Interaction Notes
Note 524

13 March 1997

Integral Equations and Polarizability for Magnetic Singularity Identification

Carl E. Baum Norbert Geng and Lawrence.Carin
Phillips Laboratory/ WSQW Dept. of Electrical Engineering
3550 Aberdeen Avenue S.E. Duke University
Kirtland Air Force Base, NM Box 90291

87117-5776 Durham, NC 27708-0291
Abstract

This paper considers both volume and surface integral equations for low-frequency quasi-
magnetostatic scattering from permeable, highly conducting targets, using appropriate approximations.
These are used in turn to obtain formulas for the magnetic polarizability dyadic and the pole terms

(natural frequency, residue unit vectors, and scalar coefficient).

rn_;;, . . e
Wi Ul sid el -

P4/ PA 5/ 8/77

PLP2-0v7 2



Interaction Notes

Note 524

13 March 1997

Integral Equations and Polarizability for Magnetic Singularity Identification

Carl E. Baum Norbert Geng and Lawrence Carin
Phillips Laboratory / WSQW Dept. of Electrical Engineering
3550 Aberdeen Avenue S.E. Duke University
Kirtland Air Force Base, NM . Box 90291

87117-5776 Durham, NC 27708-0291
Abstract

This paper considers both volume and surface integral equations for low-frequency quasi-
magnetostatic scattering from permeable, highly conducting targets, using appropriate approximations.
These are used in turn to obtain formulas for the magnetic polarizability dyadic and the pole terms

(natural frequency, residue unit vectors, and scalar coefficient).



Contents

Section

1. 5583 20Ts A bles (o) « WRUURURURU OO OO OO SO PO USSR P 3
2. Incident Field for Use with Quasi-Magnetostatic Scattering .......c.ccoeceeermnerinncacnnns 8
3. Volﬁme Integral Equations ... et e e e 10
4. Surface Integral Equations for Uniform Isotropic Target ..., 14
5. Magnetic Dipole Moment from Volume INtegrals ... 18

6. Magnetic Dipole Moment Evaluated from Scattered Magnetic Field Given by
SUTACE IMEEETAL rvrreieereece ettt s s s 20
7. Magnetic Polarizability ..ot 25
8. Scaling of Target and FIEQUENCY ..ottt 27
9. Scaling of Thin-Shell Target and FreqUenCy ... 30
10. POle REPIESENIAION ..uvuierieiirereestieniens ettt ies st 35
11. Concluding REMATKS ..ovuiuiieneece ettt e 40
Appendix A: Some Useful IAentities ..o s 41
Appendix B: Integrals over the Unit SPhere ... 44
Appendix C: Some Integrals over General Volumes Bounded by Closed Surfaces .. 47
REFETEIICES cvurneeervireeieenetcac et eaestrecst st st sea st saebe et bsa s me e s e s sebsm s s sssbshs s s sbs s ass et e b sbs e sbeais 48




Introduction

As discussed in [3, 18] there is a set of natural frequencies associated with finite-dimensioned,

highly conducting (metal) targets at the low frequencies characteristic of diffusion of magnetic fields
through the target, or skin depths related to target dimensions. In the s-plane (complex frequency plane)
these natural frequencies all lie on the negative real s-axis, and correspond to pure exponential decays in
time domain. These can be used for target identification, and this technique is referred to as magnetic
singularity identification (MSI) [5, 18]. Since it emphasizes the near-field, low-frequency magnetic
scattering it is insensitive to surrounding media of comparatively modest conductivity (e.g., soil, water)

provided such media are non-magnetic, i.e., have permeability 1.

The general scattering situation is indicated in fig. 1.1. The surrounding uniform medium has
permeability 1g (free space), permittivity e1(2 &p), and conductivity o1(=0), which gives '
- 1/2 .
71(s) = [5 /.10[01 +5 81]] = propagation constant

1/2
7 (s) = |—H0 | = i
Zi(s) = ligl p 51] = wave impedance (1.1

S

Q+ jo = complex frequency or Laplace- transform variable
Associated with this external medium there is a (scalar) Green’s function

- -
. —‘/1(5)|_r)—r t
. Gl(_f),?,‘S) = e—_)— (1.2)
4z 1 7-71

from which a dyadic form can be constructed, but the above is sufficient for present purposes. As
discussed in [3, 18], our interest being in low-frequency, near-field magnetic scattering, the external-

medium parameters play little role provided u = g, so we might as well thing of £y =¢gg and o1 =0. In

this case
- - 1/2
71(5) = 70(s) = s[uoeo] /¥ =2
i 1/2 (13)
Z1(s)— 2o = {&]
€0
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Fig. 1.1. Scatterer in Uniform Isotropic Medium
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From an experimental point of view this means that measurements of the target scattering can be made in

air, and the proximity of non-metallic/non-magnetic objects is not significant. Furthermore, the

wavelengths or skin depths of interest in the external medium are so large compared to target dimensions

and observer distances that (1.2) can be replaced by

Gl(IIJIIS) >GO(J,’)"
- —

from which we also need

—_
r—

4

V' Go(7,7) = =V Go(7,7) = 4#
T

_)
| r—

~d

13

Let us call the foregoing (and related) approximations as MSI approximations.

The target is in general inhomogeneous and anisotropic with

(7)) = permeability dyadic
€(7) = permittivity dyadic
c(7) = conductivity dyadic

These appear in the electric and magnetic (polarization) current densities in the target as

\

v

N
Il

“ « it
{0'(7)) + s[e(?)—eo ?ﬂ - E7,s)

“ o =
S[u(7’) - 1} - H(7,9)
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and fit in the Maxwell equations as

V% ~g(_r),s) -5 ;‘7(7) . ﬁ(—r),s)
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UxH(7,s) = 87 - E’(‘r’,s)+s'13<7,s)=[?<?)+s?(?)J-E’(?,s)

75(7),5) + sgp E(7,s)

One should note that the above fields are total fields, including both incident and scattered parts. For

present purposes we can neglect permittivity (an MSI approximation) to give

o7y - BP9

75(7,5) =

5
Ve (r,s9=0 1.9)
\% 7h(7,s) =-sug V- ﬁ(_r),s)

This will simplify some of the computations.

