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Abstract

It is well known that the natural frequencies of an object are important distinguishing features
which can be used in target detection and discrimination schemes. These natural frequencies are
governed by the size, shape, and material composition of the object, as well as the environment in which
the object resides. Since a given object of interest may reside in many different environments, it is of
interest to relate the natural frequencies of an object when in free-space to the natural frequencies of the
same object when immersed in a non-homogeneous environment. In this paper a perturbation formula
is developed which relates the free-space natural frequencies of an object to those of the same object in
the presence of a planarly layered medium. The perturbation formula is valid for intermediate spacing
between the object and the nearest planar interface. Numerical results are shown for the natural
frequencies of a wire in the presence of a layered medium.
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Abstract

It is well known that the natural frequencies of an object are important distinguishing features
which can be used in target detection and discrimination schemes. These natural frequencies are
governed by the size, shape, and material composition of the object, as well as the environment in which
the object resides. Since a given object of interest may reside in many different environments, it is of
interest to relate the natural frequencies of an object when in free-space to the natural frequencies of the
same object when immersed in a2 non-homogeneous environment. In this paper a perturbation formula
is developed which relates the free-space natural frequencies of an object 1o those of the same object in
the presence of a planarly layered medium. The perturbation formula is valid for intermediate spacing
between the object and the nearest planar interface. Numerical results are shown for the natural
frequencies of a wire in the presence of a layered medium.




I. Introduction

Determination of the natural frequencies of an object is important in target detection and
discrimination methods, scattering analyses, and in other applications. The natural frequencies of an
object are of paramount importance in the singularity expansion method (SEM) [1], and are generally
recognized as aiding in the physical interpretation of electromagnetic interaction data. While traditionally
natural frequencies have been computed for finite-sized objects in free-space, recently there has been
some attention devoted to the determination of the natural frequencies of an object in the presence of a
layered medium [2],[3]. Such efforts have been directed towards accounting for realistic environments
such as an air-sea or air-ground interface in target detection and identification schemes.

Early in the development of SEM it was shown that for an integral equation (IE) treatment of
finite-sized objects in free-space, the operator inverse to the integral operator is a meromorphic function
in the complex frequency plane [4], leading to the occurrence of only pole-singularities in the current
density response of the object (perhaps with the addition of an entire function term depending on the
chosen time-space origin for the problem [5]). With this in mind, some early work on the natural
frequencies of thin wire scatterers in free-space was described in [6]. A short time later the natural
system frequencies of coupled wires were studied [7],[8]. It was found that the natural system
frequencies of the two-wire configuration exhibited some interesting characteristics as wire separation was
varied. In particular, for certain configurations the natural frequencies of two identical coupled wires
tended to spiral about the natural frequency of the isolated wire as spacing between the wires was varied
over some intermedjate distance. As separation was further increased, the system resonances moved off
towards the origin in the complex frequency plane, and other system modes moved in to take their place,
again spiraling around the dominant isolated natural frequency.

Since the natural frequencies of a coupled system are rigorously obtained from a complicated
(usually integral} system of equations, simple approximate formulas which describe the natural system
resonance behavior as a function of body separation are of interest. For intermediate separations,
perturbation formulas have been obtained which relate the natural system frequencies of two or more
objects to the natural frequencies of the same objects when isolated. Two related classes of perturbation
solution have been obtained, both based upon the exact integral-operator description of the coupled
system, The first method yields a quasi-analytic formula for the system frequencies of an object and a
mirror object, separated by some intermediate distance. The resulting formula involves a numerically
computed coefficient which only depends upon the isolated object’s characteristics, multiplied by an
exponential term which is a function of the separation between the objects [9]. The second method is
more numerical in nature, yet represents a considerable simplification of the exact [Es and is applicable
to a more general system ofcoupled bodies [10]. The formulation described in [9] was subsequently
applied to a variety of coupled objects [11]-[13]. For the case of large separation between coupled
objects, the system frequencies tend towards the origin in the complex frequency plane. An asymptotic
formulation for this situation is described in [14].

