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ABSTRACT

This paper deals with bounding the voltage response at an antenna’s terminal with or
without a transmission line attached to it. The same attempt is made for the terminals of a multi-
conductor transmission line, but much work remains to be done.

Voltage is an important quantity to characterize upset of an electronic device, just as
energy is responsible for causing its damage. However, bounding the voltage response is much
more difficult than boundin g the energy response because for the laiter one may invoke, among
other things, the principle of energy conservation.
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SECTION |
INTRODUTION

Past efforts have met with some success in bounding the energy absorbed by 2 resistive
load in a transient field [1-5]. The reason for the success is the availability of the integral bound on
the absorption area over all wavelengths. Very often the load voltage is a more important quantity
than either energy or power, as in the discussion of system upset. A voltage can be induced across
an inductance, a capacitance, or a resistor. The real power or energy absorbed by an inductance or
a capacitance is of course zero. Thus, in bounding the load voltage in general, one is not helped by
the conservation law of energy or power which, together with the causality principle, leads to the
integral bound on the absorption area. In the particular case where the load is a resistor and the
field is time-varying, one can, however, bound the peak load votage with the help of the integral
bound on the absorption area, as will be dicussed in Section 3.

In Section 2, we deal with the simplest problem of a wire antenna (or a 2-wire cable) in a
time-harmonic field. We ask, what is the maximum voltage that can be induced in an arbitray load,
whose quality-factor (Q) has a limiting value at low frequencies?

In Section 3, we pick up the particular case where the load to the wire antenna is a resistor
and the field is time-varying. Using the integral bound on the absorption area and Schwartz
inequality, we obtain a bound on the induced peak voltage and compare it with a recent
measurement at Sandia.

Finally, in Section 4, we tackle one of the most difficuit coupling problems, the problem of
a multi-wire line. Conceptually and theoretically speaking, it is a very simple problem. But fora
typical multi-wire cable with 30 to 50 pins, the number of parameters is so overwhelming that
useful results do not exist. Perhaps, if attention is focused on seeking a bound on the solution,
many of the parameters may drop out and the problem becomes manageable. So, we start with a 3-
wire cable with a given Norton equivalent circuit, and ask the question, what is the load admittance
matrix that would maximize the load voltage responses? The form of the solution to this problem
suggests itself how it can be generalized to the n-wire cable problem. But much more work
remains to be done.




SECTION 2 v

MAXIMUM LOAD VOLTAGE IN TIME-HARMONIC FIELDS

In this section we want to get some idea of how large a voltage can be induced in an
arbitrary load by considering a simple problem as shown in Figure 1.

Starting from the Norton equivalent circuit (Fig.1) we have for the load voltage Vi,

V== e (0
YS +-Yy, Gg+ GL - I(BS -!-'BL)

from which we get

2 52
_R§+XE
—= sl
Rs (2)
2 2 N ]
+X X
= Sf{s S |v0c|—>§§|voc| (for X5 >> Rg)

The last expression of (2) means that V] can be much greater than V. for a reactance-dominated

source impedance.

Let us define

I
VL.max = _GEZ_ (3)

and use, for the high-frequency limit; the solution of the infinitely long cylindrical antenna for Ig¢

and Gg. From [6] we have, for broadside incidence,
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and from [7] we have
Gg = T » ka<<l (5
2
Z,fin| —
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Hence,
2iE . AE
L.max = o = 2 {6
k T
For a thin-wire antenna of length ¢ one can show that at resonance and broadside
incidence {1}
8fE
| = Q . n=1,3,5, -
51 n Z,Cin (2nm) 0
From [8] we also have for the radiation resistance Rg , at resonance
Rg n=30Cin (2nm) (8)
Thus,
2{E
RS.n ‘ Isc.n = 2 (%)
nmw
By comparing (6) and (9) one sees that, except for the factor i they are identical if
A=24/n, n=13,5, -. (10}




That is to say, at resonance VI, may , 28 given by (6), is equal to Vi (since Rg Igc = Ve). If we
had used the first inequality of (2) and had taken G} = Gg, then Vi, = Vo/2 (as should be when
X=X =0).

