allows to describe very irregular
wire configurations from the beginning. No further limiting assumptions, in particular what the
involved modes are concerned, should be part of the ansatz. Since the method of solving linear
first order differential equation systems with position dependent coefficients is well established,
one should try to dertve a similar system of equations.

This paper is aimed at deriving a system of equations which describe the propagation of signals
on very general wire structures. To avoid the difficulties involved with the variable “voltage™ we
shall use the variable *“charge density”, instead of voltage. This choice has the additional
advantage that all conductiors are equivalent i.e. the reference conductor needs not to be defined
until a real systemn is considered.

Description of the Wire Geometry

Consider a multiconductor system which consists of & thin, cylindrical wires of good
conductivity. Each wire is indicated by an index i, [ i < N. The system is assumed to be in
free space. There shall be no electric contact between the wires. We describe the axis of cylinder
of wire i by the local vector r; (1), (Fig. 1). / is the length parameter of wire i. The tangential
unit vector s{/,) at point r, is then defined by s, (/) = d r/d!, . (note: if a curve parameter other
than /; is chosen, then s, is no longer a unit vector)

The curve parameter /, is a good choice when considering a single wire or a system of uncoupled
wires. Then the signals propagate independently on the individual wires and individual length
parameters are just the right variable to discribe the propagation. In case of coupled wires we
are interested in a collective phenomenon i.e. in a wave which is guided by an ensemble of
wires. The variable z, which is common to all wires, is more appropriate in this case, provided
that an important restriction is acceptable, i.e. r(z) must be a unique function of z. That means
that backbending wires (Fig.1) cannot be treated with the equations we are going to develop. In
the first step we will confine ourselfes to thin wires. In this approximation the current vector
always points in the direction of the wire axis.
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Fig. 1: The wires are -~ described by the local wvector
r(l) = ux () + uy () + uz(l). s is the tangential unit vector at
point r;({).

Derivation of the Generalized Transmission Line Equations

Consider the surface S, of the cylindrical conductor i with the current density J, ., (r,,") and the
charge density p, . (r.,). (r,,” €S,). We want to calculate the scattered electric field E/%(r) at
point r which shall be either exterior of wire i (r € S,) or on its surface (r € S)). To determine the
electric field in free space we start from the mixed potential representation of the electric field.
For time-harmonic fields we get:

E’r) = - jod (r) - V(r)

@ — scalar potential;, A - vector potential, with

1 . . , 1 .
A = — |Gl O, r,)dS,, D) = — f Gt P,y NS, (1)
g’ % € 5,

| -k|r-
e” |r-r,,1

—_— Green” s function of free space
4nlr-r, .

Gr,r, o=

Eq.(1) is a frequently used starting point for theoretical considerations in electrodynamics. For
our purposes it is preferable to start from a somewhat different form. This is shown in (2). The
transition from (1) to (2) is described in appendix 1. Note that (2) is an approximation. The
contributions from both ends of the wire have been dropped. Since the theory shall first be
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developed for regions which are far apart from the ends the contribution of the endterms is taken
to be negligible.

] . | I .
E!s(r) == L2 fG(r’r.l,i’)J.:urf(rs,! )dS‘ - ;__ fG(r’r.r.f )Vp:urf(rs.l’)dsi (2)
0 s, :

2
EOC S,

Next we adapt the integrals in (2) to the geometry of cylinders and to the thin wire
approximations. We proceed in the following way:

I Introduce cylinder coordinates. If the radius g, of cylinder i is fixed, the differential area
on the surface is given by dS," = a,dg, " dI,".

2. The thin wire approximation suggests that J,,.(r,;) and p, .- (r,,") depend on /," only,
and do not depend on ¢,". In other words, J,,,.(r,.,) and p .. (r,,") are assumed to be
equally distributed over the circumference of any randomly selected cross-section.

3. According to 2. the centers of the charge and current distributions lie on the axis of the
cylinder. For small radii o, (small compared to the distance from the axis of wire i to the
surface of other wires) one can replace the charge and current density on the surface by
a total charge and current concenfrated on the axis of the wires. This means, that
J ey (r.,) and p, ., (r.;") are replaced by the current J,,, {r,") and the line charge p,,,, (1,")
without significant loss of accuracy. Consequently the vectors V5, ,,, und J,, have the
direction of's,.

4, After having concentrated charge and current on the axis, G(r,r,,") has to be adjusted
accordingly. The vector r,,” which indicates the location of the sources, is replaced by
r,’. Thus [rr,,’| changes into |7-r,"|. That means that all distances to the field point r are
measured now from the axis of wire i. Moreover G(r,r,") is now independent of ¢, and
consequently can be put in front of the integral over @,".

