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I  INTRODUCTION

A metal detector is a device which induces eddy currents into metallic objects and then
detects the magnetic fields produced by these eddy currents. A magnetic field is generated by a coil,
or set of coils, through which a time-varying electrical current is driven. The frequency regime of
interest is sufficiently low, a few Hertz to a few hundred kilohertz, that the targets of interest are
within the near field of the illuminator. Eddy currents are induced in the conducting targets by the
incident magnetic field. These currents then decay with characteristic time constants related to the
resistive and inductive elements of the paths through which the induced currents flow. These
impedance parameters are related to the conductivity and permeability of the metal, as well as to its
geometrical shape, size and orientation, resulting in different decay patterns for different target
objects. The eddy current loops then generate a secondary, scattered magnetic field which is
detected by means of some magnetic field probe, usually a receiver coil which is set at a null with
respect to the incident field generated by the transmitter coil.

Many metal detectors operate at a single continuous frequency (CW) which gives minimal
information about the identity of the target, other than the amplitude of its magnetic moment at the
particular frequency at which the system operates, and possibly the phase difference between the
scattered and incident fields. Such systems can only be used for detection of metal objects. Much
more information can be obtained with stepped-frequency or swept-frequency systems, or by
measurements in the time domain using impulse excitation. The combination of amplitude and
phase over a large frequency band contains information about the identity of the target, which can
be expressed as its magnetic polarizability [1]. This magnetic polarizability can be characterized
in the frequency domain, or equivalently (via Fourier or Laplace transforms) in the time domain..

The magnetic polarizability is the impulse response function of a metal target, that is, it is
the decay response that would occur if the target were excited by a magnetic field in the form of a
delta-function impulse. Of perhaps more interest is the step response of the target, as this is the
response that our signal processing produces from measured data. The step response is obtained by
integration of the magnetic polarizability in the time domain, or by division by the Laplace operator
s in the frequency domain. '

II. SIMPLIFIED PROBLEM

The scattering problem diagnosed in [1] can be simplified in computational complexity by
geometries that reduce the vector and tensor quantities to scalar ones. First, let the observation
direction of the scattered wave be, say, in the backward direction, toward the source (back-scatter).
The radiated dipole field, the measured quantity, then reduces to:

~ o) 2 rT?(s)
%% =" (L.1)
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where the magnetic dipole moment is related to the incident magnetic field by the magnetic
polarizability dyadic as:

Py =M B a2

Then, let the scattering object have a simple shape so that it can have a magnetic moment in
only a single direction. This can be done with thin conducting disks or loops which support induced
eddy currents only in circular paths around the axis of symmetry. It can also be done in thin
ferromagnetic rods which support induced Amperian loop currents (bound atomic or molecular
currents) circulating around the axis of the rod (but in the opposite direction as would eddy currents
[7]), driven by the permeability-enhanced magnetic field in the rod. The magnetic moments of these
objects are aligned with their axes of symmetry.

Now let the target be aligned so that its magnetic moment (axis of symmetry) is parallel to
the source and observation direction (€,=€). This condition also allows for spherical target objects
to be included in the discussion, because their magnetic moment is necessarily parallel to the
incident field. The magnetic polarizability dyadic then reduces to a scalar value. Note that even if
the alignments are not as described, only the amplitudes of the measured signals will change from
the formulation presented herein.

II. CANONICAL TARGETS

The magnetic polarizability can be analytically determined for some simple objects, such as
spheres and loops, which are rotationally symmetric about the axis of the magnetic moment. The
simplest shape is that of a filamental loop. The filamental loop has the same response as a wire loop
when the radius » of the wire is much less than the loop mean radius a [2].

1. Wire Loop: A loop of thin wire is characterized entirely by its resistance and inductance. A
magnetic field incident on the loop induces a voltage around it by Faraday’s law of induction. This
voltage produces a current according to the impedance of the above two circuit parameters. The
current defines a magnetic moment of the loop, which can be expressed as the convolution of the
incident field with the magnetic polarizability of the loop in the time domain, or the product of their
transforms in the frequency domain.

