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Abstract

In polarimetric remote sensing, one can use the symmetric 2 X 2 backscattering dyadic to obtain
information concerning the target. When operating at a single frequency, however, the amount of
information is limited and there is an ambiguity in applying simple scattering models to the data. By
extending the bandwidth in the sense of a pulse or multiple frequencies (retaining phase) more
information concerning the target can be obtained, to which more sophisticated scattering models can be
applied. In the form of the temporal backscattering dyadic (operator), temporal isolation via windows

can also be used to separate scattering events for separate analysis.
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Abstract

In polarimetric remote sensing, one can use the symmetric 2 x 2 backscattering dyadic to obiain
information concerning the target. When operating at a single frequency, however, the amount of
information is limited and there is an ambiguity in applying simple scatiering rodels to the data. By
extending the bandwidth in the sense of a pulse or multiple frequencies (retaining phase) more
information concerning the target can be obtained, to which more sophisticated scattering models can be
applied. In the form of the temporal backscattering dyadic {operator), temporal isolation via windows
can also be used to separate scattering events for separate analysis.




1. Introducton

In remote sensing via scattered elecromagnetic waves one attempts to find out as much about
the target as he can. For given directions of incidence and scattaring this process is described by a scatter-
ing dyadic or matrix [1], which in the right coordinates is basically a 2 x 2 matrix. The informaton we

seek is in this scattering dyadic and we would like to know how much information we can get cut of this.

Consider an incident wave as indicated in fig. 1.1 with
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In ime domain the inddent wave takes the form

;(iHC) T -
L2,
E (7.0=Eflt-——1|7T,
e (1.2)
- (inc -+ -
A @Fo=2q:-10007, 47,
Zn c

- —
where 17 and 1p are taken real and ime invariant.

(3% )




—
1P incident
polarization

_)
1 direction
of incddence
o
target
(scatterer}
_} 0 .
1 direcion
of measurement
_}
1, direction
to observer

Fig. 1.1 Target with Incident and Scattered Waves




Let 7 =0 (coordinate center) be taken as some convenient position near the target (say, the

center of the minimum circumseribing sphere}. The scattered field in the far field takes the form
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where 1 is taken real and time invariant.

t

In time domain the scattering dyadic becomes a convoiution operator, but one can consider Py

(without convolution) as a dyadic delta-function scattering response. Note in time-domain form that

- =

o ) —
A{lo, 1i;8) = A {(—1i,—1o;8) (15)

is real valued, scattering real incident electric field into real scattered far electric field.

Our interest in this paper is primanly in backscattering, for which
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In ime domain, this is
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For the case of backscattering, it is convenient to consider these dyadics (matrices) as 2 x 2, since

there are no components involving the directon ?;' . Inthe usual h, v radar coordinates we have
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so that (_1.;1,?9, — 1} formns a right-handed set of coordinate directions. Here, & stands for "horizontal”

(as in horizon) and v for "vertical”. So,in 2 x 2 form we can write (suppressing T
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Thus, there are three complex numbers (for any given s } which characterize this matrix. In ime domain,

we have

Rp(t) = [Abh.h © Ay ‘ﬂ]

Ap, ) A, (O (110

Agy o () = Ay, (B

which is characterized by three real numbers (for any given ¢ ).




2. Diagonalization of the Backscattering Dyadic

So now diagonalize the frequency-domain form of the backscattering dyadic as
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Note that the left and right eigenvectors are the same for a symmetric dyadic (matrix). These vectors are
in general two-component complex. As discussed in Appendix A the above is a valid representation

except in the special case that
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Dot products can be used to define direction cosines in the two-dimensiconal &, v space as

=
1

Il
[e)
o
1)

———
<1
™™

N

B

cos{¥ g}

e eoslp) T 23)

From this we have
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Taking w g {in general, complex) as the angle with respect to the positive h axis we have
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Furthermore take the convention

Fa(s) = F1(s) + 12’- (2.6)

