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Abstract

In multiconductor line network theory, ideal junctions represent the location where a cable may separate in
different directdons. Consequently, those junctions involve perfect connections between wires in each
branch. But they may also involve short-circuits to the ground and open circuits. Because scattering
parameters canuot be calculated with usual impedance or admittance matrix transformations, they have to
be calculated directly. Widely inspired from an article written by A. K. Agrawal, H. M. Fowles, L. Scott
and T. Simpson, in 1978, this paper presents an cfficient technique to determine them. On typical
examples, we show that this technique can be extended to any kind of ideal junctions. Moreover, in
addition to the wide application field of this technique, the calculation time is really improved compared to
Besnier's Technique, Calculations performed with the CRIPTE code emphasized the improvement.
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1. Definition of the problem

Electromagnetic topology relies on the description of complex systems under the form of networlks [1]. The
calculation of the response of a network to an excitation is provided thanks to the famous BLT equation.
The network equation is particularly well suited for multiconductor transmission line networks [2] where
the BLT equation formalism finds numerous applications in EMC and EMI fields. A topological network is
made of rubes, supplying the propagation of the waves on the tubes, and junctions supplying the scattering
of waves (figure 1-1). The concept of junction is essential in electromagnetic topology because it allows 10
take into account the bi-directed graphs associated to a given shielding level ([3], [4]). In particular, the
notion of localized junctions can be extended to the notion of equivalent junctions. describing the entire
scattering of waves on a subnetwork [5]. The extremities of the junctions connected to the tube wires are
called "perts". Furthermore, for all twbes and junctions, we will suppose that there is a common signal
reference that we call common "ground’.

For cable networks, particular important junctions are the ones associated to the point where a given cable
harness separates in several branches with different numbers of wires. In the network approach, each
branch can be described as a tube. Such junctions are called “ideal juncrions", according to the
termninology used in the CRIPTE code [6]. Contrary 1o terminal junctions, those localized junctions do not
invelve any physical loads (figure 1-1}. An ideal junction is a junction providing a perfect connection
between the wires of the different tubes. The connection point between the wires is called a "current
rode" because Kirchoff's current law is applied on them.
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Fig. -1 : Example of a cable harness network and its associated topological network,
involving 2 ideal junctions.

Compared to usual junctions, the particularity of such 2 junction is that it is not possible to calculate its
scattering parameters by the usual impedance or admittance transformations [7]. Indeed, these matrices are
not defined for such an ideal junction and the scattering matrix has to be calenlated directly. Seme
exampies are given in [7] for wire to wire comnections between two tubes. In [8], a more general methed is
proposed to calculate the scattering parameters of an ideal junction. This technique requires a block
analysis of the different characteristic impedance of the tubes connected to the junction. Particularly, the
model accounts for multiple connections of wires at the same current node ("fork" current nodes). A fork
current node 15 a current node involving at least 3 connections. For example, such a kind of connection
happens in the general model of branched shielded cable hamesses in which the shield cannot be
considered as the transmission line reference. In this case the connection of the equivalent wire associated
to the shield can be described with a fork current node (figure 1-2).
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Fig. I-2 : Modeling of the fork connection of a branched shielded harness.

Until this time, the technique described in [8] was the one applied in the CRIPTE code to calculate ideal
junction scattering parameters. It has been used successfully in numerous electromagnetic topology
applications. However, this technique still presented some drawbacks :

1 - The calculation time of the scattering parameters seemed to be very long for big junctions,

2 - The technique required much time and memory. Even if a stack allocation for the junction matrices had
been recently introduced into the code, the number of matrices declared in the routine was still impertant,

3 - It was not possible to take into account ideal connections to the ground or ports remaining in open
circuit,

In addition, a recent paper dealing with the optimization obtained when taking into account the sparse
structure of the BLT matrix [?], emphasized the fact that the caiculation of the junction scattering
parameters was now more tme requiring than the BLT resolution itself. The junctions used in the
validation examples were essentially ideal junctions.

In an old paper written by Agrawal and 2l. on the analysis of simple transmission line networks [10], a very
simple and efficient technique is described to determine the scattering parameters of ideal junctions, In this
paper, those junctions are of great interest because, as the lines are lossless, the scattering parameters are
not frequency dependent. Thus, in time domain, the reflection and transmission of waves they provide is
easy to determine. In fact, such a technique to determine the scattering parameters seems to be really
original and is not mentioned in usual circuit analysis references [11].

