Interaction Notes
Note 534

22 QOctober 1997 .

Exact Analytical Solution for Nonuniform Multiconductor Transmission Lines with the Aid of
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Abstract

Nonuniform multiconductor transmission lines (NMTLs) are formulated from the telegrapher
equations into a first-order supervector/supermatrix differential equation combining the voltage
and current vectors. This equation is converted to one for the waves propagating in the two
directions of the transmission line. Both equations can be represented in a common general
supermatrix form. The supermatrizant describing the solutions of this general equation is
evaluated via a transformation with an elementary relative matrix and the solution of a matrix
Riccati equation simplifying the resulting telegrapher equations to a structure to which the
usual sum rules for product integrals can easily be applied. The block elements of the
supermatrizant are {mainly) composed by matrizants of Nx/ matrices. For a single nonuniform
line and for circulant NMTLs the supermatrizants are represented by exponentials.




1
Introduction

There are several techniques to solve the telegrapher equations for NMTLs [1-3]. The present
paper confinues this discussion, utilizing the product integral [4] and relative matrices [5] for
extending these results.

The telegrapher equations for an NMTL for & conductors (plus reference) read

Iy (z,8)=—-Z'(z,5)i(z,8) + v (z,5)
Jz

(1.1)
_6% i(z,5)=-Y'(z,5)v(z,8) +i'™ (2,5)

The vectors (little bold face letters) have N components and the matrices (capital bold face
letters) are NxN. Here the treatment is in complex-frequency domain as indicated by the two-
sided Laplace-transform variable s = Q + jo, and z is the position along the line. For brevity,
we sometimes will suppress the dependence on s and z. As usual the vectors v and i denote the
voltage and the current at z, respectively. The per-unit-length source vectors are indicated by
an upper dash and s in brackets. The per-unit-length impedance (Z’) and admittance (Y’)
matrices can be comined to give

P(z s):-—-(Z'(z, 5)Y'(z, s))m' (positive real (p.r.) square root) (1.2)
= propagation matrix
Z.(z8)=P(z9)Y " (z5)=P " (2,592 (z9)=(Z. (%) (1.3)

= characteristic impedance matrix

where reciprocity has been assumed.

2
The supermatrizants for voltage and current vectors and for the wave variables

As is shown in [3] and [6] the voltage and current vectors can be combined with the aid of the
characteristic impedance matrix to a supervector of 2NV components, and the combined
telegrapher equations can be represented as a first order differential equation in supermatrix
form

3 (v[(z, s)) =[P“(z.s) P, (z, s)} [v.(z, s)) +[v'f=’ ( S)J @.1)
dz\v, (z,s P, (z,8) Ppu(zs)/\v,(zs) v (z5) '




where the supermatrices are 2Nx2¥, and where the block matrices Py depend on the chosen
representation. In the representation of voltage and current vectors we identify

v,{z,5)=v(z,5), v,(z,8)=Z_(z,8)i(z,s)
(2.2)
vi¥(z,8)=v"" (z,5), v (z,9)=Z_(z5i"(z,59)

and

P,(z,5)=0;, P,(z,5)=—P(z,5)=P,,(z,5)
(2.3)

P (2, S)=(£—Zc(z,5)) Z.'(z,5)=D,Z (z,5)

The product derivative D, is discussed (e.g.) in [6].

In order to obtain the representation in wave variables with (+) giving the direction of
increasing z (right), and (-) giving the direction of decreasing z (left), we have to observe the
following relations:

v(+) (Z,S)J ey [ V(Z,s) ]
=|R+Pg
[V(_] (Z,S) l'_+ ] zc (Z'ls) i(Z,S)
and (2.4)
v . 1(s)
[ é:j) (z, S)] [R +Po ][ v (z,8) )
"oy (Z,5) Z,(z,59)i(z,s9)
Here the supermatrices R and P. describe refiections