However, there is stll a sign ambiguity on Tp since it can be replaced by -Tﬁ in (2.1} with no change.
One can adopt a convention that

0< yi{s) <o , %5&2(5)<3?’r 27

This sl leaves the problem as to which is "1" and which is "2". One can let this be defined by
ts] > [iats) = 0 " @2.8)

An excepton to this is the case when the magnitudes are equal, making it difficult to decide the ordering,
Furthermore, if the two eigenvalues are equal, excepi in the case of (2.2), then we have
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Apls) = 1{5)[ J . i) = Z(s) = p(s) 2.9)
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and the angle §; (and hence ;) is undetermined. Also since the iﬁ(s) are, in general, functions of
frequency, then as one varies frequency the definitions of "1” and "2" in {2.8) may interchange. So one

may adopt a different eonvention (in broadband) to keep track of the eigenvalue variation.

For distinct eigenvalues | {and hence ¥2) is determined and can be considered as some
characteristic of the target. The backscattering dyadic as in (1.9) is characterized by three complex
numbers. In the diagonal form in (2.1) there are still three distinct complex numbers A1(s), Z7(s), and
@’1 (s). What can we tell about the target from these? This has both narrowband and broadband aspects.

The reader can note that the above diagonalization is not the only way to decompose the

scattering matrices. Various othar bases, such as the Panli spin matrices are also used [6, 10).




3. Form of the Backscattering Dyadic for Canonical Scattering Models

So as to better understand the relation of the backscattering dyadic to the target, let us consider
the form this dyadic takes for three kinds of targets. For the moment we are considering that
measurements are being taken at some fixed frequency s = jo-

3.1 Line scatterer

Our first example is defined by

[fatsy > i) = 0 G3.1)

so that, to a good approxdmation, the scattering dyadic has only one non-zero eigenvalue. This is easily
tested via [8]

det(Rp(s) = 0 , t(Rpis) = 4(s) (3.2)

or, more realisticaliy, small in magnitude compared to one or more matrix elements.

In this case we can write

cosz[l,'t'rl(s)) cos{t; (s)}sin(i71 (s))

&
A
cos{§1(s)) sin(ipry (sY) sinZ (7 (s))

p(s) = Li(s) T1(s) T1(s) = 5.1(5)[ (3.3)

Noting that T1 is characterized by the angle ¥, then the scattering dyadic is characterized by two
complex numbers, 4 giving the amplitude and ¢/ giving the direction.

As illustrated in fig. 3.1, if ; is a real angle it defines a direction in h; v space. Physically this
could correspond to a long, thin target aligned in this direction. Note that the substitution

T 2= T16) , Gyl = §ls) + o (34)
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leaves (33) invariant, so that the alignment of the target is equally well characterized by both directions.
For synthetic-aperture-radar (SAR) images one might consider characterizing the pixels, paths, and/or
areas by double headed arrows in cases that (3.3) applies. Thereby one may identify some geometric
properties of the scatterers, both individually and collectively.

Of course, ¥] may be complex. If there is a significant imaginary part, one may have to interpret
the physical properties differently. One may also consider how to add this imaginary part to a SAR
image.

3.2 Rotational scatterer

Our second example is defined by

A1(8) = I(s) = As) (33)

at least to a good approximation. Then the backscattering dyadic becomes

Avls) = A T

D = 1 0y . ) <. . ; .

li=slp g+ 1y ly= (0 Ja_:denhty {transverse to 1; in two dimentional form} (3.6)
det(Ap(s) = A%s) , t(Ras) = 24(s)

L
which is characterized lby a single complex number. Physically, this means no depolarization. If the
incident wave has some polarization Tinc inthe b,z system the received scattered wave will be polarized

in the same direction {nsting the generally complex coefficient 2.