Although the previously described perturbation formulations have been developed for the natural
frequencies of two or more coupled objects, the described spiraling behavior is not limited to coupling
between finite-sized objects in homogeneous space. For instance, in {2] it was observed that the lowest-
order natural frequeacy of a wire ring over a lossy dielectric half-space exhibited a similar behavior, as
spacing between the wire and material interface was varied. Similar findings were reported in [3] for
a straight wire embedded in a lossy ground in the vicinity of the air-ground interface, and early work in
{15] describes results for a wire above a lossy ground. In this note we develop a perturbation formula
for the natural frequencies of an object over multi-layered media. This perturbation formula is based on
an exact integral equation formulation. Subsequent approximations are then made to yield a useful
formula which relates the natural frequencies of an object over a multi-layered medium to the natural
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frequencies of an object when in free-space. The perturbation formula is applied to several configurations
of wires in the vicinity of material interfaces, and a discussion of the formula’s applicability is provided.

It should be noted that for a finite-sized object embedded in a laterally infinite layered
environment, the operator inverse to the integral operator is not a meromorphic function in the complex
frequency plane [16]. Branch-point singularities also exist, which are associated with the propagation of
surface waves in the layered medium. Although an SEM expansion for the curreat density response then
includes branch-cut as well as pole singularity terms, the natural frequencies of such objects are still very
important, and associated pole singuiarities may be expected to dominant the response for a wide variety
of environments.

II. Integral Equation Formulation

Consider an object in the presence of a planarly layered medium, as depicted in Fig. 1. For a
specified impressed field, an integral equation (JE) can be formed which leads to the determination of the
current induced on/in the object. For generality, the object will be considered to either have a perfectly
conducting surface, leading to a surface IE, or be composed of a lossy dielectric (€ =€,) , leading most
simply t0 a volume IE. In either case, an electric field integral equation (EFIE) can be formed as

(Z(r|2!,s) ;T(FL8))y=E"" (7, s) (1)

where the bracket notation indicates a real inner product over common spatial coordinates. For perfectly
conducting objects the surface [E is enforced over the surface of the body, whereas for dielectric objects
the volume IE is enforced over the volume of the body.

The kernel for either IE can be written as

Z(z|#/, 3) =3poi(5)(f) @GR (7|, 5) +GF(F]E/, 8) ]-E(S)tf')
v v (2)
=Z8(Z|P,5) +Z%(2|2/, 9)

where Z 2 is the homogeneous space kernel (principal part of Z), and Z* is the scattered kernel which
accounts for the material layering. In (2), I(i ) distinguishes between surface and volume formulations,
where for the surface IE

T(F) =T, (2) =1-I(2) T4() (3)

is the transverse dyadic at ¥ on S, where Ig(F) is the unit normal to S at P, with
1=1,7,+1I,1,+1,I, beingthe identity dyadic. The transversedyadic is used to enforce the tangential
boundary condition for the electric field at the surface of a perfectly conducting object. For the lossy
dielectric object, 1,(F) =I. The Green's functions are defined by
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Fig. 1. An object in the vicinity of a layered medium.
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where the tast term in {4) only occurs for the volume [E. For a perfectly conducting object (surface IE),
the last term in (4) is omitted. In (4), Lisa depolarizing dyadic [17], the contribution from which is
removed by the transverse dyad for the surface IE, but remains for the volume IE. The PV notation
indicates that the corresponding term be integrated in a principal value sense by removing from the
integration a small patch (surface IE) or small volume (volume [E) centered at ©=7",

In (4),(5), the potential Green's terms are

- s—TR
Gh(z|Pl,s) =1
GHEIE, 8) =1

(6)
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for a homogeneous space in either spatial or spectral form, and
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for the scattered part. In the above, ¥ =8/Roe., R=|Z-2/|, X=I k,+1 k,, d?A =dk,dk,,

FREY o +k:, and p=yAZ+yZ?. The wavenumber parameter p (A) is multivalued, necessitating the
definition of an appropriate branch cut in the compiex A-plane. Unless otherwise specified, we’ll
consider the permittivity parameter to be generally complex, i.e., € =€** +0 /s, with (€®, @) the real-
valued permittivity and conductivity, respectively.