The magnetic polarizability is the impulse response of the wire loop. It is the eddy current
decay pattern in response to an incident impulse magnetic field. The induced magnetic moment and
scattered field also include the waveshape of the incident field, which we will now include. The
voltage induced on the loop is determined by Faraday's law of induction around the loop of area A4:



(III.1)
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where 0 is the angle between the loop axis and the incident field. The current in the loop is this
voltage divided by the loop impedance, R + sL, which in the Laplace domain is:

7o V(s) -4 [sE(s) - B(0+)]
(S)—~- = TR v 5L , d11.2)
Z(s)

where we may assume that the imposéd field is initially zero:
B(0+) =0 . _ Im.3)

The magnetic dipole moment is the area of the loop times this current:

~ - , SB() -A'yu, sH(®
m(s) =AI(s) = -A = . (I11.4)
R+sL L [s + RIL]

This is equal to the product of the incident magnetic field times the magnetic polarizability of the
loop, which gives the magnetic polarizability: : :

~ -4y, sH(s) A%p,
M(S) = =
H(s) [s + RIL]

(I11.5)

s + R/L

In the low-frequency regime where skin effects can be ignored, typically below 100 kHz, R
and L are constant. The low-frequency resistance around a circular wire loop is given in terms of
its wire length 27a, cross-sectional area 7, and conductivity o as:

2Ta 2
R, = = =2 a11.6)

nr:c r3o




At higher frequencies where the skin depth becomes smaller than the wire radius, the current
becomes trapped on the wire surface within a boundary layer equivalent in depth to the skin depth.
This smaller cross-sectional area increases the resistance of the wire, changing it by an expression
F e 100p(r/8) which depends upon the ratio of the wire radius to the skin depth by the Kelvin
functions, and hence the zero order Bessel function:

Ber(q) + jBei(q) = J,(jq) , (IIL.7)

as [3]:

_ r [ Ber(q) Bei'(q) - Bei(q) Ber'(q) -
° 28| (Ber (@) + (Bei'(q))

R RO Fwire loop(rlé) ° (III.S)

where the parameter g is defined in terms of the ratio of the wire radius to its skin depth:
g = V2 (11.9)

o

An empirical approximation to this skin effect, accurate to within one percent, is:

) +( LN i)sJ , (IIL.10)

R =R
286 4

0

At low frequencies, this approximates R,. At very high frequencies it becomes:

R=R -2 f(_’f_&) ) (I11.11)
r o :

For a rectangular wire loop with sides a and b, and diagonal d=(a?+b?)% the low-frequency
resistance is:
_ 2(a+b .
6= ——— . I1.12)

nrlo

R

The inductance of the circular loop with relative wire permeability 4, is given to second order
in (v/a) by [4]:

r? 8a - or? K,
L=p al|ll|l 1+ | 22| + B atd .13
Fo [[ 8a2) ( ”) 24 g 4 a )




For r « a in non-permeable conductors (#,=1), this reduces to: .

L=p,a [ 1n(§—“) - 1.75 ] = apy Gy, op@lr) - . (IL14)

r

A frequency-independent, dimensionless variable G,,;,. 1,,(@/r) is defined which contains the ratio
of the loop-to-wire diameters, but is rather insensitive to this ratio because it is only within a

logarithmic term.

For the rectangular loop it is given by [4]:

L _[1(_2_1’_) mn[ﬂb_) +2d_(2_ﬁ)<a+b)]. A1)
T r(afd) r(b +d) 4

which can also be defined in terms of a variable G,,,,. ;,,,(@/7) , but not in such a simple form as for
the circular loop.

In the low-frequency approximation, the resistance and inductance determine a single
exponential time constant:

T .
wire loop

rtao
= % = Fo G (alr) . (II1.16)

2 wire loop

The magnetic polarizability is then:

. (‘It a 2)2 K v/t .
M(s) = 0 s =M,|-1 4 wireloop | (11.17)
a “'0 Gwire loap(a/r) s+1 /Twire loop s+1 /‘Cwire loop '
with amplitude:

2 3

T a
My = ——— . (111.18)

G ire I (alr)
wire loop

This amplitude is, to first order in small loop size-to-source distance, proportional to the cubic
power of the loop radius, and varies only slightly with the wire size. The time constant is
proportional to the square of the wire radius (and to the conductivity), and varies only slightly with
the loop size. The two radii which characterize the loop thus determine two distinct and separate

properties of the eddy current response.

The time domain representation of the magnetic polarizability of the wire loop in the low-
frequency regime can now be given in terms of the time constant of (II1.16) as:




1 -e/T
e

M@ =M, [ - 0@ + vire 199 (1) ] . . (III1.19)

Twlrt loop

The step response of the magnetic polarizability is:

= 1 ~ 1
S(s) = —M(@s) =M |———— |,
(s) - 5) .,L Ve ’m] (1I1.20)
t
S@t) = f M@hdt! = -M, e e u)y (I11.21)

~ oo

The units of the magnetic polarizability are (m*/s). The step response has units of (m®).