For the special case that the target is uniform and isotropic the constitutive parameters reduce to

U, €, and o with s¢ negligible compared to . Then we have a Green’s function appropriate to the target

medium as
-)
_ —7(s)N 7 =71
CAD o a—
—_
4xl7-1'1
~ — ~
V'GP, 7is) = ~VG(T, 759 (1.10)
. . __', —>__,) N
=1+ FI7-F e T ITT
17-7 8
with wave parameters for the target medium as
-~ 1/2 .
7(s) = [s /,1[6+5£]] / = propagation constant
i} . 1/2 (1.1m)
Z(s) = [ K ] = wave impedance
G +s€

which simplify under our MSI approximations to




7s) = [suo]’?
) 72 (1.12)
25 - | 2]

As discussed in [3, 18] the natural frequencies (poles in the s = Q + jo plane) of such targets
under the MSI approximations lie on the negative real s axis. On the reals axis (Q axis) the fields,

currents, etc., are all real, corresponding to the two-sided Laplace transform (symbol ~ above) of the real-
-
valued temporal quantities. The exterior Green’s function causes no problem in this regard as Gp 7,7)

. . . R . =, — .
is purely real. However, the interior Green’s function G(r’, r’;s) has a branch cut on the negative real s

axis. Formulations which utilize this (as in Section 4) can separate real and imaginary parts as

1/2 . 1/2
[s uo] /2 tj[-spo] /
cos[[—s U 0']1/2 17-7 l]
Re{é(?,?;s)} =
4T~ 71
sin([~s 7 0’]1/2 177 l]
Im{é(_r),?,s)} =7
—_
AR

Re[V’é(?,?;s)j[ = 1}:05([-—5 7 0']1/2 17-7 IJ

- 3
+[—s,uc7]1/2I?—?Isin[[—suc]l/zl_r)——r—’)l ror
17-7 P
Im{v'é(_r),?;s)J = i{[—s uc]l/z l7—?lcos[—suo]1/2 77 (1.13)

+ sm[[_s wol/217-7 |ﬂ —



2. Incident Fields for Use with Quasi-Magnetostatic Scattering

The fields (total fields) are divided, as usual, into incident and scattered fields as

(inc) _:)(sc)
- -
,8) + E ,8)
(7.s) (r . @.1)
;(sc)
(7,s) + H (7,3

E)(_r),s) = -1_5)

The incident fields arise from some distant sources and are defined as those fields which would exist in

the absence of the target, i.e., with the target replace by the exterior medium. The scattered fields are the

change in the fields associated with the introduction of the target.

One often considers the incident field as a plane wave, but that is not appropriate in the present

case. Here we think of an incident magnetic field which is approximately uniform in the vicinity of the

- target. So think of a uniform z-directed magnetic field as

(inc)
2.2)

it —
H (7.9 = Hp 1z

This is associated with a ¢-independent, ¢-directed vector potential (usual (¥, ¢, z) cylindrical

coordinates)

1 - 1 J -
Hp lz = —VXA(r) = — — (YA, 12
0°F " oW 0"1’( 0)
p (2.3)
¥

_ Mo Hp C e
0

The integral is taken from zero to avoid an insignificant constant term.

The incident electric field is in general derived from scalar and vector potentials as

- {(inc)

E (7.5 = -sA(T) - Vo(7) ©2.4)

Setting the scalar potential to zero we have




~ (inc)

E (7.9 = —suo%Ho To 2.5)

This is a kind of “minimal” electric field associated with the magnetic field in (2.2). Of course the incident
magnetic field cannot be perfectly uniform for s # 0 because this would have zero curl and hence zero
electric field. The above represents appropriate leading terms, another MSI approximation. Note also

that both fields above have zero divergence.

The scalar potential is associated with quasi-electrostatic scattering which exists, but which we
ignore, since we are looking at near scattered magnetic fields. Another way to look at this is to think of
not one, but many, incident plane waves, all with H polarized parallel to _{)z. The electric field
associated with each plane wave is perpendicular to _l)z, but has x and y components of various
magnitudes depending on the direction of incidence (perpendicular to _l)z ). Summing over these electric

fields gives a small electric field on the z axis for an appropriate set of such plane waves.

- -
The choice of the z axis being arbitrary we can relabel 1z as 1} and have

(inc)

H (7,9 = Hy Tn
_)
A(Y) = “050 Ty x7 2.6)
;)(inc) o
.
E (—r—),s)=~i!f92-—0 1h X7

This is suitable for use in the usual Cartesian (x, y, z) and spherical (r, 6; ¢) coordinate systems. By
—_

successive choices of 14 in three orthogonal directions, one can construct a set of incident fields to give

(by linear combination) an arbitrary incident-magnetic-field polarization, and can construct the magnetic

polarizability dyadic (to be discussed later).



3. Volume Integral Equations

Integrating over the electric and magnetic currents in the targets as in (1.7) we have the pair of

integral equations [3, 18]

-~ (5¢) -
- —_ —_
E (7.9 = —1—<VG1(7, s, V- _])e(r',s)>
01 +5€]

- 5l <@1(7,7;s) , 78(7,s)>

’

— <V(§1(7, 7;5) X Th(_r_’),s)>
':)(SC) 1 -y :) -
H (7,5) = —(VG(F,77;5) , V' ]+,
SHo

- = : 3.1
- (o1 + se1) <G1(7,7;s) , 7h(7’),s)>

’

+ <Vél(?,7;s) X 78(7,5)>

-
where the symmetric products are integrals over the target volume with respect to the common (r”)

coordinates.

Under our MSI approximations these integral equations reduce to

- (sc) ~
E (7,s) = —sug <Go(_r),7) , ?6(7,5)>

- <v Go(7.7) x T p(¥,9)
=50 ~ (3.2)
H 7, = 5—1— <VGO(7’,7) v 7’,,(7,s)>

’

+ <vco(?,?’) x 75(?,5)>

Substituting from (1.7) and (1.9) we have
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4

(sc)

- ) o -
E (_r>,5) = —sup <G0(7>,7’)) , O‘(?) : _E(?,s)>

_,'-—) “ © :)—,)
-5 VGo(f,f')>,< u(r’y—pg 1| H(r',s)

:)(sc) R N 3.3)
H (7,s) =-— <VGO(7, ry, v H(r’,s)>

> 2 2. 2
+ (VGol(r,r") x a(r) - E(r,s)

Note that by substituting —V’ for V we have an alternate form for the integrals.

At this point, let us consider these volume integrals and what happens at the surface. Let V
denote the volume not including the surface, with 5 denoting the surface in the sense of a thin layer of

vanishing thickness enclosing the surface. Then we have

<VG0(7,7) , v ﬁ(?,s)>

=<VGO(?,7) , V- H’(?,s)> (3.4)
14

- = - - S5 - 5 -
+{VGo(r,r), 1s(rs) |H4(r',s) — H_(r,s)
S

rs,ts © 5 , 15(rs)= outward pointing unit normal to S at

The integral over S is a surface integral (two dimensions), and the § functionin V’. H at S due to the
—
discontinuity in normal H there is integrated out in the normal direction. Subscripts + and - are for

parameters just outside and just inside S respectively.
If the target is uniform and isotropic, then we also have in V
1 55—
B

5 —
V. H(r',s) = ) V. B(r',s) =0 (3.5

In this case (3.3) reduces to

11



(sc)

5
E

(7,s) = -suoa<c;o(7’,7) , E’(?,s)>

(so)

Tl
=

= ot 3.
H 7,5 - H’_<?’,5>J> G.6)
S

(7,s) = —<vco<‘r’,?’> , ?s(?’s) . [

+ a<vc;o(7’,?") x E’(?’,s)>
v

Noting that normal B is continuous through S we have

B - - S oo
- Hi(r's ,8)=p 15(r5) - H_(rs,s)