In the scattered Greens’ function, #(A, s} is an amplitude dyadic which is obtained by matching
boundary conditions at the layering interfaces. For the configuration depicted in Fig. 1, this term can
be expressed as

= R - = ST 8
F(A,8) =(1,1,+1,1)R, (A, 8} +1,1, R, (A, 39) +1,(1,Tk,+1,7k,)R (X, 5) (2

where R, , R, , R_ are given in [18] for the tri-layered environment shown. Note that the presence of
additional layering below the object, i.e., more than three layers, omly affects the coefficients
R,, R,, R_, and not the general form of (8).

Associated with (1) are natural mode solutions which exist in the absence of an excitation [1].
These modes (natural frequencies and corresponding natural current distributions) satisfy the homogeneous
form of (1),

(f(flf",s,) .33,(2"’))=6 (9)
where s, is the natural frequency, and J, is the associated natural current distribution (surface or

volume), Equation (9) can be cast as a scalar relation by dot multiplication on the left by the natural
mode current, leading to

(T (B 2| . s,) T A(EN)=0. (10)
It is convenient to define a local coordinate system centered at some appropriate point in V as

shown in Fig. 2, such that =2 _+ ¥, . For simplicity, assume ¥,=1, b/2. The integral relation (10)
can be expressed in terms of the local coordinate system as

(T, (2 Z(8,|8,,5,,b) ;T (2))=0. (11)

In (11), the spectral forms for the Green’s functions have become




Fig. 2. Local coordinate system used in development of perturbation formula.
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with an associated change of coordinates in (4}, (5).

III. Perturbation Theory

In this section we will consider the case when the material layering has a sufficiently small effect
on the object’s natural frequency that it may be treated as a perturbation of the homogeneous space result.
First, define the appropriate relationship for the situation €.=€,=€_ (object in homogeneous space),

such that Z9=0, and (11) becomes

<¢._T'f(f1);fh(f1lf1,sfl :juh(f1)>=0 . (13)

For later purposes, define the special case of the homogeneous space being free-space as




(T2 Z0( 2, |E.8)) [ T2(E))=0. (24)

Returning to (11), under certain conditions, |& *J<[&*}] (for some appropriately defined norm), and Z *

can be treated as a small perturbation of Z% in (2). One such situation would be ‘b* large (large
separation between the object and the nearest material interface), but this is not necessary if the material
parameters of the layers differ only slightly from the material parameters of the half-space in which the

object resides. If we can assume sS,=8. +A s, , where 3 is the & th natural frequency of the object
when in a homogeneous space characterized by (p,,€.) and A s, represents a small perturbation, then

we may expect that the natural mode currents may be expressed as J,=J+AJ,. With the above
assumption, expand the kernel in a Taylor’s series about S

Frl|2!, s,) =2(2,)2!, 82 +%Z(f’1]f{,sf) As, +O(AS2) (15)

where O{As2) indicates terms which are at least quadratically small. It is understood in the second

term that S=s.f' is substituted after the frequency derivative is evaluated. Insertion of the two-term

approximation for (3; , 8,) into (11} and retaining the first non-vanishing term leads to the perturbation
equation

(J"h(fl);-é%é'h(flif{,s,") As +Z%(2,|2]. 82, b) ;3f(f1)>=o. (16)

The above can be solved for the first-order perturbation in namral frequency due to the planar layering
as

o o {FEE) JEeE B, 88 b) JTAED)

As,
(5:’(311 : a—asfhwllf{. skb) ﬁ."(fg)

(17)

While (17) may be computationally accurate under the assumption |& #[«|& 2|, and represents
an efficient formulation compared to the exact expression (10), in its present form it does not provide
much physical insight into the effect of planar layering on the natural frequencies of an object.
Accordingly, further restrictions may be stated 1o simplify (17). Let us assume that the separation “b*
between the object and the nearest interface is sufficiently large relative to dimensions of the object. For
this case (12) can be reorganized as

F*(z,|#{,s,b) =ff{2£((_2’-?)%e'w=*==”eﬁ'“'x‘ff’} 8 Pb d2), (18)

where the term in brackets is slowly varying compared to @ “P® for ‘b* large. The largest contribution
to the integral will come from the point in the k,-k; plane where the phase of the rapidly varying




exponential is stationary, i.e., ,

3 -
—é?x(pb)—()

