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Abstract

A radar signature of interest for certain symmetrical targets on or near (under) the earth surface is
a null in the cross polarization in the usually A v radar coordinates. This paper discusses measures of this
cross polarization in both namrowband and broadband/transient contexts. These involve angles in the

eigenvectors of the backscattering dyadic as well as norms of this dyadic and the cross-polarization part.




l. Introduction
In a recent paper [5] it was observed that the backscattering dyadic

- — - -
o o Ap, . (Li,8) Ap  (15,5)
Ap(les) = M me
Apy, , (16:8) Ap, (14,5)
al 5
= Ap(1;,5) (reciprocity)

— — —~ —
Ap,  (1iss) = Ap, ,(14,9)

a.n
_’
1; = direction of incidence (radar to target)
_)
1 p = direction of scattering (target to radar)
~ = Laplace transform (two - sided)
§ = 2+ jow = Laplace-transform variable or complex frequency
in the usual 4, v radar coordinates, is diagonal (zero cross pol), i.e.
— —»
Ap, ,(1i,5) =0 (1.2)

provided the target has C., symmetry (body of revolution with axial _Eymmetry planes) with Tz
(perpendicular to the ground surface) as the symmetry axis, independent of 1; . This further assumes that
the ground can also be approximated as being consistent with this body of revolution. Note that for
horizontal polarization we have

-+ — -+
lg =1z =0, 1p real (1.3)

and for vertical polarization we have

Ty -Th=0, 1v real

- = , re
VoA Y (1.4)
Iy «1: » 0 exceptin special cases

- -
For convenience the dependence of Ap on 1; and s are now suppressed.




The backscattering dyadic is diagonalized as

5 R
Ko = 3518 1p
A=l
S = — Pl
Ab-lﬂ=1ﬂlﬂ lg - Ab (1.5)
s 3 lforB1=8
g1 1p=1p,5, = {o for B * ﬁ‘l; (orthonermal)

These eigenvectors are in general two-component complex. Note that in general

5
gl

except in the special case of real eigenvectors. As discussed in [6 (Appendix A)] the above is a valid

(1.6)

representation except in the special case that
Koy, — A,y = 1J2 Kbh.v (1.7

—e
Considering ¥ as an angle in the A, v plane, positive (counterclockwise) from the positive » axis (or 14
direction) we have

35 -+ : —
] ]

g =co{Fg) 1a + sin(g) 1y (1.8)

where each p can be in general complex and we adopt the convention

= ¥ + i (1.9)

(SRR

Noting that Tp can equally wetll be replaced by —Tﬂ*we can adopt some convention that T[ is oriented
as having a real part which is positive with respectto 14 (—x/2 to #£/2) or 1y (0 to x). There is also
the ambiguity of which eigenvalue/eigenvector to label 1 and which to label 2. One could choose the
largest |4 | as |41, but this is arbitrary.

Here the scattering dyadic is regarded as a function of frequency, but it can be regarded as a
convolution operator (real valued and symmetric) in time domain. The aforementioned C., symmetry
propetty applies to both frequency and time domains, i.e., zero cross polarization passes right through the




Laplace transform and its inverse. So one can also consider time-domain measures and measures involving
a broad band of frequencies. Noing that real objects do not have perfect symmetry one may wish to limit
the band of frequencies used to those for which certain imperfections in the symetry are either minimized
or enhanced, depending on the specific application. One may also wish to select the frequency band so that
the scattering from the target is maximized (to maximize signal-to-clutter ratio), such as by exciting
important natural frequencies [5].