- - e ] - =
1s(r's) - B(rs,s) = pp 15(r’s)
- - 5 - - - S5 -
1s(rs) « | He(rs ,5) — H (rs,s)] [ —-l] 1s(rs) - H-(rs,9)
(3.7)
112 5 o
= [1—;1,_ ] 1s(rs) . Hy(rs,s)
Hy = ;fﬁ;
Furthermore, utilizing [13]
v'x{co(?,?’)ﬁ(r’,?)] = [V'Go(?,?)ﬁ,xﬁ(?’,s).
(3.8)
+ Go(7, 7 W xHT,s)
with (A.6) we have
<VGo(r r)xﬁ(?’,s)> - —<V'GO(7’,?>>,<§(7’,5>>
1% 14
- Jv' Go(7,7) ﬁ(?’,s)}fvw <GO(7’,?),V'>< ﬁ(?,s)> (3.9)
14
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Similarly we have

= —JV’X[G0(7,7)_E(7,5)}1V’+ <Go(_r’,7’),V'x E’(?,s)>
14

= _<co(7,?’>,_1’s(7s )x E(rs ,s>> - sp <Go(‘r’,?’>, E’(?’,s>>
S |%4

Substituting in (3.6) gives

(sc)

tri

(7,5) = _5u0<GO(71?): E)(?)rs)>
|4

S

i . -
H (7.9 = [y —1]<v'co<‘r’,7’>, 15(7s). H-(7s ,s)>
S

. —suc <Go(7’,7>,

=L
d

. i
; ,s>> —o <co(“r’,7s ), 1s(Fs)x E(rs ,s>>
14

S

(3.10)

31D

as an alternate form. Note that for s real (s, <0 for natural frequencies) all terms in the above are real,

thereby simplifying the computations.
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4. Surface Integral Equations for Uniform Isotropic Target

Following [16] we have the external fields (subscript +) in terms of equivalent surface current

densities (electric and magnetic) on S (just outside 5) as

- -~ (inc)

E.,.(?,s):TE (r 5)— T‘[{suo[ls(rs )xH+(r5 ,S)JGl(

- =
r,r’s;s)

- o 5 - P - = 5 = - >
=1 1s(rs )X E4(r’s ,sHXV'G(r,rs;5)—| 1s(r’s)- E+(rs,5) | V'G1(7, 1% ;5)dS’

..(mc) SN 55 - 5
H+(r s)—TH (r,s)+TJ' [01+sel] 15(r's )X E4(7%s ,8) |Gy (7, 7’5 ;) W)
< .

- - iy - = -2 - s 5 o -y
+i 1s(r’s )xHa(r’s ,9) X V'G(r, s ;5)+] 15(rs ) Hy(r’s ,8) | V'Gi(7, 15 ;5)+dS’

T - 1 for 7 outside (away from S)

=
2for ¥ on S (7= r’s ) for smooth S

For 7 away from S the scattered field is then

~ (sc) -
f+ (7,s) = _J‘{S#Ol:‘?s(z )xﬁ+(75 ,S)JQ(?,?s ;s)
S
{_)'7’;'—3],"——)_’ [—’_’—3“"}~—‘_’}
—| 1s(rs )X E4(r’s ,8) [ X V'G1(7, 1% ;8)~| 15(r’s ) e E+(rs ,9) [ V'Gi(T, 7% ;) dS
;(SC) N - - S5 - - -
He (7,s) = J.{[O'l +se1]{15(r’s )X E4+(r's ,s)}Gl(_r), r's ;s) 4.2)
S

- 5 - ~ - - 5 5 5 -
+{1S(T’5 )X Hy(r's ,S)JxV’Gl(?, s ;s)+{ls(r’5 )-ﬁ.,.(r's ,s)JV’Gl(?’,:’; ;s)} ds

Equations similar to (4.1) can be written for the interior fields (subscript -) as

14




-

. . . )
E_(7.9)=T J'{su[ 1s(rs )x H_(r% ,s)] G775 59
S

~1

wn

—

-

m‘l’

St
Mt
|

~~

~
S
w
N

1
<
Q
~~
2
<
AN
‘m
S’
\ﬂ_’

au
“©

- - ] - 3=
1 15(r5 )X E—(r’s ,s) | X V'G(7, 75 ;5)—

H-(7,9=~T j{[a+ se] FSG’S yx E—(rs ,s)} G
S (4.3)

- o 5 5 .y = - 5 5 o5 .y =
+| 1s(rs )X H-(r’s ,8) | X V'G(7,r’s;5)+| 15(rs ). H-(rs ,s) | V'G(7, r’s ;s)>dS’

T 1 for 7 inside (away from S)

2 for 7 on S (7:75) for smooth S

—_
Taking the limits from both sides of S, take the tangential components by operating by 1 s(7s)x and

noting the continuity of the tangential components as

—> it - e
15(_7’)5)><E)+(—f)s,5) = 15(?5)XE—(?5,S) : )

- 5 - S5
15(Fs)x H+(7s,s) = 15(7Fs)x H-(7s,5)

and discontinuity of the normal components as

- - N -
(o1 +se1] 1 s(7s )-E)+(_r)5 ,s) = [o+se] 15(7s)- E)_(_r)s ,s) “5)
- 5 - - 7 ’
Ho 15(7s) - Ha(r’s ) = p15(7s). H-(7s,5)
giving
7 - __}(inc)—_) " 2 - = = = = =~ — =
1s(rs)x E (rs,s) = 1s( rs)Xf 15(r’s )x He(r%s ,5) || suoGy(rs , 1's ;) + suG(7s , r's ;5)}
S
- = S - = - -~ 5 =
=1 1s(rs )X E4(rs ,8) [ X|V'G1(Ts, 75 ;8)+ V'G(rs,1’s ;5) (4.6)

- - S o ~ - - -
_{ 15(r’s )* E+(r's ,s)] [V'Gl(?s,r's is) + %:—SELV'G(?S,#S ;s)}}dS'
S



-(mc) - - - S -
15(rS)XH (r5/5)=—15(—7?s)><j l:lS(r,S)XE+(7,SIS)j| o1 +5€1 G1(r5,r5 ,5)+[O’+5€]G(7‘5,75,5)j|
S

- - nr G - 5
+li15(7's)XH+(T'5,S):IX[V'G](TS,T'S,5)+VG(T5,YS,S)]

- -, . - -
+ { 1s(rs ). He (s ,s>MV'G1<7s 7 ;s)+ﬂu'iV'G<7’s 7 ;s>}}d5'

Noting that the normal components on S satisfy [13, 16]

- Y 1 - >
15(7s)- E+(7s) = ——VS[15<7’5>><H+<7’5)J
C1 t+5€&1
1 2 o
-V .{15(7’5)xH+(7’s)}
g1 + 5€7
. - 4.7
- 1 - EREN
15(7s)- He(7s) = — ¥ [15(7s>>< E+(¥s >}
SHO
17 =
= ——15(Fs)| Vs x E+(7s)
SHQ
then (4.6) involves only the tangential components of electric and magnetic fields just outside S, .

appropriately giving four scalar equations in four unknowns. While (4.6) uses the fields just outside S,

one can easily convert this to fields inside S, if desired, by using (4.4) and (4.5).