Let us look at (6) again from a different point of view. We know that the power absorbed
by a load is equal to the absorption cross section times the incident Poynting vector, viz.,

_1_ IVLI2 — IEolz . M

- Mo 11
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When the load is conjugate-matched to the source impedance, we have q = [; and when the
polarizations of the incident and transmitted wave are matched, we have p = 1. In this case

AE
vy | Aol [ZORs (12)
2r Z,
From [8] we have
Z, [cos(kf/2 cosB)—cos(ké/2)T?
G Rs = .
1 sin©®
_ %o [1—cos (mé/ }\.)]2, for 8 = n/2 (broadside incidence) (13)
T
=E9, for l:g, n=135--"-
T n
Thus, for n = odd integers and p =q =1 we have
AE
Vi |=—2 (14)
V=5

a factor of 2 less than |[V,| _  given by (6), as was shown before for wires of resonant lengths.

Therefore, it is reasonable to conclude that expression (6} bounds the load voltage from
above for wire lengths not less than A/2.




Let us return to the last expression of (2), namely,

X
V| < Ez— Vool (15)

and examine its low-frequency behavior. At low enough frequencies we know [4]
Voe =hE, = E £/2
Xgecl/® (16)
RS ec (02

Thus the right hand side of (15) goes as @—3. This suggests that below a certain frequency (let it
be called wg), (15} is meaningless. In other words, at © = ®q the load impedance Zj_ can still be

made conjugated-matched to the source impedance Zg, but for ® < &g the matching is no longer
practically possible. Let Qg be the quality-factor of the load at @ = wg .Then (15) gives

Vi € QohE, (17)

at ® = g . The question is if the bound given by (17) is still valid for < @g .

To answer this question we follow the same procedure given in [4]. Using the Thevenin

equivalent circuit we write

Z 2
le|=\f R +X] Vad (18)

(R +Rg)? + (Xp - Xg)?

Eliminating X _ in favor of R[_ by means of Qg = X1 /R and maximizing (18) with respect to Ry,
one obtains, with Qg >> 1,

vL.rna.x = _Q:ig_?_ Voe < Qo Vae (19)
1+ /oy

the same result as (17).




If we equate expressions (6) and (19) at ® = ®g, we find that

2c 4 ©, = L 20)

0‘)0
Qo wQg

where @ = angular frequency of a half-wavelength resonant dipole. Figure 2 shows the bound of
the load voltage ]VL]. At low enough frequencies, Vy will behave as @ since Xg will dominate

in (18).

Before concluding, consider the situation where there is a piece of transmission line
between the load and the antenna (Fig. 1). The short-circuit current I (0) at the load is related to
the voltage, V| (d), at the antenna terminal as follows:

YO
=—290 v
lsc(0) sinh (yd) L(d)

which can be found by solving the transmission-line equations. The source admittance Yg(0)

locking toward the antenna terminal from the load is

Ys(d) + Y, tanh(yd)
Y, + Yg(d)tanh(d)

YS (0) = YO

Consider the transmission line to be slightly lossy so that one can write, with Y= - ik,
sinh(yd) = od cos(kd)—i sin{(kd)

Note that if the line is lossless and when d is a multiple of half-wavelength, I (0) becomes
unbounded for any finite value of V| (d). Now, for a line with small loss one can show that with

the help of the above expressions

2 Y, 2 Y,
<2 ) < V..(d
|VL(0)] < r Gold Q VL) = = Getd) Qo Q; [Voc(d)

where Q; is the quality factor defined for the line being a half-wavelength long.
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SECTION 3

MAXIMUM PEAK LOAD VOLTAGE AT A RESISTIVE LOAD IN TRANSIENT FIELDS

Let f, g be complex functions of the angular frequency ®. By the Schwartz inequality we
have

2. (12 §
Ifl“do - | |g/"do 2 [fgl;lc:) (Schwartz Ineq.)

> | [ raco [

(21)

Let v(t) be the induced voltage across a reistance R. Then the energy absorbed by R is
given by

w=Ll Iv(t)v(t)dt=-1— V V'de
R 2R

—rr

= —— £.EY({BEY* doo = —2 j 2178 dw (
211:RJ(V)(V) 2R el

—Ca

=L rAes do

—o0

where A, is the effective absorption area, and we also have used

vty = —— I Vi@)e Pde = - I . (@)E(@)e " dey (23)
2 J _ an J

and ¢, = voltage transfer function, E = incident electric field, S = incident Poynting vector
(J/hertz)

£y

Substituting f = WE, g= —Le ' (1] is the time at which |v(t;)| = Vpeak = Vp)
©

into (21) we get
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or

2 R ) -
2 [o?sde [Ad (24)

where A is the wavelength.