Note that in time domain [6] we have

o {Ag, ) Ay (9)
Aol) '[Abv,,,m Ay (0
HT
= As(t)
2 S0 L0
= 20750750 01.10)
p=1
O 7
,lﬂ(r) » 1 g () real
NG IR

1g(t) « 15,(1) = 15,5, (orthonormal)

where the superscript “t” is used to distinguish these eigenvalues frem the frequency-domain forms which
are not in general Laplace/Fourier transforms of each other. Since the temporal dyadic is real valued and
symmetric the eigenvalues and eigenvectors can be consttucted as purely real and it is always
diagonalizable. Note that this dyadic is part of a covolution operator as

— 1 -~ _’(M‘C‘) -+ r
Eflrt) = — Ab{t) o E [OJ-;] (L11)

o & convolution with respect to time

and it is in this form that we need to consider bounds.

With these preliminaries we are in 2 position to ask how close to the ideal case in (1.2) a particular
measurement comes. We need some measure of this to be able to use this phenomenon as a target
discriminant. Already some measurements indicate this to be an important discriminant [12],




2. Measures of Narrowband Cross Polarization
2.1 Angle-based measures

When there is zero cross polarization then i#; and 9 are real with values 0, /2 (or possibly
including m and 3n/2 depending on convention. So we can use

cos{Re(f#)) cosh(Im(7)} - jsin(Re(%)) sinh(lm( %)) 2.1)
sin(Re(i7)) cosh(Im(#)) + j cos{Re(#)) sinh(Im(i7)) -

cos(i)

sin(#%)

n

and consider the real part of these functions noting the periodicity over 0 < Re{y)<2x. Taking w; and
w2 we can subtract integer multiples of 1/2 to shift the real part of either into our range of interest, say

L2 ~ r 3
7 < RB[WI]“H—Z— s — 2.2)

and use this to define a shified angle ¥, with

-~ . x
Re(¥s) = Re[;v;] —r @3

Im{#Fs) = Im{F) = Im(F2)

Our measure in this case is how close ¥, Is to 0, and we can look at both Re(i#,) and Im{§7,) if
desirable. For example

Re(#) # 0 with Im(f) = 0 (2.4)

might be locked at as a coordinate rotation through a real angle. Such might be the case if F, were justa
few degrees and had some measurement error in the alignment of the horizontal direction 15 . The local

earth sirface may be slightly tilted anyway.
22 Norm-based measures
One might consider leh VI, but to what should it be compared to obtain some dimensionless

number? One measures the “magnitude™ of a matrix by some kind of norm [1, 7]. These are many such
norms, but the ones of most interest are those associated with some vector norm as




« Slinc)

A Ay E
f[Asbll = sup ”—'ﬁﬂ (2.5
Slinc) Sune
E =0 e 1
o {me) -
In this form the incident electric field E which is perpendicular to 1; is varied over all polarizations
(including complex) to find the largest scattering as measured by the same norm.
—
Consider a “unit” vector 1, wth
Ty -Tr =0 (Ti read
-l = ; rea
v ‘ (2.6)
_+
I Ty ll = 1

where the unit size depends on the particular norm. A common norm is the p-norm, which when referred to
the A, v coordinates is

1
? }2 @7

—
ly

= [|1w,|p + I'wv
P

Commonly used special cases include

Ty fl = f'w{ + l'wv,
|
- — 2
Ty = [Tel =i, Ty (2.8)
2
T’r" = m‘”‘[l]w| ' IIWV]
Qa0

The associated matrix norms include

ma{ Koy + [Rogs] o [Rons] + [Rays]

1

maximum column magnitude sum




I
‘—:’T o2
= | Xmax| Ab- A

2
T = =T (conjugate transpose) (2.9)

Ymax = maximum eigenvalue (all eigenvalues real and non-negative)

Pl
Ap

maxUAbh‘hl + IAb”-V . |Abv,hl + |Abv,v|:|

&0

<> .
Apl| (due to reciprocity)

1

Depending on the specific problem at hand one may wish to choose a particular one of these norms, or even
one not on this list.