ﬁ-—[l OJ—E" 2.5
=y ()" 2.5)

and permutations

3 [" ‘] 72 26
<=0 1) 2.6)

respectively. Then we find

v,(z,8)=v, (zs), v,(zs)=v_,(z53)
(2.7)
|(|) (2., S) VIE:J) (Z,S); v:(;) (Z S) V|(s) (Z, S)

ot




and

P, (z.5)=- P(z,s)+% D.Z. (z); P,(zs)=P, (z,s)=—%D,Zc (z,5)

(2.8)
1
P (29)=P(2,5)+ 5 D,Z, (59
It is convenient to rewrite equation (2.1) in the supermatrix form
8 - B —ita) - I
v (z,5) = P¥(z,5) +v"" (z,5) {(2.17)
oz
Its solution can be derived using the methods given in [4].
The solution reads
_ — _ t— _
V(z.9=M,, (P)¥(z..9+ [K(z L)V (€94 (2.9)
I
with the supermatrizant [4]
—T —_— - 1 — z — 5 —
M., (P)=1+ [P, 5)d¢ + [P (C,5) [P (n,s)dndG+ .. (2.10)
Zo s Iy
and the Green'’s function
K(z.59) =M., F)M, (P) 2.11)

Thus it becomes quite obvious that our further investigation has to focus on the calculation of

the supermatrizant M (P).

3
Determination of the supermatrizant via the solution of a matrix Riccati equation

For the determination of the supermatrizant it is sufficient to solve equation (2.1°) without
sources [4]. First we generalize equation (2.17) to

—aa—V(z, s)=PV(zs) or D, V(z,5)=P(z,5) ) G.1)
z

where V =(¥; ) denotes the 2 ¥ x 2 N integralsupermatrix which columns are composed by 2V

linear independent solutions of (2.1"). Next the generalized telegrapher equation (3.1) is
transformed with the aid of the relative supermatrix




— (1 T, = 1 -T,
T= and T ' = {3.2)
¢ 1 i} 1

to a corresponding equation for W, with

V=TW (3.3)
giving
_ —l—— —13T — R
D:W=T PT-T -=—=iQ (3.4)

The block elements of Q turn out to be

2

a7,
Q, =P, -T,P,; Q,=P,T,-T,P,T; -T),P,, + P, - a;

(3.5)
Q. =Py; Q,=P,T, +P,

As will be shown later the requirement that the upper block matrix Q,z should vanish simplifies

the construction for the solution of M (P).In this case we obtain a relative half-reduced
supermatrix [5], and T,z has to fulfill the matrix Riccati equation

a1,
.

=P, T, -T,P, T, - TP, + P, (3.6)

In what follows it is assumed that equation (3.6) is solved for T,2. Then we continue our
calculation decomposing Q into two summands

S A B 3.7
TN Q) Q0 |

Ql

This has the advantage that we can apply a sum rule for the matrizant [4] giving

M:(Q=ML(QML(S) =~ | ) (3.8)
with
§=[ﬁ;(5l)] LM..(Q) - (3.9)

Using equation (2.10) we easily recognize that the matrizant for 6, can be written as

M,,(Qu) 0 (3.10)

ﬁ; (61) =( z
0 I\I:,(Qll)




With this expression and its inverse

z -t 7Y
2 _ 't (Mq(Qu)j =M, (Qu) 0
[MI,(QI)) = , 4 (3.11)
S is obtained as
S= ( % 0 z 0) (3.12)
M. (Qx)Q:(z)M; (Qu) O
The matrizant for S only contains two terms (compare with eq. (2.10))
M. (§)~—i+f( ° GJdC
* W \M¢ (Q2)Qau{E)M,,(Qu) 0O
1 0
=(IM?(QR)Q21(C)ME,(Q11)CIC IJ (3.13)
Eventually we find the preliminary final result (see eq. (3.8))
— ML(QII) 0
M., = z P z 3.14
O M (@n) [MI Q) QML Q)L ML, (Qx) G149
which in a last step has to be retransformed to the matrizant for P. We have
V()= M., (B)V(z,)=T(OW (@) =THM,, Q) W(zs) (3.15)
-T(@M., (@T (2:)V(20)
and therefore the relation
—_ @ — _— —_—r — —-l1
M., (P)=T(z)M_(Q)T (zo) (3.16)