If weuse f=E, g= £, 1@ we would get from (21)

ITE|2dm - jm 62 doo 2 |J.°EVE eioty dco|2 = a2 V2

or

vf‘,s%dem-J.Acdm (25)
T 0 0

Let us use the right-hand side of (24) to compute the bound and compare it with some
recently acquired test data [5]. The test fixture and data are shown in Figure 3. The measured
peak voltage was

measured Vp = 107 volts

across a resistive load R = 1700Q2. The electric field of the incident wave in the test was paralle] to
the cylinder's axis and described by

E"(t) = E (e ™ —e Bty (26)

withEq=60kV/m,a = 3 x 107 sec!, and B=4x 109 sec”l. Hence,

12
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(a) slot test fixture with tapered stripline cable
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(b) measured voltage waveform

Figure 3. (a) Test setup and (b) example of test result at Sandia.
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.[0 @ Sd(n—i- 0 (a2+m2)([32+0)2)d0)

(27)
_E} mB-o =nBE]
Z, 2P+a) 274

From previous work on bounds {2,3] we have for apertures

j A, dA < .11324((11“‘22 _a'e,ll) = 47‘72 O 22
0

The magnetic polarizability, oim 22, of the slot in Figure 3, which is a small circular arc of length
¢ about 2.45" , width about 0.017" and depth about 0.25", has the following approximate

value:

3

T
“m22 = o0
e

=1.05x% 10~%m?

Collecting all the formulas for the right-hand side of (24) we have

R I ®*S do- J'ch d) = 2.27% 10* (volts)?
2moc 0 0

That is,

v3 S 2.27%10% (volts)®

or
vp < 151 volts

which should be compared with the measured value of 107 volts.

Before concluding, let us discuss briefly (25) and ask, "Under what condition does the
equality sign hold?" Itis clearthatif E = af':, ¢'®! (where a = constant), the equality sign holds,

meaning that

14
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where f is the frequency and & is the total fluence of the incident wave defined as
E=1 E()H (1)dt
1 Oy

=— ] Sdw

T d—o
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SECTION 4
MAXIMUM LOAD VOLTAGES AT MULTI-PIN CONNECTOR

In the preceding two sections we showed how to bound the load voltage at a single-pin
antenna terminal. Here, in this section, we try to deal with a much more difficuit problem
concerning a muliti-pin terminal. Before getting into the crux of the problem, we want to get some
insight into the problem by deriving the Norton or Thevenin equivalent circuit for a multi-
conductor line, first, using the superposition principle and, second, the Lorentz reciprocity
theorem.

4.1 Norton/Thevenin Equivalent Circuit

a. osition 7

To get an equivalent circuit to represent the inputs to the load in Figure 4(a), we follow the
discussions in Guillemin [9] and construct two auxilliary problems shown in Figures 4(b) and (c).
Notice the change in the polarities of the voltage sources in the figures. The voltage sources Vg |
Vg 2 etc. are so chosen that Ill ) 1'2 , etc. into the load are zero . It is clear that by superposition

of the two auxiliary problems,

I =T + ]
12 = 12 + 12 (29)
I, =1, + I,

Since Ill = 1'2 = I'n =0 by construction, the load currents I, , I, etc. of the original problem

can be obtained from the auxiliary problem #2, which consists of the load, the voltage sources, and
the impedance of the linear network, the latter two being the elements of a Thevenin equivalent
circuit. A Norton equivalent circuit can be obtained using a similar procedure.

b. Lorentz Reciprocity Theorem
Let us consider problems (a) & (b) in Figure 5. The theorem says that

jclosed(EIXH‘—ExH)' ﬁdS=0 (30)

surface

16
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(c) Auxiliary Probiem #2

Figure 4. Application of superposition.
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over a closed surface which encloses no sources, where (E, H) and (E'. H'») are fields referring
to problem (a) and problem (b), respectively. Let the closed surface be the surface over the
aperture (S A ) plus another surface (§A) . Then (30) can be written as