Under our MSI approximations the scattered magnetic field in (4.2) reduces to

~ (s¢) - RN
He (7,s) = j{[m?f; yx Ha(r's ,5>Jxv'co(7’,7s)

S (4.8)

- 5 5 -5 I
+| 1s(r’s)-Ha(rs ,9) |V Go(r,r’s )pdS’

Since we are interested only in the low-frequency scattered magnetic field, this cquation can be used to
find this field from surface values on S , whether computed from (4.6) or from the surface fields

computed via volume integrals as in Section 3. We shall return to this point later when considering the

magnetic polarizability of the target.

Also under our MSI approximations the integral equations (4.6) simplify as

16



- (inc) ~
- — - - 5 - - - -
15(7s) % F (7s,8)= 15(7s) ¥ JH 1s(rs ) x H+ (7’ ,s)} [s,quo(7s s )+ suG(Fs , s ;5)}
)
- - S5 - - = - =
—{ls(r’s )X E+(r’s ,5)}X[V’Go( rs,rs )+ V'G(rs,1’s ;s)}
e T
I 1s(r’s). E4(rs,8){V'Ggo(rs,rs ) dS’
. 4.9)
~ (inc) ~
- -> - = e 4 - i
1s(FIXH  (Fs,s)=— 15(7’5)x.f{{15(r's )x E (% ,5)}06(75,#5 ;s)
S

- o —_ = = 7
+1 1s(rs X Hal(r's ,8) X V'Go(rs,r’s Y+ V'G(rs,1’s ;5)

- o e - ~ —
+ { 15(rs )- He(r's ,s>} [VIGO(?S P )+ U VG, s w)}} ds’

Here terms involving o7 + 51 and s¢& have been eliminated by comparison to 6. The exterior Green’s
function has no delay, but the interior Green’s function has its frequency dependence retained since for
natural frequencies of interest the target thickness is related to the “skin depth”. Noting that the natural
frequencies of interest are found on the negative real s axis where the fields are all real, the above
equations can be split into real and imaginary parts using (1.13). The imaginary part must give zero for

all negative real s. The real part can then be used to find natural frequencies by setting the incident field

. to zero.
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5. Magnetic Dipole Moment from Volume Integrals

Dividing the magnetic dipole moment into the two parts associated with electric and magnetic

currents [1, 3, 18] we have

e(s) + #z)h(S)

J7x7e(7,s)dv’ .1
|4

) -

-T;Z)e(S)

I
N | = 51’(

- -~ Lo o J Py -~
R (s) —1—j7h(7’,s)dV’= j ur) 1- ﬁ—(?},s)dV’
SHY v v Ho

From the Maxwell equation and (C.3) we have the electric part as

Hels) = %f?x?e(—r_’,s)dV’ - %j?x[V'xH—(ﬁ,s)}dV’
’ ~ Y - (5:2)
_)
- lJ’?x{m(Z )xﬁ+(7>,s):| + [H-@ 9av
2
S 1%
noting the continuity of tangential H through 5. Using (C.1) we find the magnetic part as
mh(s) = — [B-(7,9)av’ ~ [H-(7,5)dV"
Ho |4 14
1 - = - fnr
= —[|Ts(o)- B-(75 9| rs - [H-(7,s0av" (5:3)
Ho o v

j{?s(f's ). He (7 ,s)} 7 ds - jﬁ_(F’,s) av’
S 14

noting that B has zero divergence and that its normal component is continuous through S. Combining

these results we have

S 17— - = i - - -
m(s) = [ 75 x { 15(rs ) x Ha s ,s):’ ds’ + j[ Ts(rs)-Halrs ,s)} r’s dS’ (54)
S S
So the magnetic dipole moment can also be evaluated by integrals of the magnetic field just outside S. .

18



The leading term in the scattered magnetic field is the magnetic-dipole term given by

-, (5¢) - = « =
ﬁd (_T),S) = ;3[3 1, 1,- 1:] . H(S)
amr (5.5)

- - - = .
—1?[3 1r lr"" 1:| . A_/I)(S)'H) (_0),5)
4mr

This is valid for distances r from the target (say the approximate center of the target) large compared to a

which is defined as some characteristic dimension of the target.
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6. Magnetic Dipole Moment Evaluated from Scattered Magnetic Field Given by Surface Integral

The scattered magnetic field is given by surface integrals as in (4.8) which looks somewhat

different from (5.3) and (5.4). So let us expand the scattered magnetic field for large r (r >> a) for which

we need

V' Go(7,7)

—47rr2 - 7
[1, -1
r
- -3/2
—_ ’
S U | PPN ('—)
dmr- r Y r
r r -
1 |77 1,.7 )
=—T y —— 1+3 +O(T ) (61)
dmr rj r ‘
- - - -
= 17 lr—-r—+—3—1r,1r r +O(r") as r oo
< r r

4rr

5o consider (4.8) expanded in inverse powers of r.

The r_ztermis
~ (sc) - -
o - 1 72 o 2 - P AN -
H- (r,s)=4——2'|‘{ls(rs )X Hy(r's ﬁ)}x lr+[ls(rs ) Hi(r's ,5)} 1r}d5’ 6.2)
r
S

Considering the second term we have

I I N B T S TS
Us(rs ) Halrs ,9)dS" = — [ 15(r5)- Ba(rs ,5)dS’

S S
. 6.3)
|
- Ljv'.B_(r'S,smseo
Ho v

noting the continuity of the normal c‘omponent of B through S and the zero divergence of B. Thisis
just a statenent of the well-known fact that the magnetic monopole moment is zero. Considering the first

term we have




- N ot
_[ Ts(rs )x Halrs ,5)dS" = fvuﬁ-ﬁ’s 5)dS’
S

v
J‘—]:_,(?s ,8)dv’ = s';?,(s) (6.4)
v

%(5) electric dipole moment

noting the continuity of tangential H through S. Thus we have

~ (sc) - 5 5
He2 (7,9= —=P()x 1, 0 for s—0 6.5)
4nr

This term is neglected since it is negligible compared to the near quasi-static magnetic field due to the
induced magnetic dipole moment at our low frequencies of interest. Note that other contributions of
order r~2 and ! have also been neglected in approximating C1(7,7:9) by Go(7,7’), consistent with

our MSI approximations.

The p3 term is

~ (sc) ~

- 1 - 5 S - - — P

H_3 (_7),5)=—3—J. 15(rs Yx H+(rs ,s) |i3 1r 17—1:|°75
4rr 5

(6.6)
- 5 -5 - > o -
+1 1s5(rs)-Hi(rs,8)||3 1, 1,—=11|-7% $dS’

The second term can be readily evaluated by bringing out the r-dependent dyadic to agree with the
second term in (5.4) which combined with (5.5) gives that part of the magnetic-dipole field. However, in
the first term the dyadic is buried between terms depending on 7% . So let us consider another approach

by writing

:)(SC) - 1 R Sl B . .
H = 31417~ 1 [.-m(s) + possible higher order terms 6.7)

In this case the magnetic-dipole term is the leading term in a multipole expansion. As is well known, the
multipole terms are mutually orthogonal on a shperical surface of radius r (outside the target) (2, 11].