Various typesof targets have this signature. Quite generally any scatterer with Cy symmetry
(N-fold rotation axis along Ti) for N 2 3 has this property [8, 9]. This belongs to much more than
spheres (although for spheres this appiies to all Ti), orin general form to a target with O3 symmetry
(orthogonal group in three dimensions). It applies as well to more general structures such as propellers
(with at least three blades). So, for a label, let us refer to this class of scatterers as "rotatipnal”,

Figure 32 shows an exampie of a trihedral comer reflector with C3, symmetry (containing, in
addition, three axdal symmetry planes). Note that this condition applies for T aligned along the
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symmetry axis. In fig. 3.2, one can follow a ray (vertical polarization) to observe the scattering, say first
from the "bottorn” plate and second, from the dihdral "upper” corrier to give a scattering sense of positive
(for assumed perfectly conducting sheets and including only specular diffraction), opposite to thatof a

perfectly conducting plate perpendicular to ;.
3.3 Dihedral corner reflector

A popular type of scattering model is that of 2 dihedral corner reflector (also called diplane) [2, 3.
As illustrated in fig. 3.3, look along the dihedral edge which we label as the T1 direction {frequency
independent in this case}. If the corner reflector is made of perfectly conducting sheets, an incident
electric field polarized in the T2 direction is reflected witha positive sign as can be seen by following the
wave along a ray path. However, a wave polarized in the T direction ( L -1’1 and 1i)is reflected back
toward the observer with a negative sign. As such, the canonical dihedral mode! takes the form

-

Apls) = i(s)[_ﬁ _1'1—_1’2 _1’1} . Aqls) = izts) = 1(s) 3.7)
!

Here, the eigenvectors have been taken as real and frequency independent, corresponding to a physical

corner reflector. As in fig. 3.3, we can then look along the ?;' direction and see that the Tl',a and
associated angles y g corresponding to the corner reflector are precisely the eigenvectors and angles
discussed in Section 2. OUne might consider using the two double-headed arrows (ot 2 single one with
another symbol) on SAR images for identifying some of the scattering geometries,
L

Note that, in contrast to the line scatterer, both angles y; and y; appear in the scattering
response. Which angle is which depends on the signs on the two eigenvalues. If one has no phase
information {for a single frequency) then there is a sign ambiguity for the two orthogonal polarizations.
Furthermore, other structures modelled as dihedral corner reflectors (such as tree trunks in combination
with ground surface) are constructed of lossy dielecirics, thereby changing the reflection coefficients for
the two polarizations (making i1 #-13). Sucha physical dihedral then does not exactily follow the
dihedral form in (3.7},

More generally, one can have a model of the form

‘Kb(s) = ils) T‘l(S)Tl(S)"?Z(S)T?_{S) 38
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as a generalized dihedral model. The eigenvectors are allowed to be frequency dependent and perhaps
complex. In processing scattering data, one may encounter such a case which is not a physical dihedral,
but a mathematical one nonetheless. Note that (3.8) is characterized by two complex numbers, 1 and el
(¥ being determined by 4). In matrix form this is

& ~ [cos? (t?]_(s)) - sinz(t}'q(s)] 2 cos(q'?l(s)) sin(l,i'fﬂs))
Ab(s) = l(s) - " . 2= 2
st{lﬁ{s)) sm(qr-[(s)) sin (wl(s))—cos (;,Lq(s))
=, (cos(2@1()}  sinf2¢(s))
=X [sin(m;?-l(s}) — cos{21 (5)) G-
det(Ry(sn = () , m(Rus) = 0

5o this model is characterized by zero trace.
34 Combinations of the above

For more general 2 and 1, there is an ambignity of which model to choose. Even other models,
such as based on helix scattering (related to circular polarization} [2], can be used in this decompositon of
the scattering dyadic. A linear combination of any two of the three {or more) models will suffice. The
angle 7 (noting ambiguity with -y and +{; giving ¥; +r and ¥, £ x/2) is a common feature
except in the special case that only the rotational scattering model is required. Basically, for a single
frequency we only have the three complex numbers given in various forms (based on various
representations of the s}mrnetrica[ backscattering dyadic) with which to work. For greater resolution of

the scattering we need more information.
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4. Backscattering Temporal Operator

There is a phase ambiguity on i’b(jca). Relative phases between the ?\b,,'m (jw) can be readily
obtained, but one does not know generally the distance to the target with sufficient accuracy, giving an
overall phase ambiguity. For CW measurements then one knows Iil{ jcu)l and Ap( je)/ i-]_(jm), as well as
?1(}'0)) and H‘fz(]’m) modulo sign (180° ambiguity not appearing in the dyadic products of the
eigenvectors).