This paper deals with the analysis of the advantages of Agrawal's technique. First, we recall the equation
providing the expression of the scattering parameters. Then, we show examples of the generalization of its
application to ideal junctions involving short-circuits to the ground and open circuits. Finally, we
demonstrate the time and memory improvements obtained on a big network, already described in [9].

2. Description of the method

2.1. Objective

In [10], the derivation of the scattering parameters of the ideal junctions is carried out via the determination
of junction connection matrices C, and C,, respectively describing the Kirchoff's laws for currents and
voltages. The whole demonstration of the calculation is based on the configuration of an ideal junction in
which each wire in one given transmission line is connected to only one wire in another line. This way, the
junctions considered in the article do not involve any fork current node, any short-circuit to the ground or




any open circuit. However, the formulation the author gives is quite general. Here, we want to recall this
formulation and to emphasize that it remains valid for more complex configurations of ideal junctions.

2.2, Possible definitions of scattering parameters

The scattering of signals at a junction is generally described by a scattering matrix relaring Incoming

waves, W', to outgoing waves, W . Depending on the author, the terminology may change. The term wave
is found in {7] and is equivalent to the "combined voltage" term used in [2]. Both terms are closely related
to electromagnetic topology and tmulticonductor transmission line network theories.

W =5 W' (N
The waves are vectors defined as a combination of the voltage vector, made by all the individual voltages
on each port of the junction, V, and the incoming current vector, made by the individual incoming currents
on each port of the junction, [. I and V are related by a normalizing impedance matrix Z, in the following
way :

WE=V2Z T (2)

Thus, the value of the scattering parameters defined n (1) depends on the value of the normalizing
impedance. For example, scattering parameters on 50 L2 are different from scattering parameters on 75 2.
From a circuit point of view, the significance of scattering parameters referenced on Z, loads can be
understood as trapsfer functions between the input voltage and the output voitage when all the ports are

physically loaded by 2 Z, impedance network [9].

From a propagation and scattering point of view, it is Lmportant to realize that the scattering matrix gets the
significance of a reflection coefficient, only if the scattering parameters are referenced to the characteristic

impedance matrix Z, of all the ransmission lines connected to the junction. It is only in this case that the
incoming and cutgoing waves defined in (1) are the same as the waves propagating on the connected lined.
In [8], such scattering parameters are called "topological scattering parameters because they are the one
occurring in the BLT equation formulation.

From this point in this document, we¢ will alwavs copsider thal the reference impedance Z, is equal to Z,

and we will only consider topological scattering parameters.
In [10], the scattering parameters relate an input veltage vector, Vi t5a reflected voltage vector, v,
These definitions are generally used in the theory of transmission Iines [12] :

Vil = g,y {3)

Nevertheless, this definition does not modify the value of the scattering parameters. Indeed, in each point
of the line, the voltage and the current vectors mentioned in (2) are given by the following combination of
input and reflected voltage and current vectors :

Vo= i (e (4}
and

[ =1t e (5)
The combination of (4) and (5) with (2) easily leads to :

V+Z 1 W
2 2

yom

(6)

and




V-Z. -1 W
2 2
Because incoming and outgoing waves are related to input and reflected voltages with the same scalar

coefficient, the definitions mentioned in (1) and (3) lead to the same value of the scattering matrix. A
similar analysis can be made with the definitions of waves in microwave techniques where the factor "2" is

replaced by a factor " V2 rfor energetic considerations [12).

VU'E) - (7N

2.3. Determination of junction connection scattering matrices

2.3.1. Application of the Kirchoff's [aw

The Kirchoff's current law stipulates that the sum of all the currents at the ports of the junction must be
equal to zero. Moreover, in the case of ideal junctions, we can say that the sum of all the currents at a given
cwrrent node, "nc", is equal to zero. This can be summarized by :

-0 (8)
i

where [ represents the current on a port "j” connected to the current node "ne”. It is easy to realize that

{8) applies to any kind of fork current node. But it also applies for open circuit on a port "j". In this case, it
is still possible to consider that we have a current node associated to the port “j" and the zero current on
this port makes (8} become :

=0 €9

Let us call "N," the number of such (8) and (9) equations. If we put together all the "N." equations, it is
possible to derive the following matrix equation, involving the curtent vector I :

C - 1=0 (10)

The size of the matrix is N.xN, where "N" is the total number of ports of the junction. Let us consider a

current node, "nc”, and a port "j", Then the definition of the matrix becomes :

- Ci{nc,j) =0, if the port "j" is not connected to the current node "nc",
- Cy{ncj) = 1, if the port "j" is connected to the current node "nc”.