This orthogonality is in terms of the tangential (6, ¢) components of the fields which are expanded in



- -
vector spherical harmonics ( Q and R functions), in terms of which the dipole terms are the lowest order
for electromagnetic fields away from sources. The resulting integrals then effectively occur on the unit

sphere.

The tangential part of the field of a magnetic dipole on a sphere of radius r is found from (5.5) as

~ (sc)

Ty Ha (7,9) = ——= Tr-i(s) 6.8)
4nr

The transverse dyad (to 7 ) and various identities involving integrals on the unit sphere that we will use

here are discussed in Appendix B. As an example, if we think of a z directed magnetic dipole we have

ms) = s 1z
N 1 - - 6.9)
1,-Ha (7,s) = — 16 sin(8) m(s)
4r

Using three orthogonal axes (say ?x,?y,?z) the three magnetic-dipole terms are readily constructed.

We can evaluate these all at once using the form in (6.8)

Noting that any higher order terms are orthogonal on the unit sphere to such magnetic-dipole

terms we multiply both sides of (6.7) by Tr and integrate over the unit sphere S; to obtain

- [Tras} - e = -—5 R
4mr 3 4nr® 3
N ~
= %j?f : f{{TS(r's)xﬁ+(?s,5)Jx{3 _l)r_l)r—(?:]-z
4rr
S 3
) - 5 o] 2
+[1S(T’5 )'H+(T,5 ,5):![3 17’ lr— 1}- Tls }dsl}d51
(6.10)
1 © —- = 5o - 5 e o
= — [ [ 14| Tsto)xHes 90| x|3 1, 1, =1 |- 7% tdS; as’
4nr
51
1 = o
-—] {T’s@)-m(?’s,s)J r7s dSyds’
4nr
58

N
2]



4

Having reversed the order of integration in (6.10) we can evaluate the integrals over Sp first. The first

integral uses (A.3) to give
J.(Tr . {[TS(-T_)S ) X H)-{-(?s ,S)il X[B —1)7' —1)7' —?J . ?S }dS‘l
51
- -~
—?r X [3 —1_)7' Tr —(i_):l . T’S dS‘_[ . {_1)5 (?5 )x ﬁ.;.(?s ,5)}d$1

S A S e S S | - - S5 o5
{[—3 1,x% 1rjllr-r’s +1rxrls}d51 -IilS(T’s)XH+(T's,S)jl

Il
w
A

o - - - A - - = S
=13 Tx{ [ 1, 1rasif-rs+{ [ 1rdsypx7s bo| Ts(rs ) x Halrs )
51 51
= (6.11)
={—3i3’5‘i’x75 +%n?x?”s}.[?s(?”s )xﬁ+(?5,s)]

12 ~
- %”{_5 [15(r5>xH+(r5,s)J}

. The second integral over §y is more straight forward giving

j[‘l’s&’s ). He (75 ,s>}‘?,.?s ds,

e S S o -
=[1S(Ts)°H+(fs,S):I J.lrd51 . 7s (6.12)
51

8;[15(7‘5 )- H+(r5 ,5)}75

Substituting in (6.10) and clearing common factors gives

—)

1 r—
m( —EJ-V {1S(YS)XH+(TS,S):|d5' jl:ls(fs) H+(r5,5):|r5 ds’ (6.13)
) )

in agreement with (5.4).
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So, now by two different routes we have found the induced magnetic dipole moment as an
integral over the magnetic field just outside S. These can, in turn, be found from the volume integral
equations (Section 3, applicable to an isotropic and inhomogeneous targets), and the surface integral

equations (Section 4, applicable only to uniform isotropic targets.
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Magnetic Polarizability

Having found the magnetic dipole moment for an arbitrarily oriented incident magnetic field
(described in Section 2), we are now in a position to find the magnetic polarizability dyadic. For this

purpose, consider three orthogonal incident magnetic fields, each producing an induced magnetic field as

~ (h)
Hj Th — m (s) for h = X, Y,z (7.1)

where Cartesian (x, y, z) coordinates are used for convenience here. The coordinate origin (7 = 0) is

taken at some central location which, for symmetric targets, lies on an axis or point of symmetry.

Next form a dyadic incident field as
< © - - = - =
HOEHOl =H0[1xlx+1y1y+lzlz:l (72)

and a dyadic from the dipole moments as

- -0y L@
— y — — .
m(s) Mm(sy , M(s) , M(s) (vectors as matrix columns)

~ ()
ot

m(s)
-
= R’(s) (vectors as matrix rows) (7.3)

~(2)
farl
m(s)

= (r_;z-)(s)T (symmetric)

From the equation

"
0

(B

" (s) - [Ho Th}
(7.4)

~ - T

M) = ﬁ(s) . (symmetric)

we have

e
]



m(s) )Vi(s) [ J

1
r—
=

~T
| DOR |
xr

M) = Hlo #(s)

justifying the construction of #i(s) from either rows or columns in (7.3).

In some cases, one can reduce the complexity by judicious choice of coordinate directions since
the Cartesian coordinates can be translated to any origin of convenience and rotated about this origin. If
the target has point symmetry (rotations and/or reflections) the situation is significantly simplified [4, 6,
17, 18]. If the target has two (or more) symmetry planes, then choosm% two of the 1 h as perpenchcular
to these planes, and the third as perpendlcular to these makes the m  (s) parallel to the respective T h-
With this choice of axes, then H(s) is diagonal. Note that in such a case, one need not compute the
eigenvectors of Ms); they are known a priori. A similar situation applies to bodies of revolution
whether discrete as in Cpy for N =3, or continuous as in C,,,;. In addition, in such cases two of the

eigenvalues are equal (double degeneracy, requiring only two solutions of the integral equations).
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Scaling of Target and Frequency

For a general case of Q@) and 9(7) varying throughout the target volume we have the
integral equations (3.3) to describe the scattering. Setting the incident fields to zero gives equations for
natural frequencies and modes. From a more general point of view we can find scaling relationships for
frequencies in terms of the other parameters. Consider two cases: the original case (subscript 1) and the

scaled case (subscript 2). The original case has

;(sc)
E1 (71,9

— — 5 -
—s1Ho <Go (71,7D, 10D - -51(7'1,5)>

©
-5 <V160 (71,71)5 l:(ﬁl(?l)—ﬂo ?} . H1(71,5)>

8.1)

;(SC)
H1 (71,9

- , o =
—(ViGo(r1,71), Vi - H1(r'1,s)

- — S
+<V1Go (71,r’1)>5 T10r'1) - El(r’1,5)>

with the integrals above as volume integrals. The scaled case is like the above with the subscript 1

. replaced by 2.