As we increase the bandwidth we would like the i}g(s) {or iﬁ( j)) to be contdnuous functons of
frequency. In such a context we need to choose which eigenvalue is’ I by some dominant characteristic
over the frequency band (instead of the largest of the two eigenvalues at a single frequency).

For a pulse (actual or synthesized from multiple single-frequency measurements) we have the
sign of the scattered pulse (in each polarization) compared to the incident pulse. (We also have the time

delay to the target) This gives us more physical informaton.

In any event, we have some approximation of

A (£)  Ap T
Aplt) = [ Bk hv ] = Ry @)

Abv,}: (£ Akv,v(f) (4.1)
= real symmetric dyadic
This can be diagonalizec‘; in ime domain with real eigenvalues and rea! eigenvectors as
— 2 W 5 N4 ) |
Ap) = Y APHTFOTE® (42

B=1

The superscripts ¢ distinguish these from the frequency domain form. They are in general, not the same,
ie., i'g(t) is in general not the Laplace transform of l%) (£}, and similarly for the eigenveciors. If the
eigenvectors are time independent then the eigenvalues have a transform relationship, so one needs to be

careful in going between frequency and time for individual parts of the diagonal form of the scatiering
dvadic.
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5. Temporal Windows

Suppose now that we have some measurements of the three distinct scattering-matrix elements as
functions of time. Furthermore, suppose that we have what appear to be two or more distinct scattering
events in fime which we label successively 1, ..., N as indicated in fig. 5.1, Then define a ime window
Ty encompassing the nth scattering event defined by A(br;,)’;, &, A(b’}‘) L, and A(g:iv (#) (all contained
within the same time window). Then we can attempt to analyze the scattering in each as separate events,

perhaps each with its own scattering model.

One can consider each event in time and /or frequency domains. Related to this separation into
windows is the window Laplace/Fourier transform [12] in which one defines some kind of window
function, say F,(t), which multiplies the three waveforms of interest so as to make these effectively zero
outside the window of interest. This window function might be just one inside the window and zero
outside, or have some smoothing properties imposed near the window beginning and end in ime. The
important thing is the result that one can analyze the temporal and frequency-spectral properties in each
window appropriate to the particular scattering event. {If some scattering events overlap in time then one

can mode! them together with appropriate models in the same window.)

With the scattering events separated we can revisit the question of scattering models. In Section
3, we discussed a few models based on single-frequency data. We can now consider the same on a
wideband basis. If the temporal eigenvectors (real) as in (4.2) are time invariant, then they apply in
frequency domain and represent some characteristic direction for the target, e.g., in the line or dihedral

sense. However, much more information is available in the temporal and spectral properties.

Different types of scatterers have different temporal, or equivalently, spectral dependences.
Various types of scattering models exist for-various types of targets [5, 12]. Examples include the
generalized cone with form Kslor 4Izu(t), a ternporal integrator with ¥ symmetric and real [11]. An
important model is the singuiarity expansion method (SEM), using poles at the natural frequendes sy (in
left half plane} and residues using vectors Z o describing directions much like the eigenvectors in Section
3 [4]. Such resonant scatterers can be discriminated based on the pattern of the s, set using various types
of procedures such as Prony method, matrix pencil, and E/K pulse filters. The reader can consuit the

references for yet more models.
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6. Concluding Remarks

While polarization allows one to obtain more information about the target via the scattering
dyadic {single frequency), the amount of information is still limited. Fitting the scattering data by simple
modeis (line, rotational, and dihedral) reveals an ambiguity in that any two of these will suffice.