5 (19)
3PP =0

leading to k,,=k,,=0 (A=0) . Replacing the slowly varying part of the integrand with its value at
A =0, results in

§*(2,|2{, s, b) ”%eﬂwm”e‘\’*x**r’**"’du : (20)

Converting the integral to polar form

-gn

fj'e'mbdu =[[e T rrc0d
- 00

(21)
=21|:fe""‘ Y b ) dA
Q
the last integral can be easily evaluated in closed form to yield
r=2q|Y - L |leve. (22)
n( Y bz]e
Retaining the leading term for ‘b* large results in
-y b '
> d f"’, b = F , E_L ~tiz;+x;) . (23)
Geo(Z,|fi, s, b) =F(0, &) =5 °
With A=0, the amplitude coefficient for the scattered term becomes
Fto,s) =(1,I,+I,1)R.(0,8) +I,1,R,(0,5) (24)

where the contribution from the coupling term associated with R_ in (8) has vanished.
The IE kernel for the scattered term in (17) then becomes
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Defining
1, =1,I,+1,1, (26)
leads to
b (Fhig) e m 0T 3hz))
As, =801, SR (0, 5) - (27)

- . O = .
<Jf(f1) P EREE, 8D ,Jf(fl)>

where Y2=Y¢ (s =s¢h‘/uoec is the propagation constant in the cover evaluated at the natural
frequency of the object when in a homogeneous space. Note that the dyadic triple dot product in (25)

becomes i',: for both the surface and volume [E formulation. For the volume IE, this follows simply

from the fact that I,(#) =I. For the surface IE, the knowledge that the natural mode currents are
tangential reduces the triple dot product accordingly. Defining

- B e eg?y e . =
(Frig) e =m0 FhE))

vl (sl = - 35 —
(Jf(fl) ; -é—-gz“(fl]fl’,sf) ;J_h(f1)>

(28)

which is exactly the same coefficient utilized in [9] (although there the homogeneous space was
specifically free-space), the perturbation formula becomes

As =—gb @ T b By B, _h (29)
s,—-s,pomRt(o,s,) Ve (82

This formula js identical to that obtained in [9] (Eq. (34) of [9]), except for the multiplicative term K,

and the fact that the perturbation term is evaluated at g, rather than 3. If €_.=€,, €,=€, =,
implementing free-space over a perfectly conducting ground plane, B, =-1, and (29) reduces to the
result in [9] for the antisymmetric mode of two coupled objects in free-space, as expected. For the case
of a perfect magnetic conductor, £, =1, and (29) reduces to the solution for the symmetric mode of two
coupled objects in a homogeneous space.




Iv. Scaling Relations .

The perturbation formula (29) involves the natural frequencies g2 of an object embedded in a
homogeneous space characterized by (M, €.) . As detailed in [19]-[21], scaling relations exist which
relate the natural modes of an object in a lossy, homogeneous environment to those of the same object
when in free-space. The relevant scaling relationship for natural frequency is

2
S.”:-— Sc + Oc +_€i(5:’)2 (30)
y.pd 2¢z’ €’

where (0., €2°) are real-valued parameters of the homogeneous space, which are written in terms of

. . e . a .
a single complex (effective) permittivity as ec=£§'+f-. Note that in the case of a lossless

homogeneous space, the scaling relationship becomes simply s,f’ =5,/ Y€cr» With €., being the relative
permittivity, €., =€.°/€,. The scaling relationship (30) comes from equality of the propagation
constants, Y2 (s) =y (sJ). The natural modes scale as

Jr=3 (31)
and the coefficient (28) scales as [21]
20_+2s)€*
Va (88 =| ————<-1vi(s) . (32)
o.+25.€l’
With the above, (29) becomes
20_+25] s Yo b
A = c & -c e , h Q +] . (33)
Se TS [ Uc+23¢be§‘ }p(’ 4nb R (0, 5z) va (Se)
Since
o_ 0. &b o (34)
As =g, Ke—rp V= (5g)

is the perturbation for the antisymmetric mode of two coupled objects in free-space as obtained in [9],
(33) can be written as