Of these va:icglhs norms the 2-norm has the advantage of being roll invariant, i.e., indepencn_i of the
A, v coordinates (but 1; still fixed). Note, however, that these norms are defined for complex ly , an
important point for complex matrices. Since real vectors are a subset of complex vectors we have

Lad

- =1 —+
Ap - ly| <|lApl for 1y real (2.10)

2 2

so the associated matrix norm still provides an upper bound. This suggests that one might use the measure

lAbh,v

<>
Ab

2.11)

vV =

Of course by changing subscripts any other norm may be used.

As discussed in Appendix A, the 2-norm is bounded both above and below by the root span.
Noting that the matrix size is small (2 x 2) we have
1 ~ ~
— - o
2 A s rsp{As)
2

o
2 < sp(Ad) S ||Ab

(2.12)

1
2]5

- — 2 - 2 _
rsp(Ap) = IAb"r"i +2|Ab}“| + IAbv.v




Then we can define another measure as

R\ : (2.13)

As shown in Appendix A the root span is invariant to an orthoponal transformation such as a real
coordinate rotation, i.e.,

sp[[m("”) "Si“(‘”)J R - ["05('#) -sin(w)D

sin{¢)  cos(y) sin{y) cos(y) (2.14)

>
= rsp(Abp)

corresponding to a rotation of the coordinate axes by an angle . Then root span is also roll invariant, like
the 2-norm. Also root span is a mafrix norm, but not an associated matrix norm (such as the 2-norm) which
gives a tighter bound when dealing with products of matrices and vectors. However, root span is easier to
compute.




3. Application of Narrowband Measures to Canonical Scattering Models
3.1 Rotational scatterer

As discussed in [6] such targets have

1
0

<
A

- o - 0
b = Ay li= Ab[ 1) with longitudinal coordinate suppressed

> b d o 5 - 3> —
li=l1lg=1-1;1;=1—1¢ 10 =transverse identity
And - - -+ = - —
1 = 1l + 1wlv + Vi1 3.1
- - - — -+ = :
= lglp + lyly + 1;1;=identity

- = — - =3 = . . . ]
[ La, v, 10] = [l};, 1y, 10] = right-handed coordinate directions

Physically this means that scatiered field is oriented parailel o the incident field. This model applies to any
scatterer with Cy symmetry (¥-fold symmetry axis along 1; ) for N = 3 [13-14]. The scatterer may, in
addition, have axial symmetry planes or even general Oy symmetry (orthogonal group in three dimensions),
but this is not required.

With the double degeneracy of the eigenvalues the eigenvectors are not uniquely defined. Hence
5 is not defined and an angle-based measure is not useful.

For norm-based measures we have

>
Ap

= Ky (3.2)

for all associated matrix norms. We also have
a 1
rsp(A.b) = 22 |Rb[ (3.3)

The norm-based measures previously defined have

va =0 , wy=0 (3.4)




since Ap, , is zero.

3.2 Line scatterer

This is defined by

- ~ 2, - A e pre
S _5 P3| cos"(@)  cos(#))sin(i7))
Ab =T Tn=4 [COS(E?l)Sin(Wl) sin®(i71) ] 2

In this case the angle ¥, is well defined in (2.3). While physically one may be thinking of a line scatterer
for which ; is a real angle (and frequency independent), this need not be the general case. Here an
angle-based measure is easily interpretable with i near zero meaning small cross polarization,

For norm-based measures we have

- 2
-~ U fard - ~ -
Rby = 41 |11+ Ta| = 4y eos? (i)
— — 2
Abv,v = ﬁ.] 11 - 1y = -1] Sil‘lz(l;l) (3.6)
- ~ I3 =75 - ST
Apyy = A1 |11 Ta|| 1= 1y =—2-sm(2yz1)
Al = App +Ayy
For the 2-norm we have
~t -~ — — .
< o T - |= =
AprAp=A1 A4 11+ 1111 11
-2l P3's
= |)l.1 11] 1111
-1 3.7
hary 35 . -
Il] 11 = right eigenvector
PUT
ard flary
1] 11 = left eigenvector