From 4. follows

w
Exn = L2
€ €

[66r, | [9.0ay € @, |1,

L 0

3

2

1 r r r

- 8_ G(r’ri‘) pri.:urf (J‘“') 4, dl;D, dl:
0% 0




Since the vector V' p, ., points in the direction of s,(#,") it can be written as

9

v = .
o(r,) =s,(r) 35

o(r,) 4)

The derivative with respect to s, is sometimes refered to as the directional derivative.
According to 3. we write

Piwor (I
g 1surf (rs.z) = -%
i
- ‘,:,.rar (ri) (5)
Jf.su.’:f (rs_r) - Ina

1

The integrals over ¢, can now be replaced by simple expressions.

Ji,surf (r.f.!’) lar’ dqa‘ = si(ri’) ) Ji,ror(ri")

(6)

. . d
fo,surf (rl,f’) a, dqol = Sl(rr’) ) g

!

qz,ro.r (r: ’)

o} ot——

Boundary Conditions

In a configuration as shown in Fig. I there is a mutual interaction between all individual wires.
On the surface of a randomly selected wire j (=i is allowed) the tangential component of the
electric field must vanish (for ideal conductors). In case of N wires the electric field at r, ,which
is on wire j, is a superposition of all E(r)), / s i < N. (Index i in E, indicates that it is due to

P, und J, ., on wire i). In the thin wire approximation the boundary condition reduces to the
component along the axis of cylinder.
0 for ideal conductors
N
s (r YE™(r )+Es (r YEXr,) = Jfor conductors with (7)
I TR A %.s(rj){r,w_,(rj) finite but still

good conductivity

E™(r)) denotes the external E-field incident on wire j, and Z ,(r)) is the surface impedance of
wire j at r, . Eq.(7) represents N equations (] </<N) for 2N variables J, (7)) and p, (1), (IsisN).




The system of equations is completed by adding NV equations (! s i < N) which represent the
continuity condition for each individual wire.

4
dl

]

Jr.!oz‘(ri) = ijp:,;or(r:) | (8)

Adaption of the Equation System

Egs .(7) and (8) form an integro differential equation system. There are many ways to solve it,
and among them are quite a number of numerical methods. The latter are well suited to study
special cases. Since we are more interested in general properties of nonuniform transmission
lines we prefer an analytical solution. A successful way could be to convert (7) and (8) to a first
order differential equation system. We will follow this idea.

Let r’, r,” and /, be unique functions of z. Then we are allowed to substitute in (3) z” for the
integration variable /", The requirement of uniqueness somewhat reduces the class of problems,
to which this theory is applicable. However, in most cases of practical importance this condition
seems to be fullfilled. Starting from (3) this substitution yields the following expression for

EX(r)
] di-
Efr@) = L2 [ Ger@, ) 5,&) J,,,,@) — dz’
W ’ 9)

i - ‘ﬂ;’ N
_E—fG{r(z)! r’(z')) L (z’) P, ror( z) —— dz
0

=0 dS:-

A chance to convert (9) to a differential equation is to put s(z)'dp,,, /dz" and s{z")-J, . as
factors in front of the integrals. This is feasible when making a first order Taylor approximation
of either vector ﬁmction at position z.

s,(r, @) - ,,,,,(r G = s(r(2) —p, 1, (2)

(10)
* [—S r (Z))} —Pisosr 2N (27-2) + 5,(r @) -

PrroiT, (?-))} (z'-2)

$(r20) 0 (r @) = s, (r (@) J,,,(r (=)

(11)
[—S (r; (Z))} itolF, @z -2) + 5,(r,(2)) -

Ay (Z))}(z ~z)
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At this point it’s worth the effort to reflect about the approximations (10) and (11). Since all
terms of second order and higher have been dropped, (10) and (11} are valid only in a limited
interval around z. This is tolerable as long as the range of suffiently exact approximation covers
completely the range where the Green's function G(r{(z),r, (z V) differs significantly from zero.
This argument is based on the idea that G(r(z).r, (z ")) can be interpreted in (9) as the weighting
function of the vector functions s(z")-dp,,./dz and s5(z°)-J ,, (z"). It seems to be evident that
the decision whether or not (10} and (11) are good approximations depends strongly on the
individual case. So we postpone this discussion till real cases are considered.