2. Two Coaxial Loops: The effect of the mutual inductances of multiple filamental loops within an
object can be illustrated the simple case of two circular coaxial wire loops. One of the loops has a
radius of a4, and wire radius r,, the other loop a, and wire radius r,. With a separation between the
loops of . The resistance and inductance of each loop are obtained from the expressions in the
preceding section, giving values of R, and L,. The resistance of the system may be written in matrix
form as:

(R) = [R‘ 0) . (I11.22)

The mutual inductance between the two loops is [4]:

2p
M = —k‘l Ja,a, [K® - E®)], (11.23)

where E(k) and K(k) are the complete elliptic integrals and the variable k is given in terms of the
minimum and maximum diagonals, d, and d,, between the loops: '

d, - d, |
k = . (II1.24)
d2 + dl




The total inductance of the system may then be written in matrix form as:

(£) = [;‘ Z) : (II.25)

An impedance matrix can now be constructed:

R, +sL, sMJ

(Z)=(R+sL)=(sM R, +sL, (111.26)

2

A voltage is induced onto each loop from the incident magnetic field by Faraday’s law,
which can be written in vector form, with an angle 6 between the loop axes and the incident field:

| -4, l;(t) cos(0) e A, (I1.27)
(vy) = 4, B(t) cos(@) | = “E® cos® | /|

_ ) .
s = =S8 §) cos . .
(Vo)) B(s) cos(0) | , (II1.28)

2

This vbltage is related to the currents on the loops by the matrix form of Ohm’s law:
(v) =(1) (z) . (I11.29)

The currents can be obtained by inverting the equation:

(2) = (v) (2)", . @30

Where the inverse of the impedance matrix is:

1 R, +sL, -sM

L -sM R, +sL

- (I11.31)
(s M)?

(2)" - '
(R, +SL) (R, +sL, -




The currents in the two loops are then:

B A, [R, +sL, —-sM]| " (I 32)

[11) -5 B(s) cos(d) A [R, +sL, - sM]
(R, +sL) (R, +sLy) -~ (s M)’

The resonances are given by the singularities of this expression, the roots of which occur
when the denominator is zero:

(R, +sL) (R, +sL) - (sM)* =0 . (II1.33)

One root is associated with each loop:
R, R,

s, = — §, = ——— . I1.34

TS, 2 (IL.34)

The magnetic dipole moment is given by:

s py H(s) cos(B) 4] sk, f(s) cos(B) 4>

m(s) =YATI = - (I11.35)
R, +s(L, + M) R, +s(L, + M)
The magnetic polarizability is thus:
~ r‘;z'(s) | s A12 s A;
M(@s) = = - p, cos(B) + . ’ (I11.36)
fl(s) R +s(L, + M) R, +s(L, * M)
or:
2 2
A
M(s) = - p, cos(0) : ul + 2 u :
, T M R, L, +M R, I11.37)
§ +— s+ —"
L +M L +M

Each loop has a single decay time constant, different for each loop, giving the decay response of the
-magnetic polarizability as: :



Al ;] e Al 6) e
M(t) = _l—%ﬂl —5([) + i e " lu(t) + _LCOS(_) —5([) + i e / 2 u(t) . (HI.38) .
L +M T, L,+M T,

The step response is then:

Al O e Al sO) 1 e
sy = ~ 2SI ] - BRI ). (II1.39)
L +M L +M

When the two loops are identical in size and wire size, the areas, resistances and self
inductances are the same and the decay response has only a single time constant:

247 0 - '
_—w [ e ‘/tdual wire loops u(t) ] . (III4O)

s = -
L+M

The magnitude of both L and M are proportional to the loop radius a, so that M, is proportional to
@ as for the case of the single loop. '

This example can conceptually be extended to a very large number of loops, which in the
limit can form solid bodies of any shape. When the loops are all of the same size, such as for the
following example of the cylindrical loop, then we expect the magnetic polarizability to have a
single decay time constant. When they are of different size, such as in a thin disk or a solid sphere,
we would expect to observe an infinite series of time constants.