4

— 3
11 = eigenvalue

f

~ -2 .
Rl - i *{1] S -

> .
which for 1] realis just

o
Ap

- 3]

For the root span we have

= — || —
ll]‘lh I]']v .
Vo = Vg = o =3 Isin(2ﬁ1)l for i real
5> 3
I1- 1

which goes to zero for &, —» 0.
3.3 Dihedral scatterer

This is defined by

—

- -3 33 ~ - ~
Af,:ﬂ.l:llll—lzlz} » A =—A2 =4

(G-8)

(3.9)

(3.10)

(3.11)

-
For a physical dihedral under symmetrical illumination ( 1; parallel to a symmetry plane) the eigenvectors
are real (and frequency independent). The model, of course, can be more general, applying to other kinds
of structures as well. (For example, one could have two equal-length thin wires at right angles to each
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other, displaced by a quarter wavelength with two axial symmetry planes for S4, rotation-reflection

symmetry.) The angle measure i in (2.3} is not ambiguous in this case.

For norm-based measures we have

Kbh.h =2 [cosz(;?])—sinz(&'fl)]
Ap,, = -1[:;052(;‘;,,)_51:12(;71)]
th.v = A 2cos(iF ) sin(iF)

- ~ ~ - -
n-[:\b] Al + A2 =0 = Abh,h +Abvv
s ~ e ~
det[/\_b} = -7 = Ry, , Ka,, - s,
For the 2-norm we have
~1T ~ — L __wm __* — e
o R T e - =
Ap*Ap = A A|1111-1212 -[1111—I212]
which for real eigenvectors (real 7)) is

f\bb-x Iﬁ.’ [11I|+1212:|=|1|29

=
Il

A

2
For complex 71, this is somewhat more complicated. For the root span we have

i

> N |2 - 2 .
rspl Ap | = lAbﬁJ'| + 2|Abh,v| + |Abv,v

o

e 2 -
= zlAbM| + 2|Abw
& & |2
=|tr]l Ap = Ap

)
25I1| for | real

We then have
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(3.12)

(3.13)

(3.14)

(3.15)




y2 =

As
vy = ﬂ = [sin(zfil)l for i real

i
‘,Kbk,v beh,v (3.16)
Vis = - = 1
r. [‘Kb p 207
.S'p — —~
[Z‘Ab}"h\ + 2‘1\5}!,‘, ]
s 1
Ve = ——lh—v = 2 2 sin(2iy) for iy real
22 i
3.4 Helical scatterer
Another commonly used canonical scatterer is the ideal helix characterized by [9, 10]
& ~ {1 zF ~ {1 1
Ap = Apl | = Apl . ,
+j =1 =4 PR
G.17

right} | .
i = . circular polarization

the polarization being referred to the wave scattered from an incident linearly polarized wave. The incident

and scattered waves have the convention

5 linc)

1
rtional
E proportional to [ij]

=3{gc)

1 (3.18)
E proportional to ( )
*J

righty | ..
for circular pelarization
left

in our A, v coordinate system. Note the opposite signs for incident and scattered field. This is related 1o the
definition of right/left circular polarization by the sense of the screw formed by the tip of the electric vector

in space at the various positions along the direction (axis) of propagation at some snapshot (instant) in time.

13




As this screw passes the observer, the rotation of the electric vector has opposite sense depending on

- - - - ‘_t -> 4 - a
whether it is propagating inthe 1; or 1 (=- 1;) direction. At the observer

1 clockwise .
= , rotation
=) counterclockwise

_ [ negative
positive

(3.19)
] rotation

—
for the observer looking in the 1, direction. Note that an incident right/left-handed polarization produces
a purely right/left-handed scattered field. For other types of scatterers, this can be mixed. For a rotational

o d
scatterer with Ap proportional to (1, ,) an incident right/lefi-handed polarization produces a lefuright-

handed scattered field, reversing the sense of the polarization.

Note that this canonical scatterer is precisely a case that cannot be diagonalized [6 (Appendix A)].