This solution has to be inserted in equation (2.9) where also sources are taken into account.
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4
Applications

More explicit expressions for the supermatrizant M (Q) can be derived in the cases N =1 (ie.
if there is only one line and the reference conductor) and if the matrices
Qu(2), Qu{z') and Qs (z), Q2 (z') commute for all z,z' e(a,b) along the line. Then

one gets

jQ”(z‘)dz' jQ:‘.[!')dZ'

M, (Q,)=e . ; M, (Qz)=e (4.1)
- [Qu(zyaz

Mc (Qn)=c B (i=1*2)

An interesting group of matrices which are also most relevant for practical applications are
circulant matrices [1]. They form an abelian group (they even have a richer structure) with
respect to matrix multiplication. Thus all elements of this group can be simultaneously
diagonalized with the aid of one and the same unitary matrnix, called the Fourier matrix [7].

This diagonalization procedure (simularity transformations) results in diagonal expressions for
the quantities in equation (4.1). In effect, the calculation with circulant matrices leads to
equations which formally resemble those for the one dimensional (V = 1) case [1].

A further simplification {compared to (4.1)) can be achieved for N = 1. Then we have to deal
with 2 x 2 matrices which elements are scalar complex functions. For the matrizant we obtain

IQu(l')dz’
[— 1 —— cl° O
Mi (Q) = | fameenr , fraut-aues fantner (4.2)
e’ [Qu)e” g ¢”
F )

_(f[(zvzu) 0 )
. f3(z.z,) f£,(z,2,)

The scalar Riccati equation (in the representation for the voltage and current vectors) reads

aTu - 2 - E —
5~ L@ T2~ Ta(2)~tn(Z.(z,9) - P(z,9) (4.3)

For the lossless exponential line ,e. q., T2 becomes constant (w.r.t.z), and equation (4.3) can
easily be solved. The line parameters, here the propagation function P(z,s) and the




characteristic impedance function Z.(z,s) determine Tz via equation {(4.3). Knowing 12(Z.s)

one finally calculates M (P) as

M, (P) =
(f] (z,2o) + T2 ()0 (z,20) —£1(2,20) T2 (2Z0) — T12(2) T12(Z0) £2:(Z, Z0) + T2 ()2 (2, Zo )J
f21(z,20) - (z,20) T2 (20) + F2(2,2)

(4.4)

With the solutions (4.2) and (4.4) we present the general structure of the solution for ail one-
dimensional (¥ = 1) nonumform transmission lines.

5
Concluding remarks

We have shown that the use of relative matrices together with the product integral gives some
interesting ways to represent and compute the supermatrizants representing waves on NMTLs.
In deriving the supermatrizants an intermediate step requires the solution of a matrix Riccati
equation.

This very closely resembles the equivalence of the telegrapher equations and the Riccati

equation for the positon dependent reflection function [1]. Moreover, it may be useful to
observe the Lie group properties of the matrix Riccati equations [8] to study solutions in
terms of Lie series.

Another advantageous aspect of the matrizant solution is the connection to the scattering

supermatrix S. for purposes of network simulation. This connection is established by the
comparison of the two matrix equations (zo = 0 near end of the line, z= ¢ far end of the line)

VW(ED =t — [Vm(o)J
=M,(P 5.1
(vH(f Py G-D
and

Vc-)(OD = [Vm(o)]

[v(.,(e vir () (52)
which results in the relation

-1 -
Sen=—Map M.y, Sq: =M2:i (5.3)

-1 -1
Sen =My —-M;;MM;;, S..=M;M,




between the block matrix elements of M (P)and S..

Thus also nonuniform MTLs can be well treated in a network simulation [9].
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