3. Thin Cylindrical Loop: When the axis of a thin-walled cylindrical loop of radius a, length 4, and
wall thickness d is orientated so that it is parallel to the incident magnetic field, only those fields
that are inscribed by the loop can induce currents on it by Faraday's law of induction, so that currents
are induced only on the inner surface of the wall. The results presented in Reference [3], page 301
then apply, giving the total resistance around the loop to be:

d | sinh(2 d/®) + sin(2 d/d) -
B =R, F oy , .
® & | cosh(2d/®) - cos(2d/) o Foyt. 100p(4/0) (II1.41)

R =R

where a new resistive function of wall thickness and skin depth has been defined. The low frequency
resistance (0 » d) is:

27
R, = —=. (I11.42)
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The inductance of the loop is given in Reference [4], page 5-31:

2

”_ a 2 2 )
L=t s+ 2014 1) B+ k| -8 %=1, (IIT.43)
3 a’ b’ b?
with the dimensionless variational parameter given by:
; 2
K = 2a ’ Cm o= kI = diameter (1144
A A . 2 2 . )
‘/442 + p2 diameter® + length

E(k) and K(k) are the complete elliptic integrals. This inductance can be defined in terms of a
permeability variable that is a function of the radius and length of the loop:

L=a ”’0 Ccyl. laap(a/b) 4 (III45)
where:
2 2 2
C (alb) = 14 4 + L 42 -1 E(k) + K(k)| - 8 a_ . (I11.46)
cyl. loop 3 a 2 b 2 b 2

In terms of the alternate parameter m this is:

2m

1 2 }
- : (I11.47)
1 m

c (alb) = — | =
3{\/_

cyl. loop
m

K(m) + (Lu) E(m)
1 - m

This expression satisfies the condition C,; ,,,(a/b) =1 at m = 0.444 where the length—to-diarheter
ratio is about 1.12. For very short cylinders (b « a) it reduces to:

cyl. loop

Joi (alb) = 2 u{ 87“) ) (I11.48)

For very long cylinders (b » a) it is:

a
Ccyl. loap(a/b) =N _b— )

(I11.49)

An empirical relationship for this function, valid to a few percent accuracy for lengths greater than
one-fourth the diameter, is:

-1
c (alb) = (0.311 b, 0.305) . (I11.50)

cyl. loop a
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The single characteristic time constant for the loop then becomes:

— £ = b d“o g Ccyl. loo'p(a/b) . . (IIIS].)
ol feor R 2T (d/8)

Fcyl. loop

Notice that this time constant is, to first order, proportional only to the thickness and length of the
loop as the cross-section of the conductor (as for the wire loop), and not to its radius. The magnetic
polarizability of the cylindrical loop is them given by the same form as that for the wire loop:

1/7T
= MO[_I + cyl. loop

s+1/7T
cyl. loop

Azy.
L

0

(11.52)

M(s) =

The time domain representation of the magnetic polarizability of the cylindrical loop can now
be given by:

1 -tiT
M@) = M, | -8 + RO (IIL.53)
Tcyl. loop
S(t) ~ _Mo e —t/‘l-',,-yx_ loop u(t) , (IH54)
with:
: TCZ 3
My = —= | (IIL55)
y'cyl. loop(a/b) .
and:
bdo
Tcyl. loop = ﬂ_ ”'cyl. Ioop(a/b) . (II156)

4. Sphere: Smythe [5] derives the eddy currents of a conducting sphere of radius a, conductivity
o, and permeability u placed in an incident magnetic field B, e’“*. Ata frequency w, the magnetic
dipole moment m = ma?I(w) isidentical to that from a loop of radius a with a current I(w) e/**,

where:

Qu +p) VI (V) - 1 + V¥ + 2ul1, (Vv
1) =1, Bt opg w [ ( ) r1Z, (V) ’ @L57)

(B = p) VI, (V) + [pg(1 + V?) = g1 (V)

12




I_,(v) = ',-1?2; cosh(v), I,(v) = ,% sinh(V).

The non-integral modified Bessel functions are given here in terms of hyperbolic functions. This
equation, with:

v=(1+j)%=a(1+j)’E’—é“—ow,/jmuo:a Sp o, (I11.58)

becomes [1, E.12], from which we extract the natural complex frequencies (poles). These poles
occur at those complex frequencies where the denominator of (II1.57) is zero.

Appendix E of [1] addresses the problem for quasi-magnetostatic scattering from a highly
conductive, high permeability sphere. This is valid for the condition that:

Jr (@) « '1 2 . (I11.59)
jwe, .

This is true for all metals at frequencies below 100 GHZ, for all relative permeabilities below
100,000 and conductivities greater than 10°S.