— o
trl Ap| = det| Ap | =0
[ J [ J (3.20)

with only one independent eigenvector

It has

(¥,) = (¥,)}2 = constant tImcs(ilj) (3.21)

Such an eigenvector of a symmetric matrix cannot be normalized as in (1.5) since its dot product with itseif

is zero, Nevertheless, it has a dyadic representation as in (3.17).

For norm-based measures we have

e & ~ 2{ 1 1 ~ 21 =+
K Ko = i) (H) (tj) - 2fKe| (H 1,)
=t 4 1
2o Ro - Ro | = [1£7] 22 [&s[* (322)
N ' Sy L
Aol =22 [Kb . rsp[(f-\’b] =22 |Kb|
2

We then have

14




-5 i
vp =212, Yrsp = 7 (3.23)

Such a “helical” scatierer has a large cross-pol component.

15




4. Measures of Broadband/Transient Cross Polarization

The target signature of zero cross polarization, as discussed in Section 1, for C,,, symmetry is

frequency independent, and hence applies to temporal waveforms as well. For real targets, however, this
symmetry is not in general perfect, and one may wish to limit the band of frequencies over which one looks
at this signature. Also our instrumentation (radar) will have limitations in frequency as well. These issues

need to be addressed in forming measures of the cross polarization.

4.1 Angle-based measures

As in Section 2.1, one can use the angle {¥; as a measure, but as a function of frequency one will

need to characterize it by some average, peak, etc. (some norm) of |7 ;(j&)] over some band of freqencies.
As in (1.10) one can also define such an angle (real in this case) from the time-domain eigenvectors. Again
one will need to define some kind of norm over the frequency band of interest. In time domain, this
implies some sort of convolution weight (filter) before applying the p-norm or whatever. However, this
seems considerably more complicated than norms based on the scattering-operator components.
Furthermore one might wish to weight the answer by the strength (in some norm) of the scattering dyadic
s0 that frequencies with small scattering (and more susceptible to noise errors) are weighted less than those

frequencies with a large scattering.
4.2 Norm-based measures

For scalar time-domain convolution operators we have the associated operator norm [7]

s, ) = 1)

rost0e] = o D
with specigl cases
Inene @Yo = |45, @], = TlAb,,,‘, (1)
- ||A,,h,v(;)o 3 (4.2)
[por 2], = sup Ry, o) = [Ray,, Uoma)
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The 2-nomm is particularly interesting, being the largest magnitude for any frequency (w real). For band-

[imited measurements this form can be useful and we can define

OT L [Ray, () | @3)

Instead of a sharp cut off'at @ and @5 one may wish to define

Aty @2, = sup[gU2) Ko U =)= Ans(0)<], (44)

as a weighted 2-norm [8] where the weight function g(s) is a causal filter and |g(j@)| is approximately 1

for @| <@ < &9 and rolls off smoothly below @ and above @3 .
For dyadic convolution operators we have the associated norm [2]

1

< - [z
- Ap(e)e £(2)
Ap(t)e] = sup (4.5)
-» > —
f{#o0 ‘f ()
with the 2-norm given by
1
~T -~ 2
N > &
Ap(t)=|l = sup| xmax| Ab(j@) + Ab(jo)
2 o
{ (4.6)
af - & 2
= | Zmax| Ab(j®max) * Ab(jomax)

As discussed in [2] this is an example of a natural norm since it is time-translation invariant and roll

invariant. (Another norm discussed there, the m-norm, also has these properties.) For band-limited
measurements the supremum can be taken over @ S @ @3 as in (4.3) or (4.4). For the 2-norm we then

have the measure

17




”Abh,v (f) ° 251

<
|

i’b(t) o

2bf
sofgt o] [y () @
o

~t ~ 1 2
—~— - H - ﬁ -
suplg(/@)| 2max| Ab(jw)- Ab(!“’)]
(73]
Again, we can consider the root span. For present purposes let us first note that for all @