For a given current node, the number of non-zero terms is equal to the number of ports connected to the
current node. In the particular case of an open circuit on the port "', the line of C) dealing with the
associated current node "nc", contains only one non zero term, Cy(ne,j).

2.3.2. Voltage relations

As we did for currents, it is possible to establish similar relations for voltages. For a given current node, all
the voltages of the ports connected to "nc" are equal If V< and Vj“c are the voltages on two ports
connected to the same current node, "nc", we can write :

V-V =0 (11

Such a relation is still valid in the particular case of a short-circuit to the ground. If "i" is such a port
connected to the ground, (11) will be written in the following simplified form :




v =0 (12)

I

Let us call "N,," the number of such (11) and (12) equation types. [t is important to notice that :

N.+N,=N (13
Consequently the sum of the number of the Kirchoff's current and voltage equations is equal to the number
of ports of the junction.
Putting all the (11) and {12) equations together, we obtain the following matrix relation, counterpart of
(10):

C, V=0 (14)

2.3.3. Derivation of the scattering parameters

From (2), it is easy to express the voltage and current vectors as a function of the incoming and outgoing
waves. Thus, introducing the characteristic admittance, Y, as the inverse of the characteristic impedance Z,
of the tubes connected to the junction, we find an another way to demonstrate (4) and (5) :

Y, =2 (15)
V=W_;;W_; yiin) gt (16)
and
AR
1= YC.L—2—= | o (L (17

Combining (14) and (16) on one side, and (10) and (17) on the other side, it is possible to write the
following two relations between incoming and reflected waves :

Co W ==C,- W~ (18)
and
C Y. W =C, 'Y, - W~ (19}

(18) describes a linear system with "N, lines, whereas (19) describes a linear system with "N_" lines. But

both relate the N dimension W* and W~ wave vectors. Taking advantage of (13), (18) and (19) can be put
together in a square NxN linear system :

S lw e & lwe 20
G- Y, - Cl Y, (20
Comparing (1) with (20} the definition of the scattering matrix, S, naturally appears :
s=| 7% n s (20
oY) |Gy, )




3. Examples

3.1. General ideas

In this section, we want to demonstrate the wide field of applications of (20). In particular, it is still valid
for ideal junctions involving short-circuits to the ground and open circuits. The simple examples we have
chosen here are limited to 3 ports but they do not remove any generality when (20) is applied on bigger
junctions. To make the examples more self explanatory, we have chosen configurations with diagonal
characteristic impedance matrix Z,. The diagonal terms, Zc,, are scalar and are the only non-zero terms of
the matrix. This matrix corresponds to e configuration where each port "i" is connected to a single wire
transmission line having a scalar characteristic impedance, Zc,, or a characteristic admittance, Yc, {figure 3-
1), This means that the different wires connected to the junction are not coupled. Such a configuration can
be obtained considering 3 shielded cables whose shields are connected to the common ground reference.

Yc, port 1
Ye, port 2
Ye, port 3

Figure 3-1 : Three port junction connected to three non coupled transmission lines

3.2. Short-circuit junction

Cl Cv S
porc 1, Y, N.=0 N,=3 -1 0 0Y'f100) (-1 0 O
port2, Yo, 100 §S=|0 -1 0O 01 0oj=l0 =1 ©
010 o 0 -1 0 01 0 0 -1
pnrtJ.Yr,,_.l 60 1
(21)

We find the well-known result that a short-circuit reflects entirely an incident wave with a phase
opposition. The very important point to remember is that the matrix of a short-circuit is independent of the
characteristic impedance of the transmission lines connected to its port.




3.3. Open circuit junction

c, Cy S
punl.Yc"_ Nc=3 NV=O
Ye, 0 o0Y'(ve, o o 100
pon 2, Yo f— [é (IJ g S=| 0 Y, 0} 0 Ye, 0 |=|0 1 O
POTE 3, Y ¢ e o o0 ] 0 0 Yec, 0 0 Yc, 001
T (22}

We find the well-known resulr that an open circuit reflects entirely an incident wave without any phase
opposition. As for the short-circuit, the same remark on the non-dependency on the characteristic

impedance can be made.