In the scaling start with coordinate dilation

—
P2 = T (8.2)

which immediately scales other parameters as

V3 = 23 dV{ , Vo=x7'Vy

Go(F2,72) = 2{1Go(71,71) o
Scale the constitutive parameters as

G2(72) = 22 G171 . Ty(F2) = 23(73) (8.4)
With the magnetic field kept the same magnitude we have

—;_1)2(72,52) = ﬁl(_f)l,sﬂ , %2(72,52) = ¥4 %1(71,51) (8.5)
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applying to both incident and scattered fields. The frequency finally scales as

52 = X551
All the above x,, are taken as positive (and hence real).

Rewriting (8.1) for the scaled condition (subscript 2) and then substituting the scaling relations

(8.2) through (8.6) gives

~ (sc) - - 5 -
24 E1 (F1s) = 2P 2 xa 1591 uo<Go(7’1,r’1), B(r'1)- E1(r’1,s)>

- - ol 5 5
- X1 %551 <VlGo(71,r’1)>,<[753 Z)z(r'l) - U 1]Hl(r'l,5)>

_:)(sc) N N (8.7)
H1 (P15 = —<V1 Go(71,7'1), V’-Hl(r’1,5)>
- - S5 o
- X1 X2 X4 <V160(?1, r'1)x81(r'1)- E1(r’1,s)>
Requiring that these equations be the same as (8.1) implies
Hroxs=1, £8 -1, -1, pnm-1 (8.8)
These are satisfied provided
23=1, 25=——, 11 = (=25 11) 8.9)
X2 X1 X2 x

so that yp (coordinate scaling) and x7 (conductivity scaling) can be independently specified, giving x4
(electric field scaling relative to magnetic field) and x5 (frequency scaling). Note that the permeability
magnitude is retained constant in the scaling, i.e., L7y is kept the same “relative permeability” since 1y
(relating to the external medium) is assumed constant. Viewed another way, the 3 result implies that
s o a? is invariant to the scaling where a is some characteristic linear dimension of the target. Similarly,
the x4 result implies that Fac or E)/(sa) is invariant to the scaling. The magnetic-dipole moment and

magnetic polarizability dyadic scale in the well-known way proportional to ad.




"

This scaling can be carried further in an approximate sense if we assume that the permeability of
the target is large compared to py. Then the scattered magnetic energy outside the target can be

neglected compared to that inside. Setting pg = 0 for this case in (8.7) gives

X513 _
x4

, X1x2x4 =1 {8.10)

in place of (8.8). These are satisfied provided

1 2 1
-, 4=
X3 X2 X1 X122

25 = (= x5 22 21) (8.11)

2

Now suoa“ isinvariant to the scaling. This suggests that one define for the target

T = /,Loaz = characteristic time
u = characteristic permeability
o = characteristic conductivity (8.12)
a = characteristic distance (size)
. so that s7 is the invariant way to describe frequencies, including natural frequencies.

More generally, we can scale this way keeping

Uy = £ Characteristic relative permeability (8.13)
Ho

as a parameter which is fixed for a particular calculation. By choosing various values of p, one can
calculate sqT as a function of 4, where s is any given natural frequency. Also note from the form of G
(the internal-medium Green’s function) in (1.10), (1.12), and (4.9), that ¥ |7 -7 | scales as [51]1/2, again
giving the s7 combination in the surface integral equations for a homogeneous isotropic target. One can
also consider the solution for the canonical problem of the perfectly conducting sphere to observe the
same behavior. In this case the lowest order s,7 (negative) is of the order of 1, but with various higher
order s, T with | 547 | extending upward from this. For targets continuously deformed from a sphere we
can expect similar behavior, but different target topologies (e.g., a toroid) can give somewhat different

results.
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9. Scaling of Thin-Shell Target and Frequency

A special case of interest is a target with a thin metal shell as illustrated in fig. 9.1. In this case the
shell has a high conductivity o and may have a high permeability ©. However, the shell thickness d is

small, i.e.,

d<<a 9.1

Consistent with the MSI approximations, all permittivity is neglected as well as the conductivities of all

media except the shell. The media external and internal to the shell have permeability ug.

By a thin-shell target we mean one with shell thickness small compared to skin depth so that

spod? <<1 (9.2)

In this case, we can think of the shell as located on the surface S with equivalent sheet parameters to
represent ¢ and g. In this case, the natural frequencies correspond to L/R time constants where the

inductance depends on the Ioop area for currents circulating around the interior volume, but resistance

depending on the shell conductivity.

The surface electric current density as indicated in fig. 9.2A is given by

5 ;)(out) ;)(in) = -
Isx|H (75,5 —H (7s,9)|= ], (75,9 = ], (75,9
= (avg) =
=CuFs)-E (75,9 = h Es,(7s,5)

- - . .
] S (75 ,s) = surface electric current density on S

85(7)5) =d ‘?5(75) . ‘6“(75) . ?5(75) = sheet conductance 9.3)
~ (avg) - (out) ~ (in)
= - 1= - = - .
E (rs,s) = £y E (rs,s) + E  (rs,s)| (only components parallel to S significant)

>
1 -

« - -
15(7s) 15(7s) 15(7s)

transverse dyadic on S
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Fig. 9.1. Thin-Shell Target
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A. Electric current
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_ > ?out)
> o e D
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—_— %}in)

B. Magnetic current

Fig. 9.2. Equivalent Boundary Conditions for Thin Shell
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Note the use of the average electric field since the inside and outside fields (transverse components) may
be discontinuous by the surface magnetic current density. Similarly, the surface magnetic current density

as indicated in fig. 9.2B is given by

~ (out)

- S5 _:)(in)
1s(7s)x|E  (¥s,s) - E

(Ps,9)| = = 75, (75.9)

- :)(avg)_) S -
=-Cs,(7s) - H (75,9 = —h ] (P59

—
I s, (7s,s) = surface magnetic current density on §

85,1 (7s) = sLy(Ts) = sheet magnetic admittance (94)
(_L-)s(_r)s) = d?s(—r)s) . {(Tf(_r)s) - Up ?} . <T)s(-r')s) = sheet inductance
(in)

0 H (rs,s) + H (rs,s) | (only components parallel to S significant)

- (avg) ~ (out)
ﬁ (_T)s ,S) 1

n

Note here that we are concerned with the limit of small 4, and the above are only approximations.