1 -~ ~
2 Ersp(:"\";},(jm)) < <Klz,(jm)

S rsp {i’b(jw)J (4.8)
2

This generalizes t0 @ gy in the 2-norm as

1 ~ - ~
2 2rsp{xb(jw)] < *Xb(ja)) < rsp[‘f-\*b(ja))J (4.9)
2
Now we have
o o -
rsp{Ab(jmmax)) 5 sup rsp[Ab(jm)} = mrsp[Ab(jw)] (4.10)
-3

since @may is defined by the 2-norm, not the root span. On the other hand, the root span is much easier to

calculate than the 2-norm. One then needs to consider this over an appropriate band of frequencies, as done

previously. Note that
mp[é‘(f@ﬁb(i@)} = |g(io)| rsp[xb(.fW)J (4.11)

this allows one to also have a band-limited form of the maximum of the root span as
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brsp[i'b(fw)J = sup |F(/jo) mp(ﬁbuw)] (4.12)

This then gives another measure of the broadband cross polarization as

A t)e
“ b0 (1) 28
Vors =

brsp i,b[jm)]

sup [g(/0)| [Ks, (1)

— (4.13)
sup [g(jo) rsp[ Ab (f'w)J

< Vap!

4.3 Residue-based measures

As discussed in [5] the target class of interest here ( Co; symmetry) has a set of eigenmades and
hence natural modes with cos(mg) and sin(m¢) dependence on the azimuthal angle ¢ about the symmetry
axis. This gives a double degeneracy (two independent natural modes for each natural frequency s, ) for
mz1. For m=0 there is in general (except for accidental dgeneracies [4]) only one natural maode for

each s, . This property can be exploited.

The backscattering dyadic can be represented in the form of the singularity expansion method
(SEM) as [3]

S — '("‘-’a)r. - =+
Ap(li,8) = Ee——f—?a(liJCa(li)
-5,

+ possible entire function (4.14)
¢ = initial or turn - on time

—._}
where the entire function and turn-on time need not concern us here. The vector ?a is 2 function of 1
- —
{or 1; and — 1 ¢ in the bistatic case), but for our case of C, target symmetry this vector is independent

- -
of 1; when referred to the A, v coordinates {(which are functions of 1;).

First observe that the iack of an k, v component in the scattering implies

19




— — — - - -
ceg = lp or 1y only (4.15)

In particular we have [5]

_)
1 for antisymmetric (H) modes
=1 " y () (4.16)

—
1y for symmetric (E) modes

For m=0, a particular s, has generally only one of these orientations, but for m =1 both types of ?a
are present for a particular s, (double degeneracy). If one can extract the natural frequencies s, &nd the
pole residues ?a ?a from the scattering data then the _c’a can be used as a target discriminant for this

kind of symmetry.

Putting this into a norm context for a cross-polarization measure, we have the residue norm or r-

norm [7]. For scalar functions, this takes the form

H(e) = D Rpe*nult)
= 2.1R|

(4.17)

which of course generalizes directly to dyadics if |R,, | is replaced by an appropriate matrix norm. of course

one ned not sum over all the residues, but merely take the largest, perhaps again limited by some frequency
band, now interpreted as some domain in the s-plane. Since we are neglecting any entire function we are

actually considering only the pole part of the response for present purposes.

So let us consider any particular pole of interest for our norm. For a non-degenerate pole (m = 0)

we have
Re = Pa 2o
{4.18)
- -
Apvia = [1b' ?a} |:?a' 1v:|

which for our symmetrical target is zero. Also we have

20




-
Aell = | #max| Ca P - CaCal|| =1CaP (4.19)
giving a 2-norm residue measure as
- - —
1 h'Coa Ca* 1 v
|Cka Cv oy
vy, = S (420)
_’
Zaf etal” # vl
For a doubly degenerate pole (m 2 1) the situation is more complicated in that
hid A d — —
Ag = Ca C‘al-l-{.‘az < ag (421)
?9-'1 '?gz = 0 (orthogonal)