3.4. Combined short-circuit and open circuit junction

C, Cy S
N.=2 N.=1 0 0o -nN'fo0o o0 1
port 1, Ye J=— [[ 0 DJ © 0 1) S=|Yey 0 O] -|¥Ye 0 0]=
[OTE 2, Y g 010 0 Y 0 0 Ye, O
-1
port 3. Ye, 0 Zc 0 0 0 1 1 0 0
0 0 Ze| -|Ye, 0 ofl=lo1 0
L -1 0 o 0 Yo, 0/ Lo 0 -1
13

As in the previous cases of short-circuit and open circuit junctions, we notice that the scattering parameters

are independent of the characteristic impedance.

3.5. Combined short-circuit and transmission junction

G, Cy )
Ne=1 N.=2 -1 1 oY'(1 -1 0
port 1, ¥c {11 0) 1 =1 0 S=| 0 0 -1 0 0 1| =
00 1 Yc, Yec, O Ye; Yc, O
port 2, Yy YCI—YCZ 2.Yc2 o
port 3, Ye, Ye, +Ye, Y, +Ye,
2-Yc, Ye, -Yc,
- 0 (24)
— Ye, +Ye,; Yo, +Ycy
0 -1




This example clearly demaonstrates that a topological scattering matrix is not symmetric. This is related to
the non symmetric property of the reflection coefficient. Moreover, the resultant matrix depends on the
characteristic impedance matrix, except on the short-circuited port for which the scattering parameter
remains equal to -1. The absence of symmetry and the dependence on the characteristic matrix are usual
properties of scattering matrices sometimigs forgotten by several users ([7], [12]). Nevertheless, if the
characteristic impedance is the same on port 1 and port 2, the scattering mairix becomes :

0
0

Y
S=|1
0 -1

(= = I

Because the wave does not see any mismatching between port 1 and port 2, it is entirely mansmitted (S, =
S, =1}

3.6. Combined open circuit and transmission junction

C, Cy s
N, =2 N, =1 1 i oYt 1 -1 0
pom 1. Ye 0 o 1) 1 -1 0 S=| ¢ 0 Yey| | O 0 Yesi=
port 2, ¥e, LI 1 0 Ye; Ye, O Ye; Ye, O
Y, -Yc, 2.Ye,
port 3, ¥es Yc, +Ye, Yc +Yc,
l 2-Y¢, Ye, — Yo 0 (25)
Ye,+Ye, Yo, +Ye,
0 0 1

As for the combination of a transmission and a short-circuit, the same comments apply in this case.
Particularly, one will notice that the first 2x2 block is similar to the one of (24). In the particular case
where the characteristic impedance is the same on port 1 and port 2 we obtain :

o O -
= o o




3.7. Fork junction

C Cy S
port 1.Yc, Nr_= 1 Nv=2 -1 1 0 -! 1 -1 0 1
. S=| -1 0] 1 < 1 0 -l |l=—
port2.Ye (L1 1 -1 ¢ Ye, + Yo, + Yo
. [1 0 - 1] Ye; Yo, Yo Ye, Ye, Ye : z ?
port 3.Y ¢y
Ye, -Yc, - Y, 2-Ye¢, 2-Ye,
_J_ 2-Yce, Yc, —Yc — Y, 2:Ye,
2:Yc, 2-Ye, Yey ~Ye, - Yo,
(26)

Once again, the matrix is non-symmeiric and depends on the characteristic impedance. Nevertheless, if the
characteristic impedance of the three connected ransmission lines is the same, we find :
1/3 2/3 273
5=|2/3 1/3 2/3
2/3 2/3 1/3

The matrix is now symmetric and independent of the characteristic impedance. One third of the signal is
reflected on the input port (§;; = 1/3), while the two other thirds are transmitted on the two other ports (S;; =
1/3).

4. Improvements

4.1. Memory improvements

The technique described in this document has been implemented in the CRIPTE code. Compared to the old
teclinigue based on [8], the memory requirement has been significantly reduced.

In the code, all numerical implementations are made in FORTRAN 77. Recent memory optimizations,
based on the used of a stack file allow an allocation of the tables close to the dynamic allocation provided
in the FORTRAN 90. This way, it is possible to compare the memory requirement of the old method and
the new method for a N port junction, provided that the sizes of all the tables are exactly matched to the
number or ports.

The old method required :
- 8 double complex matrices NxN,
- 3 double complex vectors N,

- 3 integer matrices NxN.

Consequently the number of bytes required was equal to 8.N2.16+3.N%2+3.N,16 # 134,N? for N large.

10




The new method requires :

- 3 double complex matrices NxN,
- 2 integer matrices N.