The solution for the magnetic polarizability is given [1, E.12] in terms of the relative
permeability g, = u/u, :

~ s @w, 1D [Ecoth(®) -1] - &
M(s) =M®O) + 2Ta ) — s 111.60)
(e, 1) [Ecoth(®) - 1] + &
where the first term is the low frequency limit (6E.9):
, (.~ D)
M@O) =4T7a (Ii1.61)

(0, +2)

13



and inside the sphere:

E=ayspo, _ © (.62)

is Smythe’s variable v in the Laplace domain. The poles of this equation occur for those values of
£ , designated £, , which give a value of zero for the denominator of (II1.60). These roots are the
solutions of the transcendental equation, which are dependant on only the permeability as a

parameter:

- (1II.63)

1
coth(§) = —
€&, m, -1

This has all imaginary roots £, , giving the negative real natural frequencies:

#
s, = < 0 forall a . (11.64)
azy. o

1.6 T
1.4
1.2
|t =2000
® °% '-..‘. 1=1000
- o L] @ - L =500
5 p ® Y,
% ® * £ =200
= = @ k' =
= * L =100
M Q b @
§ 08 I~ . . ® -._. —
v . 2 Si=50 -
* -] =
_§ 4 Q‘ o‘ OQ —...‘
‘. o =20 @ @
06 = s e . ) -
' . @, Q ®
sp=10 ] @ A
Q - -] B,
. © %
[ o %
04 [~ 2
H=5 [<] Qbo B
. Q o,
‘® a )
b - Q R
e b. O ."“o
02 - .. Aol %o,
p=2 a, o,
e o iy ey
-o- e o Tou
a_‘..“ 9 5
0 b——pu=1 SLe .ty
1 10 100 1-10 3
alpha

Figure 8.1. Roots of the Permeable Sphere.
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The positive real time constants are then:

1 atpo
T, = = - > > 0 forall o . I1.65)

-5, Ea

These roots are of the form j§, = amw+B, where 0 < B, < g as shown in Figure 8.1.

The integral of the magnetic polarizability is:

<~ _ e mo zna3{(2u,+1)[5com<€>-11 - & .66)

(o, - 1) [Ecoth(§) -1 + &

s s s

The step response function is given by the inverse Laplace transform of this magnetic polarizability:

crioe

Sty = 2 f e*' S(s) d(s) . (111.67)

2T

c-io

This gives:

3 | @ 1 th(§) -1]1 - &_|.
S = M©) + —1- f 2ma’ | Gp +DIEcoth@ - 1) ~hett d(s) . (IIL6)
2mi s (, - 1)[Ecoth(E) 1] + &

c-i=

The function inside the integral can be represented by the ratio of two analytic functions:

£,69)

F(s) = .
£5(5)

(I11.69)

When the denominator vanishes at s =s,, but f,(s,) # 0 and f,'(s,) # 0, the Laurent expansion of
F(s) at s =s, gives the sum of the residues:

~ - (sy)
L f S(s)ds = 5 . (I1.70)

2Ti /
g =1 fz("a)

15



The step response function in the time domain thus is given by:

S() =M(0)+E27“13 4
_ _ 2
o - {s[(“, 1)[Ecoth(E) - 1] + £ ]}

@p, + 1) [E o) - 11 - &,

e u() . (IL.71)

i

5
3
Evaluation of the derivative in the denominator gives:

(k, - D IE, coth(E) ~ 11+ &, +s E [ (u, = 1) (coth(E) + €, [1-com?Ep]) +2E,].  @L.72)

Using (I11.63), and its alternative form:

E coth(E) -1 = — (IL.73)

this becomes:

2

€q
(k- 1) +E 45k, (u,-l)[
w, — 1

1 g 1 € :
RN U S SO w2 | (TIL74)
&, m, ~ 1 ga 1 [Ea ] ] 2£°"

With the evaluation of the differential:

/| d& _ €y

& = (Z) eyt , (IIL.75)
the denominator reduces to:

g £

—| (s, +2) - i (I11.76)

2 (p,—-1) :

The step response function in the time domain thus simplifies to:

o

S(t) = M©)-27ma’ E
o2 -1 - &

!

6u, e’
u(® . {1.77)
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In terms of the positive real decay time constants T, = -1/s, this results in:

— -t

-1 6
s = 2ma¥ 2 B )—E - il ey | (IT1.78)
(8, +2) (B, +2) (g, —1) + (@7 +P)?

=1

The roots of the transcendental equation give the time constants:

T = kO 79
® (am+ B 7)
The magnetic polarizability is derived in a like manner, giving:
- 6p e -4ty
M@ =2ma’ -0 + E . u(t) |. (I11.80)
(,+2) (p,-1) + poa’

o=1

These results are based on the assumption that the permeability of the sphere is a constant
value, which requires that the incident magnetic field at the target is less than about 1 A/m. This
assumption is violated for all practical metal detector systems which drive a transmitter current of
a few amperes through a coil of many turns and a target range of less than a meter. It is easy to
excite the target with a field strength of 80 A/m, which is at the maximum of the permeability curve
for commercial iron and steel, with a relative permeability reached of about 5000 as compared to
about 200 at very low fields. With a transient excitation, the permeability may increase by a factor
of 25 during the time that the transient field is increasing in strength. The permeability of ferrous
objects is also frequency dependant, decreasing above 1 kHz to the free-space value at about 300
kHz [6].