. For the simpler case that the shell is non-permeable the volume integrals in (8.1) reduce to

S 5 -
E1(71,8) = -1 1o <GO(?1,?’51), Gy (75 ) E](r’51)>

S (9.5)

=
H1(71,s)

’

o = S5 -
<V160(?l/71) X GS] (r's 1 ) E1(r%s 1 )>
S
Tangential E now being continuous through the shell, we need not distinguish which side of S for the
integration. For our scaling as in the previous section we now have
d.Sé = Z% dsi , 652 (_;)52 ) = X6 (851 (_7)51 ) (9-6)
Rewriting (9.5) for the scaled fields (subscript 2) and applying the scaling relations gives

=
x4 E1(71,9)

o S5 -
— X1 X6 X4 X551 Hp <G0(_T)1,?s1) . Gsl (751)' El(7'51)>

s ©9.7)

S S5 -
H1(71,5) = 26 4 <vlco<7’1,7§1) x 651<21>-El(r'51>>

L 5
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This then gives the constraints among the scaling parameters
X1x6x5 =1, 262%4 =1

which are rearranged as

1
, x4 = — (=25 711) (9.10)

X6 X1 X6

X5 =

Sonow 7 scaling and Gs scaling can be independently specified to scale the frequency. Thus sG; a, or

-
better sugGs a, is now invariant to the scaling, as is E Gg, where G is some characteristic sheet

conductance. Now we have the characteristic time as
T = pg Gs a = characteristic time (9.10)

Here we can identify pga as like an inductance and Gs_1 as a resistance, giving an L/R time constant.
This is related to the properties of this structure as a shield, for which it is not skin depth in the shield, but
such an L/R time which dominates the low-frequency penetration of magnetic fields into the shield [14].
As Before, the lowest natural frequency s, is related to this and s,7 is of order 1. For non-spherical

shells one will need to use the various dimensions of the structure (different choices for a) to obtain these

lower natural frequencies.
As discussed in the previous section, the permeability magnitude is unchanged in the scaling.
Essentially, it is ¢/ pg or u, that is unchanged in magnitude (just moved 71— 72). In the present

context of a thin-shell target, our attention shifts from (,l_l)(_T)) to L5(75 ). Scaling via the volume

formulas we have

dy = x141 (9.11)
implying that T s, being proportional to d, scales the same way, i.e.,

Ty (Fs2) = 21 Ls;(Fsy) (9.12)

In terms of the characteristic size 4, then we have (uoa)—lLS invariant to the scaling, L being some

characteristic value of the sheet inductance.
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Pole Representation

As discussed in {3, 18] the magnetic polarizability dyadic has the SEM representation

XZ(oo) + ZMO, 1—\71,1 }\—/)Iag[s—sa]'1
a

M (s)

- - -
Mg « Mg =1, Mg = real vector
Mg = real scalar
s < 0 (all negative real natural frequencies)

M) = magnetic polarizability of perfectly conducting target (negligible (10.1)
field penetration at sufficiently high frequencies)

M = MO + 3 M B Mfs—s0]™
S pal

[ )

%)

D for non - permeable target

These various terms can be computed from the appropriate integral equations discussed previously.

In the context of the volume integral equations (3.3) we can write a supervector field (applying to
. incident, scattered, and total fields)

e it 5
(Fe(7,s) = (HT,s) , N, E(7,s
1= magnetic field
¢ = gne’ o (102)
2 = normalized electric field
N, = normalized scalar

The function of N, is to make the electric part comparable to the magnetic part, if desired. For example,

looking at (2.5) for the incident field one might choose

[sua]™
characteristic size of target

N,
a

(10.3)

il

which also gives the two parts in (10.2) the same dimensions.

The volume integral equations take the general form
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_:)(sc) (:)(V) 2
(Fg (7,0 = {(Xge() © (Fel@,s)

Vv

by appropriate manipulation of the terms in (3.3). Here we indicate the operator as a dyadic with
multiplication in generalized dot-product sense (for supervectors and supermatrices) for dimensional
consistency. Of course, the operator acts in the sense of integrals and derivatives over the volume

domain V. Separating out the incident and scattered fields gives

(:_)(V) :)(sc) ;)(V) ;(inc)
(lg ) 6(F-T)~(Xeer) @ (Fe (7)) = ((Xee@) ©(Fr 7,9 (10.5)
1%

Matricizing this in the usual moment-method form by appropriately zoning the volume gives

(EEUs) = (X @ (Fy(s)
[(%,m)‘(}?g}%“)ﬂ - Es) = (B (10.6)

noting the six field components for each spatial location. The integration and differentiation has been

subsumed in the form of the matrix elements which are only functions of s in this form.

The form of the solution is

- (sc)

— -
Er (79 = Znauh)(zﬁ}“)(?)) [s—s0]7"
[24 [24

+ entire function (10.7)

with the corresponding numerical form

(FEs) = Znaﬁ)h)(?,SSC’(ﬂ)a[s—Sa]_l

o

+ entire function (10.8)

Following the basic development for SEM poles [12] we have

36




(sc)
© (Fr (M

5=5g

- (V)
(Te,e8(7-7) - (Ke,e)0) > =02
vV natural modes

[(1,1,,,1)—(}251‘,’,21(5“))] CE), = (0y)

det([(ln,m)— (5(9,/,21(50, ))D = 0 natural frequencies

-
(Te@Ng © (Te,008F-7) = (R0 =0
5= left modes
- |4
(Ll + [ m) = R (500 = 0
N S ;)(inc)
(TePNg® (Xeer() @ (Fz (F.sq)
Me(Th) = — e v (10.9)
TPV © LRt © Feliha
5=Sg v

e Rym(sa)) - (B (s0))
L)y - % Kn,m()| - (FEg

s=Sy

= coupling coefficients

Here we have used the class-1 form of the coupling coefficients (no frequency dependence). This is the

appropriate form for computing the terms in (10.1).

From (5.1) we have in volume integral form the magnetic-dipole residues

(sc)
AL = 1 (Th) % 7x{‘5’(7)[N;1(5a)?2a (7)ﬂdV'
14

(10.10)
= (sc)
+| HO 9| Py, v
vl Ho
Forming the dyadic as in (7.3) we then find
<« 1 o = =
Ma = EE Mg = Ma Ma Ma . (1011)

. .. “ . . . P -
Diagonalization of Mg gives the orientation of M, s0 we can now choose 1} as
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=l

i
=l
Q

giving

(SC)
v

(10.13)

= ERCS
+| HGD _ 9|2y, ™av

. . =2 -
As discussed in Section 7, target symmetry can be used to find the orientations of the 1} a priori.

An alternate approach uses the surface integral equations (4.9) (together with (4.7) to put things
in terms of tangential fields just outside S). Then repeat the steps beginning with (10.2), noting that there
are only four instead of six field components to consider. In the integral equations, this can be handed by
use of 6T)s(_r)s . instead of _1)5(7)5 ) x. The volume integrals then become surface integrals with kernel
(?(!S} +(-)). For the matrix (numerical) form in (10.6) we have a matrix (X(S) (s)) resulting from zoning S
instead of V. This is followed through (10.9). The magnetic dipole moment is now expressed by surface

integrals of the magnetic field just outside 5, giving residues

NG = 11> ERCY
me = Tg(1h) Ejrs X 15(r>)xF1a (75 )|ds’
S

. (10.14)

(sc N

+J{TS(7S)' F1, (7% >Jrs ds’

)
The normal component can be found from (4.7) as
(sc) (sc)
= = 1
Ts(rs) - F1, (rs) = s 1s(rs)><[ “Hse) T2, <r5>}

(10.15)

(sc) _,

2 Vs l:.lS(Ts ) X ?26, (r's )}

n

SN (sg)

Following steps (10.11) and (10.12) we then have
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Ty = - - 50
My = % 1n - %j"s X [?s(r's)xlﬁa (7% )| ds’
0
S

(sc) 5
+j[‘1’s<?’s )« F1, (75 >} r’s dS’
S

(10.16)

In general, these integrals will have to be cast in numerical form for computation of typical-target

parameters.
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11. Concluding Remarks

As we have seen, construction of the magnetic polarizability and associated pole terms for MSI
can be accomplished in more than one way, depending on the use of volume or surface integral
equations. For the case of uniform, isotropic targets the two approaches involving, on the one hand
volume integrals of electric and magnetic currents, and on the other hand integration over the magnetic

field just exterior to the target, have been shown to be equivalent.