To make {13) easier to manage we introduce in (12} a number of abbreviations for the remaining
integrals.

LA =[G, e otz 179 =[G, @or e o -
re T SERTE Mgy SIS Py

1’ (12)

1,09G) = [, eV Thdz s 18 = [Glr @, ot 2
U AR ds,’ o A ds/’ .

We then substitute (10) and (11) into (9), rename the integrals by applying (12) and finally
substitute the resulting £7(r)) into (7). Eq.(7) then reduces to

N

s, @) E"(r) = le

jeol 7o)

5,@)s (=2, @)

£,C

d jol I.""(”(z)-
s,(2)—s5(2) J: n
dz £,C

+

Juror (@)

jewl IJ.(I)(Z) d
+[SJ(Z)SI(Z)“":T— z U“(z)
0

(13)

5,@)5,@) H——|Zp, (@)
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e
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[ a0 ] 2
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Eq.(13) shows a clear structure. The terms set in square brackets are characteric of the
transmission line. They depend only on the geometry of the conductors and consist of scalar
products of the tangent vectors or the derivatives thereof and of the integrals shown in (12). We
temporarily rename the terms in square brackets in the order as they are listed in (13) and call
them A", (z) through A4, |(2).




It is our goal to derive a first order differential equation sytem. The sixth term of (13) does not
fit in this scheme because it contains a second order derivative. We drop this term without
further discussion but we keep in mind that some justification has to be given later on.

Since the homogeneous differential equation system shall be written in matrix notation the terms
in (13) are rearranged.

4
dz

N
= - Z[A(I)N . A(l)j'!_ ]'Ji,mr(z)

i=]

N
Siroi2)

sy, | d
)3 [ 49, + 4% ] T NOR A3

i=1

(14)

With the continuity conditions, now written as derivative with respect to z, the system of
equations is completed.

d .o di
o uel®) = TO = P10, () (15)

After having combined the g, ,, and the J, ,, in a 2¥-dimensional vector (14) und (15) can now
be written in matrix form:

[ p,) ?,)
f [ P2 | @) P2
)| Dz : 0 Kmn (Z)
{ p p
0 A g B 0 1 16)
dz J
1 0 ! f
) dl_
0 Jz @ dz 0 J
| 0 1 o _ !
\ Jn / LJN
The following abbreviations have been used
K = AW 4O with m=j
KES,” = AG)J.J. and n=i a7n
ey = a0, 4,




Since (16) is not the final form which we are looking for, we determine the inverse of the matrix
which is on the left side of (16) and multiply (16) from the left. In this way we get (18). Here we
have taken it for granted that the inverse exists. When applying the theory to a real
multiconductor this has to be proven case by case.

{

P e
el [ 1 P2
0 ((3))(2)
0@ [ o
p p
A et I : : o] A asy
dz| J, o . J,
J —j - 0 J
2 0 J e 2
0 1
: 0
Jy JN)

To reach the compact form, as shown in (20), the inverse matrix is further developed.

[ 1-1 " -1 -1
W) [ ol el {4
= (19)
10 10
0 0
0 1 0 1
Based on (19) we are now able to rewrite (18) in the wanted form
c, C
p 1“2
a = ©) P (20)
dz\ ¢ c, O o
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Eq. (20) is written in supermatrix/supervector notation. The elements C,,, of the supermatrix are
matrices, They are defined by

| d
C = 4+ jw KE’(TU)(Z) R K((Z))(Z) . __m

i

. dl
RGPS R ) , I
Cl2 - K(mu (Z) Lxm (Z') ? CII = Jo dz mn (21)
(pl\ erl\
P, 4y
p = ; g —
Py ¥,

With (20) we obtained an equation system the form of which is similar to that of the nonuniform
transmission line equations investigated earlier. Therefore the mathematical methods developed
there to solve the equations are also applicabie to the new system. There is, however, a
significant difference to the former situation. The coefficients, the physical meaning of which
was rather rather nebulous, are now easily interpreted by the interaction-terms, as given in (21).