If one knew the magnetic field strength at the sphere as a function of time, and knew the
relative permeability as a function of the field strength, then a Fourier or Laplace transform could
be taken to give the relative permeability of the sphere as a function of frequency. This could then
be used in (II11.60) to find the roots, with the natural frequencies of (II1.64). These roots would then
give the magnetic polarizability in the frequency domain from (II1.77), from which an inverse
transformation (IFFT) would give the time domain response.

Non-ferrous sphere: The limiting case when the permeability is exactly unity is treated by setting
u, =1 in (111.76), which results in:

=~ -1,
S = -12na? Z ez u(t) . (111.81)

n?mn?
=1
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The roots in this case are simply » ®, giving the time constants as a simple geometric sequence:

r = 2T (I11.82)

5. Summary: The solutions for the canonical cases derived above for electrically thin non-ferrous
conductors possessing a single conductor loop radius all reduce to the same generic form with a

single time constant:

M@ =M, | -0@ + % e u]| . (111.83)

S = -M_ e uw . (111.84)

0

The solution for the non-ferrous solid sphere is a bit more complicated, (1I1.78), with an

infinite number of time constants, only a finite number are within any physically realizable

-bandwidth, and which decrease quadratically with frequency. The solutions for other simple solid

canonical shapes, such as solid cylinders, will resemble this form, as will those for electrically thin
shapes of variable filamental loop radius such as thin disks and spherical shells.

The magnitude of the polarizability is proportional to the cube of the radius of the loop, disk,
or sphere. The time constants are proportional to the square of the loop radius times the metal
conductivity and permeability. It is thus physically impossible to distinguish between different non-
ferrous metals (gold from copper for example), as claimed for many metal Jetectors. A small change
in target size more than compensates for different conductivities. It is, however, very possible to
distinguish between specific objects of known geometry and composition because the time constants
can be characterized. Also, ferrous objects are readily distinguished because of the polarity change

of the decay curves.

IV.  MEASUREMENTS

An impulse metal detector has been used to measure the step response functions of certain canonical

metal objects. The step response of the metal detector has been characterized, and this response .

deconvolved from the measured data to give the results presented. A Helmholtz coil is used to
generate a nearly uniform field incident magnetic field. A current source is used which generates
a step with a transition time of approximately 30 microseconds. A quadrupole receive coil is located
to one side of the Helmholtz coil, oriented so that it is sensitive to the dipole field radiated from the
target objects while giving a null response to the incident Helmholtz field. The receiver amplifier
has a high-gain differential amplifier with a filtered high-frequency response. The signals are
digitized with a 12 bit analog-to-digital PCA card in a portable Pentium computer. The data are
acquired using Labview® control, and processed with Matlab®.
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The absolute amplitudes of the measured data and the theory cannot be directly compared
because of the various distance terms (eg, 1/r°) in the incident field and scattered field equations.
The scattered flux intercepted by the receiver coils, signal conditioning, and amplifier gain also
introduce non-calibrated variables into the amplitudes. If the data are acquired with all of these
variables fixed, so that the relative amplitudes are all consistent, then a single scale constant can be
used to compare the theory with experiment for all of the data sets. )

The data were acquired with all of the hardware parameters fixed, except for the location of
the target objects in the Helmholtz coil. The various size of the targets results in signal amplitudes
which can exceed the dynamic range of the electronics if they are all located at one location with
respect to the receiver coils. Therefore, the smaller objects were located closer to the receiver and
the larger ones farther away, while still remaining within the constant field volume of the Helmholtz
coil. The amplitude scale factors between these constant locations were measured with a given
object, and then used to scale the results to a common factor. The scale factor was determined to be
approximately 1/r? from the receiver coil.

The deconvolution process is not perfect. The first few points of the responses show the
effect of the circular FFT, distorting the exponential decay. The late-time response exhibits noise,
and also shows effects of distortion of the first few frequency points.

1. Wire Loops: The measured deconvolved responses of some 5 cm diameter wire loops of
American Wire Gauge (AWGQG) copper magnet wire are shown on Figure 8.2, along with the (dashed)
theoretical waveforms from (III.20). Dual data traces are due to measurements taken at different
target locations, and show the repeatability of the data. Both linear and logarithmic amplitude scales
are presented. The largest wire (#12 AWG) has the largest decay time, the upper curve. The listed
value of the conductivity of pure copper, 5.80 x 107 S/m, is used for the theoretical curves.