(ExH-ExH)-adS=- (ExH-ExH) nds (31)
Sa Sa

Assuming the aperture to be electrically small (or distorting S 4 into the region behind the aperture
so that only TEM modes exist there} one obtains for the left hand side of (31) [10],

Vi + (Vi [V, I+ V1) = A (32)

where A denotes the integral on the right hand side of (31). Dividing both sides by Vi

we get
L+Y Vi +Ya Vot YV, = Iy sc (33)

where Yi; = 1{/V], - Yip=I,/V; and I, = A;/V;. When V{=Va=- V=0,
I is called the short-circuit current, which is denoted by I gc. Repeating the same procedure
with the second conductor at V'Q_ (Fig. 5b) and all other conductors at zero voltage, and so on,

one obtains

I +Yo Vi + Yo Vo +-- ¥ V= Ip ¢

: (34)
Iy + Yoy Vi + Yop Vo +o-- Yoo Vo = I

Equations (33) and (34) can be written in the form
In +YsomVm = Insc n=1 2. 35

where we have used YS nm for Y;am and repeated indices are summed. Equation (35) is the

content of the Norton equivalent circuit relating (Vp,, Iy) to the source parameters (I g, Y nm)-
The other relation between Vy, and I;; is provided by the load admittance matrix Y| nm

19




In =YL nm Vm (36)

Similarly, a Thevenin equivalent circuit can be obtained by considering Figures 5(a} and
5¢c).

4.2 Maximum Load Voltages
Substituting (36) in (35) we get

(Gum —1Bpm) Vim = In.sc (37

where Gy (Bpp) is the sum of the source and Ioad conductance (susceptance) matrices. Given a

source admittance matrix and short-circuit current vector, is there a2 Joad admittance matrix that
maximizes the load voltage vector?

Let us work out the case of a three-conductor line, one of which is a reference conductor.

Thus, we have from (37)
a b Vl _ Il.sc (38)
b (Vo) |Iag

where a=a;+iap=Gy1—iB1]., b=b1+iby=Gi2-iByp2.c=c1+ic2=032—1B3p2"
The solution of (38) is

v, = clpsc —blgge

det
(39
V, = aIZ,sc - bIl,sc
det
where
2
(det/? =(ayc; —bf —ayep +b3) +(ajcp + craz—2by by)? (40)
from which it can be shown that one can make |detj=0 if and only if
b 2 a; ¢ (41)

20




- in which case, V{ and V, have no upper bounds.

In most practical cases, however, the cross couplmg is either inductive or capacitive, i.e.,
by = 0. In this case

min |det] = a; ¢, (42)
since az, by and c; can be rendered to zero by tuning out the susceptance part of the source

admittance matrix with a reactance load admittance matrix. With (42) and the choice of
ay=by=c2=0, we have from (39)

(43)

Ivzl II?.SC| < JI?.,SCl
c1 Gs2

from which one is tempted to generalize (43) for a n-port terminal to

1
[Va| < JG—“‘—L m=12,--n (44)

S.mm

Let us look at the cross coupling case and set b;=0, I, 1=0 in (39). By choosing
az=c>=0 (to.make |det| small) we have

lb2| |Isc,2l
IV I aicy + b2
(45)
IV2| a'll:[sc 2' IISC,ZI

ac; -+ bz Cy

It is clear that [V;[2{V,| for certain values of 2;,c1 and by, meaning that cross coupling can be
greater. Thus, even for the "simple” 3-wire problem one cannot find a satisfactory bound for the
two pin voltages except that they can be infinite if condition (41) is met.

21




Perhaps, one should seek a statistical approach, especially for the case where n is large, n

being the number of wires. If one assumes that the phase angles of all the pin voltages are .
uniformly distributed, then the sum, [¥. V¢ |, has a Rayleigh distribution, i.e.,

-v*/243
fEv (V) =——7— (46)

o

where v, is the most probable value of ]Z VL| , and the expected value is given by

Bz v ]]= Evo ' @7

Note that the distribution density function (46) also applies to the magnitude of the sum of the load
currents if the same assumption holds, and it is the same distribution that one uses for one

component of the field in an over-moded cavity.
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