So the number of bytes required is equal to 3.NL16+2.N%.2 # 52.N* for N large. The improvement is new
close to 40 %. For instance, if the junction contains 60 ports as in the next example, the memory
requirement will be :

- 485 kilo-bytes with the old method, and
- 187 kilo-bytes for the new method.

4.2. Calculation time improvements

To give an idea of the improvement obtained on the calculation time, we have chosen the same example as
the fork one described in [9]. The network is made of 19 tubes organized as an assembling of junctions
with three connected tubes (figure 4-1). Each tbe is 1 meter long and contains 20 wires. The entire
network contains 1] terminal junctions equal to 50 £ loads applied on esach wire and 9 ideal junctions. All
the ideal junctions are similar and deal wiath the simple wire-to-wire connection on the three tubes
connected to it. The internal topology of the 60 port junction is represented on figure 4-2.

ter50 20.s

ter50_20.s

1=1 ter50 20,5

Fig. 4-2 : Internal topology of the internal junction.

As in [9], the calculation of the BLT equation on this network has been achieved when a 1 Volt localized
generator is applied at the end of the first wire of the first tube. The calculation time for the different steps
of the BLT equation construction and resolution has been checked, particularly, the time to caiculate the
scattering parameters of the junctions.

1




Table 4-1 shows the calculation time obtained with four different versions of the CRIPTE code -

- "Old_non_opt" ; ideal junctions calculated according to [8] : no optimization of the compilation,

- "New _non_opt": ideal junctions calculated according to [10] : no optimization of the compiiation,

- "Old_opt": ideal junctions calculated according to [8] : optimization of the compilation ("-O3" option),

- "New_ opt": ideal junctions calculated according to [10] : optimization of the compilation ("-O3" option).

The calculations have been carried out on the same SUN SPARK ONE work-station, with 64 Mbytes
memory, as in [9]. Of course, the junction calculation times presented in table 4-1 do not apply only for
ideal junctions. Nevertheless, despite the fact that the network contains only 9 ideal junctions over the 20
junctions, we notice that the calculation tune is widely improved with the new technigue. This means that
the old ideal junction scattering parameter technique tainly imposed the calcuilation time on the junctions.

With no optimization of the compiler, the calculation time is improved by 8 %. With the "-O3" compiler
optimization, the calculation time is reduced in both cases and the improvement is close to 10 %. For all
those calculations, the BLT resolution times were respectively 30 s. and 8 s. for the compiler-non
optimized and optirnized calculations. In [9], it had been pointed out that, with the improvements of the
BLT resolution, the calculation time on the junctions became the new limitation of the total calculation
time. In the case of the optimized option of the compiler, this time becomes now comparable to the one
required to calculate the scattering parameters of junctions.

Calculation Time "Qld_non_opt"” "New_non_opt" "Old_opt" "New_ opt"
Junctions 26 min. 06 s. 2min. 11 s. 7 min. 10s. 0 min. 40 s.
BLT resolution 0 min. 30 s. 0 min. 30s. 0 min. 8 5. 0 min. 8 s.

Table 4-1 . Calculation time of the scatiering parameters of all the junctions on figure 4-1 network

5. Conclusions

The calculation time of the scattering parameters of ideal junctions can be widely improved applying an
efficient matrix technigue described in [10]. In addition to [10], we have demonstrated that this technique
could be applied without any modifications to the case of ideal junctions inveolving short-circuits to the
ground and open circuits.

Compared to the technique described in [8], the new technique requires ess memory and leads to a
significant reduction of the computation time. This way, the calculation on junctions is not anymore the
new limitation of the total calculation time that had beer emphasized when taking into account the sparse
structure of the BLT matrix [9]. With the same idea, in the next future, a similar effort should deal with the
optimization of the calculation time of tube characteristics. Some recent papers describing analytical
formula for the calculation of modes and propagation speeds on cable bundles already provide a pertinent
answer to this problem [13].

Furthermore, especially in high frequency, it is now quile established that accounting for the non
uniformity of cable bundles becomes a requirement [14]. The more straightforward technique deals with
splitting the cable in different pieces, each having a particular impedance matrix and velocity matrix. The
connection of the different pieces is performed thanks to ideal junctions. Depending on the non uniformity
and the length of the cable, the number of ideal junctions may widely in¢rease. The requirement of such
junctions seems unavoidable. Even if special techniques like the interpolation of the velocities between two
short sections of cables seem to be effective [15], the application of such techniques to cable bundles
stillimposes non realistic hypothesis (uniform medium, structure of the characteristic matrices).
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