Figure 8.3 shows the responses of 10cm diameter wire loops and the theoretical curves.
Notice that the time constants for each wire size are nearly the same as they are for the 5 cm loops,
in agreement with (I11.16). The amplitudes are a factor of eight larger, in agreement with (I11.18).
The smaller wire sizes exhibit more noise because of their smaller signal strength.

The agreement between measurement and theory is extremely good for the wire loops: the
amplitude is proportional to the cubic power of the loop radius, and varies only slightly with the
wire size. The time constant is proportional to the square of the wire radius (and to the conductiv-
ity), and varies only slightly with the loop size. The two radii which characterize the loop thus
determine two distinct and separate properties of the eddy current response.

2. Coaxial Wire Loops: Figure 8.4 illustrates the response of two coaxial loops of copper magnet
wire, a 5 cm diameter circular loop of No. 12 AWG and a 10 cm loop of No. 18 AWG. The
responses of the two loops by themselves are also shown as the lower curves (straight lines on the
logarithmic plot). The theoretical responses, the dashed lines, are included, (I11.39) for the dual
loops. The dual loop data deviate from theory at late time, a result of inaccuracy in the
deconvolution process. The dotted line is the sum of the theoretical responses of the two individual
loops, which is seen to not be the response of the system, validating (I1I1.39).
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3. Thin (Hollow) Cylindrical Loops: Hollow, thin-walled, cylindrical loops are shown by (II1.54)
to have a single decay time constant when the incident magnetic field is parallel to the loop axis.
This is verified by the measured data presented in Figure 8.5. The differences between theory and
measurement for the thicker wall cylinder is due to the skin effect, limiting the eddy currents to the
skin depth and increasing the loop resistances, decreasing the time constants.

4. Non-Permeable Spheres: The properties of spheres are of interest both because the response can
be analytically calculated (at least for non-ferrous metals) and because they are used as calibration
targets for airport metal detectors. Figures 8.6 and 8.7 present the magnetic polarizability step
responses for one and two inch diameter spheres machined from aluminum, brass, lead, and 304
stainless steel. The conductivities listed were adjusted to give the fits to the data shown; they are
not the same for the two data sets because the spheres were not machined from the same pieces of
stock. With this caveat about the conductivities, the data show excellent agreement with the theory

of (111.81) and (II1.82).

Figure 8.8 is the measured and analytical responses of some 1.5 inch diameter balls used for
characterization of airport metal detector archways. These machined balls are not perfect spheres,
so the decay curves deviate from theory more than the previous set of data.

Equation (II1.81) is seen to describe the measured responses of non-ferrous spheres. The
observed peak amplitudes of [1.2, 0.5, 0.15] are directly proportional to the diameters [2, 1.5, 1]
cubed. The series expansion of (III.82) with both the amplitudes and time constants of the terms

decreasing as 1/n? is also observed.

5. Highly Permeable Spheres: The decay curves for highly permeable objects are not presently
calculable. The formulation developed in Chapter 6 and summarized above makes the assumption
that the permeability is a constant. In actuality, the permeability is a very non-linear function of
several factors, including the strength of the incident magnetic field and the frequency components
of the field and induced currents (it changes with time during and after the impulse excitation). It
is also a non-linear function of temperature, past magnetic history (hysteresis), and several other

factors.

The data presented in Figures 8.9 and 8.10 for magnetic spheres and balls are typical for
magnetic materials. The step response polarizability has an initial fast rise from baseline (here
shown as a negative excursion), followed by a much slower decay back to baseline. The response
can be modeled as a series of exponential decay terms, with the slower decay terms having
coefficients of opposite sign than those of the faster terms. Note that this is not in agreement with
(111.80) in which all of the terms have coefficients of the same sign. The data could be represented
by the theory better if the second term in the denominator had its sign reversed. In fact, an empirical
model, with one or two fast exponentials of negative amplitude coefficients and one or two slow
exponentials of positive amplitude, fits the observed data reasonably well.
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The data curves cluster according to the size of the spheres. The composition of the magnetic
material has only a minor effect on the response. These differences are probably due to the
differences in the conductivities, as it is noted that the curves with the slower rises are the carbon
steel balls. The faster rises of the stainless steel objects are indicative of the lower conductivities of
these materials. The amplitudes are again observed to scale as the cubic pewer of the radius.