The reader should note the approximations involved when using these results to model
experimental data. Besides the basic MSI approximations for a quasi-magnetostatic analysis, other
phenomena may be present. Ferromagnetic targets may possibly be nonlinear (depending on field
strengths) and may have some initial magnetization. Furthermore, we have assumed for this analysis
that ‘Z(7) is independent of frequency, whereas we may need a more general ‘~ﬁ(7,s) to better account
for the magnetic properties. If one has such a better model of the permeability, this can be used in the

foregoing integral equations to obtain the various pole parameters.

As the reader may suspect, the present paper is leading in the direction of numerical computation
of the MSI parameters for various targets. These may be canonical targets (such as analytically calculable
shapes for accuracy comparison), or shapes approximating real targets of interest. This will require
matricizing the integral equations using standard moment-method techniques [7-10, 15]. Our present
plans are to first consider bodies of revelution due to the numerical simplifications associated with the

symmetry, while still being able to compute some shapes of interest.
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Appendix A. Some Useful Identities

Here we summarize some identities that are useful in understanding this paper. More extensive

lists are found in [13]. First we have the usual Cartesian (x, y, z) and spherical (r, 8, ¢) coordinates, with

- - - Y -
r=rly=x1x+yly +2z1l;
o - - - - - - - - - - - -
1=1x1x+ 1yly+lzlz=lrlr+1916+1¢1¢

= identity dyadic (A1)
o o o - - - - o
Tr=T-1,1r = ToTe + 1¢ 1p

transverse identity dyadic with respect to T,

Considering the coordinate vector 7 we have

VY = ? , V.7 =3 (space dimension) , Vx?:?))
V7.-7)=V02) =27, Vr = 1,(r=0) (A2)
V..i)r :Z

r

Some vector/dyadic relationships include

o O o —>T
1xu = ux1l = ——[l xu] (general antisymmetric dyadic)
UXIUXW|= U- | wov -0 w|=—-|wov-vw| u
- T T (A3)
[Ax?} = -UxXA

Involving the del operator we also have
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X

v[l’(?»?(?’)} = 7(7’)><[V

(?)} + () x[v x Z’(?’)}

—,
~|
el
x
'
~]
X
<
X
<l
N
+
jl
<]
ol
X
T_J
<l
xl

These further simplify if T takes on special forms (e.g., zero divergence).

There are the “Gauss’ theorems”

H
[vihav = [1ss) fFs)as

v S
J'v . TPV = j_fs(_r’s) . B(7$) dS
1% S
J'V x T(7)dV = j‘l’s(’r’s) x (7 dS
1%

S

and where

(A6)

where § is a closed surface bounding a volume V and suitable conditions are imposed on the derivatives

(A4)

(A5)




Ts €S (7 onS)

(A7)
-
15(7s) = outward pointing unit vector at 7s
These formulas are also extended to dyadics as
-, — A T JE Y

[vFrav = [TsFo) FFs)as

v S
[V A@av = [Ts(Ps) - AFsras (A8)
|4 S

J'v x ATV = J‘_l)s(_r’s) x A(Ts)dS
174 S
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Appendix B. Integrals over the Unit Sphere

Consider a closed surface S bounding a volume V, and a unit sphere with surface S1 bounding a

volume V7 for which we have

S = areaof S

S1 = areaof S1 =47

V = volumeof V (B.1)
V1 = volumeof V] = @nr
Then we have
j is =5 , jdv -V
S |4
(B.2)

J.dS 51 =4rm , jdV=V1=§7r
S v

Including any constant scalar, vector, or dyadic in the integrand of such integrals merely multiplies such

a term by the above areas and volumes as appropriate.

Using the divergence theorem we have

[71. Ts(has = [v.71Prav ®3)
S 14

Taking the choice of constant ¥ we have

?1 = constant vector
V.71=0 (B4)

0

71 - j'fs(?) ds
S

o . o . 2 D
Letting ¥'1 be any vector, say successively choosing it as unit vectors 1x, 1y, 1z gives
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j‘fs(?) s =10 (B5)
S

On Sq (of radius 1 centered on 7 = _6)) we have

- -
15(7) = 1,

(B.6)
j‘ﬁ(?’) is =10
51
A related dyadic formula is
[vB2Prav = [TsHwa(Pras (B7)

\ %4 S

Taking the choice of T2 as 7 we have

al
N
M
~

. vy =T (B.8)

giving
j?s(?)? s =v T (B.9)
S
On 51 we have
Ts(F)=1,=7
B.
T, Trds = 2297 10
3
51

Combining (B.10) with (B.2) gives



o - - - - = - -
Trds= [[1 - 1r1,|dS= [| 1o 1o+ 15 1p|ds
51 51 51
= 4r 1 —irr?:ﬁn(?
3 3

Using similar manipulations substituting (7 . 7)™ for scalar functions and (7 . 7)" 7 for vector

functions, various other results can be obtained.
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Appendix C. Some Integrals over General Volumes Bounded by Closed Surfaces

From the various identities in (A.5) one can apply the “Gauss theorems” in (A.6) to obtain some

useful integrals. From the second of (A.5) we have

[7av = jv.[?ﬁ’)‘r’}dv - J-[V.?(_r))}—r’dv
v v \%4
[ S e G U R N Y
=I[15(r5)-v(r5)} 7s dS — J[V-v(r)}rdv | 1)
S v

= _[Fs(‘r’s).?;’(?’s )}7’5 dS if V.2(F) =0
S

From the third of (A.5) followed by the second of (A.3) we have

j? . [V?(_r))}dv = -J'v x ':_r)x’z?(?)}dV+J‘V . {?(?)?}dv
14 \%4 v

—3j?(7’)dv
174

—ﬁ%(%)x[‘ﬂ x T(7s )} s + j[‘l’s(?s).?(?s )} P dV

S S
5 C.2
—3'[5)( r)dVv 2
Vv
=j[‘1’s(‘r’s) . ?s]?<?s>ds —3j?(?>dv
S v
From the first of (A.5) and (C.2) we have
J"r’ x {Vx?(?)}dv = J’V[?Z’(?)Jdv—j? . [V?(?)]dV—J?(?)dV
1% 1% Vv 14
_’
= j {7’5 D7 )} 15(75)dS —J.[_l)s(_r)s)-(?s >} T(7s )d5+2j?(7)dr (C3)
S S 14

— -
= [ x[’l’s(_r’s) x v(7s )st +2fo(Dav
S 14
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