- .
where now one of the ¢ o; has only an # component and the other only 2 v component for our ideal Ce,
target. In this case we can form

-+ = — o d - - g
Apvia =|lecayjlcatv|¥|lh-cayilcay-lyv
- Chay Vay +Cka2 Vg, (4.22)
V2aa =
L
Az
2
For the special case that the _E:'a,. are both scalar constants times real unit vectors as
— — - — -
Cay Ca, lg, » lag=—1lixl1g {4.23)

we have
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2 - = —
hvia = Ecaf la* lap lag by
=1
e —
=’c§,f—c§,£| Blag lag- 1y
1
— (—P‘ > 2
Ag| =|Xmax| Na'Aa
2
1
4> — 4 — —+ 2
= Zmax Icall lal 1a‘l +|Ca2| la2 10'2
(baf - Faf)
= max| | P (4
[24] ay (424)
- - —-
'cil——ci‘ Th - Tay Lag- Tv
Voo = 2
m?x |Cagi

The root span can be applied here as well, for which we have

> 4= — 4 = - _f
rsp[AaJ = tl{|cal| oy Tay + |eay| Lay laz}]

1

[ 4 477
= |°ﬂ1| +|c¢‘f2|

Aard
= ||lAg (4.25)
2
2 2|l > 2 2
cal-c‘IZ | P lal ]a:l\r —
Yrs.ae = - — 1
4 FREY
lear|* #feas| |
< V2 o

4.4 Application to canonical scattering models

Much of the discussion in Section 3 applies in the broadband/transient case as well. For the

rotational scatterer {Section 3.1) the symmetry makes the zero K;,,V apply for all frequencies. For the line
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scatterer {Section 3.2), if i#; Is a real, fequency-independent angle (e.g., 2 wire oriented at this angle) then
the orientation of the unit vector ?1 is frequency independent and the broadband response has the same
property for all frequencies. If, however, i) is frequency dependent, then the broadband response is better
characterized as a norm over the frequency band. Similarly for the dihedral scatterer (Section 3.3), a
physical dihedral with frequency-independent characteristics (at least over a band of frequencies) is

characterized in the same way as for the narrowband response.

For the helical scatterer (Section 3.4), however, we have a fundamental problem. In time-domain
the scattering dyadic is a real-valued convolution operator. The frequency-domain scattering dyadic must

then be conjugate symmetric, i.e.,

& =
Ap(s) = A b(.r )
(4.26)
& -
Ap(-jo) = Ap(jo)
Applying this to (3.17) gives for some frequency @ where this model applies, the result

o ~ 1 ¥5
Ab(-jwo) = Ap(-jwo) [H J ) 27

-
It follows the A p(s) must be frequency dependent. For real s (= ) the dyadic (including any scalar
coefficient) is real. The circular-polarization characteristic must apply to only a limited set of frequencies,

and this mode! cannot in generai characterize broadband scattering.




5 Concluding Remarks

As we have seen, the measure of cross polarization in 4, v coordinates is somewhat djfferent for
narrewband and broadband applications. In narrowband applications one can diagonalize Kb to find
appropriate angles, except in the case of rotational scatterers. In broadband applications such angles are not
appropriate except in cases where they do not rotate with frequency/time. The use of norms, such as 2-

norm and root span, can be applied in both domains.