400-series stainless steel exhibits high-permeability magnetic properties, as opposed to the
non-magnetic response of the 300-series stainless steel shown earlier. This is important for weapons
detection because only the 400-series is hard and strong enough to use in manufacture of knives and
guns. Hence, such weapons always show a strong magnetic response, virtually indistinguishable
from that of ordinary hard steel.

6. Thin Disks: Data were taken for aluminum disks of two and four inch diameters, from sheet
stock of nominal thicknesses 1/4", 1/8", 1/16", 1/32", and .020". The deconvolved responses are
shown in Figures 8.11 and 8.12. For disk radius a and thickness 4, an empirical fit is derived to fit
the data:

) = -yt
S()y = -20ma’ E ¢ ), av.1)
n3 m?
a=1
with:
T = ahpo av.2)
" 9n? , ’

The disks were machined from different sheets of aluminum of different alloys and unknown
conductivities. The values presented are such as to make the theory fit the data. The fundamental
time constant T, certainly is proportional to the product of the thickness and radius.

7. Solid Cylinders: Data for one inch diameter by one inch high solid right circular cylinders are
shown in Figure 8.13 for incident magnetic field parallel to the cylinder axis. Again, an empirical
fit is derived to fit the data:

= -,
S(t) = -50a’ E ez - u(t) , - (IV.3)
n-T

=1
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with:
ahpo

Calerer LA

The amplitudes are larger than those of the spherical formula (50 vs 127), as are the time constants
(ah/18 vs a*/1?), consistent with the 50% larger volume (ma*h = 2na’ vs 4na’/3) of the cylinders,

with A=2a.

V. CONCLUSIONS

The theory of magnetic singularity identification is shown to be in excellent agreement
with measured data for non-ferromagnetic canonical objects.

The theory for ferrous objects is incomplete. The early time behavior resembles that of
non-ferrous materials with high frequency components in the regime where permeability decreases
to that of free space. Late time behavior is characterized by decay terms with opposite amplitude
of the early time terms, which is not shown by (II1.78) or (I11.80).

Eddy currents are induced in non-ferrous conductors which circulate in such a direction
as to produce fields that oppose (cancel) the incident field, which is a manifestation of Lenz’s law.
Amperian currents induced in ferrous material, however, produce fields that enhance the incident
field, which is why soft iron is used in armatures and field windings of electric motors. Note the
distinction between eddy currents and Amperian currents by the repulsion of a good conductor
from an oscillating electromagnet, which attracts iron or steel. This opposite polarity of eddy
currents vs Amperian currents [7] results in the negative polarity of the ferrous object signatures.
It can also give the interesting results of a thin steel object, which exhibits a non-ferrous response
when the incident magnetic field is normal to its surface and a ferrous response when it is aligned
parallel to the surface. In the first case, the eddy currents induced in the large surface area
dominate the amperian currents induced in the thin thickness. In the second case, the surface area
for the eddy currents is very small compared to the long dimension in which the amperian currents

are induced, so the latter dominate the response.
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Figure 8.6. 1.00 Inch Diameter Spheres: Aluminum, Brass, Lead, 304 Stainless.
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Figure 8.7. 2.00 Inch Diameter Spheres: Aluminum, Brass, Lead, 304 Stainless.

28




() \ A
_00.4 W\
= M\
=R AN\
\ N
503 \ \ N -
— \ A
8 \ X
= A
—10.2— \ < .
\ \\ \\\ CU
\\ \\\
0.1 > Al T 2
Pb N\ AI-Br Br S T ——
0 1 = ] 1 4 i S |
0 0.5 1 1.5 2 2.5 3 3.5 4
I T T 1 T : T T
3
-
3 S
S .
\§ N
AN
N
o ' ~< s Copper
T 4 = =
=210 R R .
a . 0 ~ X~ Aluminum S
£ [ NN TS
< 3 \\ =3 \\\\
2 N Brass ~ 3
E \ N ~
= - “; AN \\
= Lead 1Y N <
© \\ Al-Bronze A ~
o)) =
o X ~T
— \ 3 R,
) Ay B ™
10 N "
~N
N
\\ AN
N
\ N
1 \I 1 1 \\ Ml 1 ]
0 0.5 1 1.5 2 2.5 3 3.5 4

Conductivity =[ 4.1, 2.3, 1.15, 0.426 , 0.423, 0.42, ] *10"7 S/m

Time (milliseconds)

Figure 8.8. 1.50 Inch Diameter Balls: Copper, Aluminum, Brass, Zinc, Aluminum Bronze, Lead.

29



Linear Amplitude

_10 1 1 1 . oo .

1
0 1 2 3 4 5 6
Time (milliseconds)
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