As =-

& h_re

si| 2a_+2s5l5?
g +*28. €,

]Rt(o,s.f’)bsf (35)
S

where 8 is given by (30). This formula reduces to the correct result for the special case of an object
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in free-space over 2 perfectly conducting ground plane (R,=-1,0.=0, € *=¢,, 5. =s]) , and gives
no perturbation in the absence of planar layers (e,=€, =€) , for which #,=0. Equation (35) provides
the perturbation of the natural frequency of an object embedded in a half-space characterized by
(po.€.) over a planarly layered medium in terms of the perturbation of the same object in free-space
over a perfect ground plane, for which perturbation formulas have been derived. Equivalently, the
perturbation may be directly computed from (29).
The reflection coefficient for the tri-layered environment depicted in Fig, 1 is [18]

TerRer Tpc g ~2Ptt

R.=Ry,+
‘ 1-R. R, e APec

(36)

- 2

where R,;ﬁM, Tep=—; La ,p;-lz-i-s’poep,and pr=f-5. For the special case
Dy *+b, NZ. (D, +Dp) €s

of a two half-spaces (e,=€, or t=0), R, becomes

P-"F
c (=] [ (37)
D.tD,
which for A=0 is
R, =Yoe ¥is (38)

a familiar interfacial reflection coefficient.

V. Results and Discussion

As a check on the accuracy of perfurbation formula (35), the example of a straight wire of length
L in the vicinity of the interface between two differing media will be considered. Resuits are provided
for a wire in air above a lossless and lossy half-space, and for a wire embedded in a lossy half-space near

the interface with air. In all cases, numerical values of y2 ; and vf',l are obtained from tables in [9],
leading to the coefficient (34). The subscript ¢ =1, 1 indicates the lowest order mode in the first layer
of the complex plane [6], which is the dominant natural frequency. In the following all resuits
correspond to «=1, 1, the perturbation of the dominant natural frequency of the isolated wire.
The first example is depicted in the insert of Fig. 3(a), which shows a wire in air
(€_=1,0_=0) over a lossless dielectric half-space (€,,=15,0,=0) . The wire has length L and
radius a, with L/a=200. Since the wire is in air, 5 2= 59, and the perturbation formula becomes simply

As, ,=-R.(0,8;.,)As;,, with R, computed from (38). Results of the perturbation formula are
shown in Fig. 3(a), where the separation parameter is varied from b/L=0.5 to 3.0. Results from an
integral equation solution [15] are shown in Fig. 3(b), where generally good agreement is found between
the two methods for the range of b/L values examined in [15].

The second example is depicted in the insert of Fig. 4(a), which shows a wire in air
{€,=1,06.=0) over a lossy dielectric half-space (€,.=15,0,L=1205) with L/a=200. The
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perturbation formula is the same as for the geometry considered in Fig. 3, although the substrate
permittivity is now complex-valued in the coefficient &,. Results of the perturbation formula are shown
in Fig. 4(a), where the separation parameter is again varied from b/L=90.5 to 3.0. Results from an
integral equation solution [15] are shown in Fig. 4(b). Agreement between the two methods is again
fairly good. Note that the value of conductivity taken in [15] is very large, and so the results differ only
slightly from those of a wire above a perfectly conducting ground plane. Comparing Fig.’s 3 and 4, it
can be seen that the difference in results for a wire in air above a ground plane and above a lossless

dielectric is governed by the coefficient R, (0, 8,") , which is -0.5896 for (e, =15, 0,=0) . Thus,
the radius of the spiral for the wire above the lossless dielectric is about one-half that of the wire above
a ground plane.

The geometry for the last example is depicted in the insert of Fig. 5(a). For this situation, the
wire is in a lossy ground near the interface with an air half-space. The permittivity of the ground is
€.=(5.62-71.31)¢, from Fig. 3 of [3], leading to (€_,=5.62,0_.L=0.003% S) at
f=65.36MHz for an L=0.825m wire. The wire bas radius 0.00556 m, resulting in L/a=148. The

coefficient vy , was taken from [9] for L/a=200, since values were not provided for smaller L/a ratios.
The wire is inclined at a 45° angle to the planar interface, and separation between the end of the wire
nearest to the interface and the interface is varied over the range specified in [3], i.e., from d=0.1L to
3L. Fig. 5(a) shows the perturbation formula results, while Fig. 5(b) shows the IE results from [3].
Good agreement is found between the two methods except for small d/L values, which is expected.