Extending the bandwidth of our radar to multiple frequencies retaining phase, or even a pulse,
much more information becomes available. In this context, one can use more and better models for more

accurate target identification.
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Appendix A. Diagonalization of 2 x 2 Complex Symmetric Matrix

Consider the matrix

b
{An,m) = [: d] = 2 x 2 complex syrnmetric matrix {(elements complex numbers} (A1)

The eigenvalues Ag are found from

[a-2p] [4-2] 8% = 0
(A2)

2 , 2
‘lﬂ - [a+d]l!3vad—b =0

1
Ag = % a+di[[a+d]2—4ad + 462]2

B =1, 2 (for upper and lower signs respectively)

As is well known, if these two eigenvalues are distinct, the matrix is diagonalizable with a complete set of

eigenvectors spanning the space (two dimensional in this case).

So consider the case that the two eigenvalues are equal. This occurs if

W
[a+d)? —4ad + 462 = 0
[a-d)?+ 4% = 0
a—-d =% j2b

Note that this constraint does not apply o a real symmetric matrix unless & = 0. A. real symmetric matrix
(spedial case of Hermitian) is always diagonalizable. So there is a class of matrices satisfying (A.3) which

is diagonalizable.
Now letting & # 0 with the constraint of (A.3) we have the two equal eigenvalues

a+d (A

2

’1}3:

The corresponding eigenvector equation is
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2 . = (AS5)

Choosing the upper signs the only solution has

X = jx3 (A.6)
meaning only one eigenvector. For lower signs

x| = —jx3 (A7

giving also only one eigenvector. So for b # 0 a 2 x 2 complex symunetric matrix with equal eigenvalues is

not diagonalizable,

Conversely, a complex symmetric matrix is diagonalizable if the two eigenvalues are distinct, or b
= [ {diagonal matrix).
Now assume that there are two linearly independent eigenvectors. These then span the two

dimensioral space. If A7 = Aj, then

(xn)z . (Arz,m) - (x")l =4y (In)*l ‘ (xn)z = 11(xn)] - (xn)z
(xufy - {xn)y = 0

(A.8)

so that the eigenvectors are orthogonal in the dot-product (symmetric-product) sense. Write a general

two-component vector as
(¥n) = c1(xa); + €2 (xn)y (A9)

due to the linear independence of the eigenvectors, with generally both ¢1 and ¢ non zero. Then dot

multiply by (x,}; to obtain




(zn); * {¥n) = c1(xn); - (xn); (A.10)
Choose (v} (eg., (x»)]) such that this is non zero. With cy bounded we have
(xu)-l . (Irx)-l =0 (AT

and similarly for (x,),, allowing us to scale the vectors to normalize them. Summarizing we have

1f =
(=n)p, - (n)p, = 188 = {0 ;i?l f;z (orthonormal) (A12)

For 1; = A3, any linear combination of two linearly independent eigenvectors can be used as a
basis (not necessarily orthogonal (defined by (AS8))). By a procedure imown as Gram-Schmidt
orthogonalizaiion a set of orthogonal eigenvectors can be constructed [7]. Since we are here concerned
with the two-dimensional space we can use two real unit vectors such as

(xn)y = [:J , (xn)y = [i’] {A.13)

as our orthonormal eigenveciors (thereby avoiding the distinction between symmetric and inner
products). Since for this case we must have b = 0, then we can see that from (A.5), the above choices
work. Furthermore, in this case the complex-symmefric matrix has a=d and the matrix i5 just

o

(Ar,m) = “[; ?) (A14)

i.e, a scalar imes the identity.

The reader can note that the foregoing results can be generalized to general complex matrices of
the form

(Apm) = [“ bl] = 2 X2 complex matrix {A.15}

b d

By replacing
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b2 = b by (A.16)

the criterion in (A 3} for equal eigenvalues is replaced by

a-d=%j2 [blbz]% (A7)
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