Conclusion

A new theory of nonuniform transmission lines has been presented. It was derived from the
mixed potential representation of the electric field combined with a very general geometrical
description which covers even strongly bent wires. In the course of the development some
approximations had to be made. These will limit the class of wire configurations to which the
new theory is applicable. Fortunately it seems that most cases of practical relevance can be
treated by the theory presented here, and mainly the extrem and to some degree hypothetical
cases are excluded. Further work is necessary to develop precise criteria on the basis of which
one can decide whether the theory is applicable. A general statement which might not be
decisive enough but which peints in the right direction would be that the thin wire assumptions
have to be met and that Eq. (10) and (11) must represent reasonable approximations.
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Appendix
This is to show that the gradient of the scalar potential @, , as used in (1), can be expressed by

an integral over the gradient of the charge density p, and a function F{r, ), which takes into
account the sources located at the ends of conductor i. This suggests the ansatz

| . . .
Vo, = = fG(r,r,_‘) V’puwf(rs_,.‘)dS, + F (r,r,(z=0)) - F (r,r,(z=2)) (AL.1)
U3

An explicit expression of F(r, r) will be given at the end of this appendix in (A1.6).

We start from (1) and apply the following general relations

* V' (Gp)=G-Vp+p-V'G, which is a generalisation of the product rule of differentiation
* VPGrrYy= - VG (rr"), which describes a special symmetry of Green’s function G
Substituting these into (1) yields

1 . . .
-— |V G(r’r.r.r )pr.surf(rs.i’)dsr

€

iy

!

1 (A1.2)

€y

"

3,
fr’ (G(r’rs,r' )p:,surf(r.r,r"))dsi + E_ fG(r"rJ,a ) Vpi,surf(r.r,f )dgl
s, 5,

The second term on the right-hand side of (A1.2) is identical with the leading term of (A1.1). In
thin wire approximation, the first one takes the form

1 . , 3 , ,
- 8— fv (G(r’ri )pr,:or(r:' ’))dl: = uxfg;(G(r’ri )'p:.tot (r,.’))dI‘
o x
= > (A13)
a . . o . .
- u}.fo E;(G(”’* YP oo F )L - b, fﬂ 2601, 8,100,

where u,, u,, and #.are the unit vectors with respect to the x-, y-, and z-axis. The expressions on
the right-hand side of (A1.3) are all of similar structure. That’s why it is sufficient to evaluate
the z-component, only. The others are then determined by analogy. The differential length &/

is given by
dl” = J( dx"')z + [2'—]2 +(£)2 - dt (Al.4)
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t is an arbitrary curve parameter. When evaluating the z-component we choose f = z and have

a - "'&:’ 2 dy:' 2 -
o] Eownae) [[Z) (2 e

z=0
H
dx "\2 dy,’\2
= - uzf—a—(G(r,r.')-p (r.) ﬂ—‘) + _y,_) + 1 ] dz
az'f i ot H dz - dz !
o ¢ { (Al1.5)

- ,,z[ - [ G, VP, o () J(gx__J (
+[G(r,r,')-p,,m,(r \K ) ( ) " ],,(zo,}

(note: in case of the x- or y- component we would have chosen r=x or 1=y, respectively.)

Since the argument of the square root in line 1 is a constant with respect to the partial
differentiation it can by put into the brackets of line 2. The evaluation of the integral is now
straight forward. It is a standard integral known from potential theory. The expressions put in
square brackets, line 3 and 4, are identical with the z-component of the vector function
F(rrizs)) as postulated in (Al.1). zg, stands for z, and z;, respectively.

Next the x- and y-component are evaluated by analogy. In principle we can proceed as we have
already done in (Al.5). We should, however, pay attention to the fact that y(x)} and z,(x) or x{y)
and z,(y), respectively, need not necessarily be unique functions, whereas for x(z) and y(z)
uniqueness along the integration path has been required, expiicitly. We circumvent this problem
by cuiting the integration path in intervals where uniqueness is fuifilled. Then the rear-end-term
of any interval will always be compensated by the front-end-term of the subsequent interval.
Finally the remaining terms are those which correspond to the front end and the rear end of the
total conductor.

F :.(r,ri(zfm)) = ux°Fj_x(r,rI(z ) uy'F‘ 'y(r,rl.(z o)) * u F I_z(r,ri(zﬁn)) with

F ( ( G( o) ( ,) 1 (dy,’)l (dzl')z
r,r, = rry r R !
A r(Z)) i M PrroeT dx,’ A

Fukrrin) = (G(’-r,-')-p,-_,o,cr,v \ (Z0) 1 [z_)] ) (AL6)
) e

Gl r, P, 0y 7)) ( : )2 ( s *']’ 1 ]
" YPoe —= | +{==]
zaf \ \dz dz .\ e )

F o Arr{z;)) =

The vector function F(r, r(z,)) is now completely defined.

13




Since we will first study the propagation of signals far apart from the ends of the transmission
line we drop the end terms, temporarily. They will be taken up again when the influence of the
sources at the ends shall be discussed.
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