The norms of the scattering dyadic which we have used are roll invariant. In the numerator of the
norm-based measures we have a norm of Kbh,v . There can be errors in our estimation of the Th
direction. In particular the local earth near the target of interest may not be perfectly horizontal, In such a
case it may be preferable to define horizontal by the earth near the target. This corresponds to a {(small?)
rotation of the A, v coordinates. In such a rotation one may cbserve a reduction of the cross polarization.
Of course, this applies for real rotation angles. If there is a complex angle (i) in the scattering, then this
comes from some other source (including a non-symmetrical target). There is also the problem of noise in

the data.
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Appendix A. Some matrix Inequalities

Considering an N x N matrix (&, ,, ) we can form a positive semi-definit¢ Hermitian matrix as

(anm)' * (@nm) = (cnm)

N
= Z a;',n Ay’ m

r'=1

A

with trace [11]

|
=
Ry
E

(C) ZZ% '

n=I1 n=n"=

il"mrﬂlz

n=1m=1

) 42

DY IED e ()

X¢ 2 0 (eigenvalues of matrix argument)
sp = span (like Ir = trace)

[\"42

= 8

For convenience we also define

1
rsp = root span = [sp]2

rsp ((an,m)) = [Z S lanm| J (A3)

n=1 m=1
Noting that [1]

1

“(a”-’")"z = [Z max ((a"ﬂ!)T ’ (anm)ﬂE 20 (A.4)

Ymax ™ maximum eigenvalue

with equality to zero for only the zero matrix, we have
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o —

Jfenm)l, < [iz,[(a,,,m)*- (am)ﬂ = rspl(anm)
&=l (A.5)
wlenn) 5 [ ze{ (o) ()| = 47 [on)
So we have bracketed the root span by the 2-norm as
"(“"-m)";g s rsP(("n,m)) < N2 ”(“mm)"z (A.6)

For small N then the root span is not too much larger than the 2-norm. Simijlarly the root span can bound
the 2-norm, both above and below, as

i

N2 t5pl(anm) < [anm)l, s vo((anm))

(A7)
Consider an N x N unitary matrix
(“n.m)-t = (”n,m )_1 (A.8)
Observe then that
. . 1
SP((un,m) (an,m) (”n,m) )
= El{(un‘m) ) (an‘m)* * ("n.m)T * (un,M) * (an,m) * (un,m)r) (A.9)

_ ﬂ{("n,m) .(.a,,,,,,‘)T *(@nm)- ("n,rn)*]

This is a similarity transformation of (a,,'m)t * (@) which conserves eigenvalues. Trace being the sum
of the eigenvalues we then have
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52 (nm) - (@nm) - ()

. = n{(a,,,m)T ~(an J,,)) | (A.10)

= Sp(("’nm))

50 span and also rot span are invariant to a unitary transformation. An orthogonal transformation, such as a

real coordinate rotation, has (u,, ,,) real and the above stili applies.

One can interpret the root span as a vector norm where the vector consists of the ¥ 2 compenents

Gp m arranged in an appropriate order. In this form the root span is a vector 2-norm with the properties of

such a norm. Specifically

rsp((@nm)) = 0 8 (@nm) = (Orm)

tsp(@ (anm)) = la] rsp({an,m)) (A1)
rsp((a,,,m) + (b,,,m)) < mp((a,, _,,,)) + rsp((b,,,m))
. For a matrix norm we also need the norm of'a product. For this we have first
an1 ) | Bas
i“m' b | = ﬂng,z : bﬂ:'2
i an N} \bnn
1 1
(ap1 )2 I b1 )2
s a’;‘z bz"" (A.12)
\enN ) [\bNm)

1 I

N ST N 2

. z1a,,_,,,|2] [zw
n=1

La'=]

where the matrix row and column have been reinterpreted as vectors (only variable index »') for

application of the Schwarz inequality, a special case of the Hélder inequality [7]. Now we find
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["il%nrf] [ibﬁ-mfﬂ | (A.13)
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Noting the non-negative nature of span we can take square roots giving

rsp((a,,_m) - (b,,'m)) < rsp((an,m)) rsp((a,,,m)) (A.14)

thereby showing that root span is a mamrix norm (for square matrices). However, it is not an associated

matrix norm which is defined by

_ I(an.m)'(xn)
S R A (At

This is seen by the fact that for all associated matrix norms we have

Nonm)] = 1 (A.16)

while for root span we have

tsp((1n,m)) = N% (A.17)
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