It can be noted from (35) that for an object in a dielectric half-space near the interface with an
air half-space, and in the limit that the dielectric permittivity is large, R, ~+1 and the perturbation is that
for a wire in a dielectric near a pmc boundary, This is the dual situation to the case of a wire in a
dielectric near a pec boundary, which was considered approximately in Fig. 4. The limiting case of an
object in free-space near a pec or pmc boundary was considered in [9], which is recovered as a special
case of (35).

It was noted previously that the perturbation formula developed here is valid for intermediate
values of separation between the object and the nearest material interface. At this point it is beneficial
to examine the various approximations utilized in deriving (35). First, in Sec. III it was assumed that
the material layering has a sufficiently small affect on the object’s natural frequency that it may be treated

as a perturbation of the homogeneous space result. Subsequently, assuming S,ﬂs,h+A.s, where
|As,l<|s.|, and expanding the IE kernel in a Taylor’s series about &2 resulted in the perturbation

formula (17). It would be expected that the situation |A s_|<|s,’| occurs when }& #J«)&2). This
would be the case when either | F]<1 in (12), which would arise if the material parameters of the layers
were approximately the same as those of the half-space in which the object resides, or the separation
parameter ‘b* is sufficiently large in {12), or both. Note that the perturbation formula (17) involves
Sommerfeld-type integrals (12), although it should be valid for any condition leading to |A s_|<|5.].

Approximate evaluation of (12) leading to the simpler formula (35} was preformed assuming the
separation parameter ‘b* is sufficiently large such that the integrand is dominated by the rapid variation

a
(decay) of the exponential e P?. The resulting equation, though, involves the term e 7*%, which
becomes unbounded as b-o, since Re{g,}<0. Thus lim,..As,~e, violating the condition

|As,l<]al|. As aresult, although the approximate evaluation of the spectral integrals (12) is valid
as b-o, the perturbation formula is only valid over an intermediate range of values for ‘b*. Although
spectral integrals were not involved in the formulation detailed in [9], similar problems were encountered
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for b—~e_ The cause of the problem in both situations is that as separation becomes very large, the
natural frequencies tend towards the origin in the complex frequency plane and the perturbation procedure

based on [As_|<|ss| is clearly invalid.

Finally, it should be noted that the described spiraling behavior is not found for all objects, or
even for all modes of thin wires. It was noted in [14] that for two coupled wires, the dominate natural
frequency for closely spaced wires, and several other natural modes, tended to spiral about the isolated
wire natural frequency. Other natural frequencies of the two wire configuration did not spiral about, but
perhaps interacted with, the isolated wire resonance before tending towards the origin for large spacing.
It was also shown in [3] that for a fat cylinder in the vicinity of an air-ground interface, the spiraling
behavior seemed to be gbsent. While the perturbation formula seems to be applicable for wires and
loops/rings in layered media as examined in {2],[3], at this point it is not clear as to what larger class of
objects this formula may apply.

VI, Conclusion

In this note a perturbation formula is developed which relates the free-space natural frequencies
of an object to those of the same object in the presence of a planarly layered medium. The resulting
formula involves a numerically computed coefficient which only depends upon the isolated object’s
characteristics, muitiplied by an exponential term which is a function of the separation between the object
and the nearest planar interface. The perturbation formula is valid for intermediate spacing between the
object and the nearest planar interface. Numerical results are shown for the natural frequencies of a wire
in the presence of a layered medium, for several different geometries.
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Fig. 3(a). Resuits of perturbation formula (35) for the natural frequencies of a wire in air above a
lossless dielectric haif-space. Triangle denotes the natural frequency for a wire in free-
space.
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Fig. 3(b). IE results [15] for the natural frequencies of a wire in air above a lossless dielectric half-

space.
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Fig. 5(a). Results of perturbation formula (35) for the natural frequencies of an inclined wire (45

degrees) in a lossy ground below an air half-space. Triangle denotes the natural
frequency for a wire in a homogeneous-space (lossy ground).
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