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Abstract

This paper considers the direct construction of a pulse to annihilate the late-time
response of a target from the a priori knowledge of the target natural frequencies as in a target
library. In evaluating the late-time residual after application of such a £-pulse one needs to
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1. Introduction

An important type of target identification utilizes the natural frequencies of the target,

these being poles in the complex-frequency s-plane as expressed in the singularity expansion
method (SEM) [11]. Since the location of these natural frequencies sy in the s-plane is aspect

independent (independent of the properties of the incident field such as direction of incidence
and polarization), this simplifies the identification problem to the comparison of the target
pole patterns stored in some target library. There is also information in the pole residues (e.g.,

coupling vectors), but that is another matter.

In order to implement the pole pattern as a target discrimination scheme one needs some
scheme to find the sy in experimental data (scattered fields), either explicitly or implidtly.
Some of the early schemes used what is referred to as the Prony method in which one fits a sum
of dumped sinusoids to a waveform. This had various limitations which have been overcome to
some degree by what is referred to as a matrix pencil method [12]. These and related techniques

are explicit in that they determine a set of s from one or more waveforms which are then

compared to the target library.

In contrast, implicit methods do not generate a set of s from the data, but utilize
predetermined sets of s, for various targets which are then manipulated with the data in some
way which transforms it to a form in which the discrimination can be more readily performed.
Those used to date have used temporal functions with two-sided Laplace transforms with zeros
corresponding to the sq (poles) of preselected targets. Convolving these with the target
impulse response removes (annihilates) the late-time response for the properly chosen target.
These go by various names such as K-pulse [9] and E-pulse [10] and are discussed in [11]. In the
present paper we go further into this latter type of target identification.




Form of the Response for Electromagnetic Singularity Identification (EMSI)

Consider an incident plane wave of the form

~ (inc) - (inc) 25
- = 7. - 1; -
E @o=Rfelpe?i7 , E @o=E pfjt-——
- -
1; = directionof incidence, 1p = polarization
y = 2 = propagation constant, ¢ = [us]_i/ 2 (2.1)
c

-~

two - sided Laplace transform (over time ¢ )

s = Q+jo = complex frequency or Laplace- transform variable

where the medium of interest is considered lossless and dispersionless (e.g., free space). The far

scattered field is given by
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The coordinate origin (¥ = 0) is chosen for convenience near or even within the target {(such as

the center of the minimum circumscribing sphere [3]). We also often have the case from

reciprocity
S5 o ST 5 o
A(lo, 1i;s) = A (=1i,10;9)
T (2.3)
S - HT - 5 S >
Ap(1i,s) = A (—1i,1i;s) = Ap(1i,s) (symmetric in backscattering)

As discussed in [3] the scattering dyadic can be written in SEM form (class 1)



S - —(S—Sa)t,—) -5 5 o
A1y, 14,s Z cal-10) ca(li)
~ 5-sg
+ possible entire function
S e 5=Sadtio - - o
Ro(Ti,9) = Z calli) calli)
+ entxre function
_ 2.4)
«— — - —
Ap(1i,1) = Y ult—1;)e’at a1 calls

a
+ entire function

{; = initial time or turn-on time

For the backscattering dyadic (in contradistinction to the currents induced on the scatterer) an
entire function (no singularities in the finite s-plane) is definitely required. In time domain
(meaning inverse Laplace transform of the entire function) this is a time-limited function
related to transit times on the body. Note that the analysis in [3] is for the case of finite-size
perfectly conducting scatterers (also allowing certain types of sheet-impedance loading).

Defining

Ly = maximum linear dimension of target

(2.4)
o = %

it is shown in [3] that in a worst-case sense for backscattering there is a time window of length
Iy, beginning with the first return from the target, for which the pole series does not converge,
and hence cannot be used as a valid representation in this time window. One can also define a
discrimination time {7 as a minimum time for a target identification based on the time after
the first signal return that information from everywhere on the target can reach the observer.
For a “transparent” target, defined such that such information can travel in straight lines

(allowing some attenuation) at the speed of light, ¢, we have for backscattering

g =2ty = 2ﬁ (2.5)

So even for times greater than fy there is some ambiguity in the discrimination process in the

sense that different shapes (impedances, etc.) can be ascribed to the target, implying a

different set of s, and associated modes, but giving the same temporal response up to a time {.




For non-transparent targets such as perfectly conducting targets, the time required to observe

the far side of the target in backscattering is increased so that (2.5) is rewritten as
g 2 24 (2.6)

ie., as a bound. Given a particular target one can of course calculate this minimum
discrimination time maximized over all directions of incidence. Furthermore {7 might be

indexed as #4,, , i.e., a separate value for each mth target type.

Another important case for EMSI with wavelengths of the order of target dimensions
concerns targets buried in soil. This introduces some new difficulties in the identification
problem for both perfectly conducting [4] and dielectric {7] targets. For not-too-conducting soil
one can operate in the “high-frequency window” and utilize some approximate scaling
relationships to allow for the dependence of the s on the external-medium parameters. This
complicates the calculation of the {5 and even introduces branch cuts for which one should

allow in the discrimination scheme.

While the present discussion has been in the context of the electromagnetic fields, the
concepts can also be applied in the context of acoustic and elastodynamic fields [8]. For acoustic
singularity identification (ASI), particularly if the response is dominated by p-waves in the

external medium (e.g.,water), similar considerations concerning discrimination Hime ¢4 apply.



3. Form of the Response for Magnetic Singularity Identification (MSD)

For highly, but not perfectly, conducting targets there is a set of natural frequencies sy
which are based on diffusion of fields in the target, and scale as proportional to (;10':12)—1
where d is some characteristic linear dimension of the target and o is the target conductvity
(high as in the case of typical metals) [5,6). The external medium is assumed to have
permeability g and conductivity typical of soil or water, and as such does not significantly
affect the target response in the low-frequency range. The target permeability may be g or
some higher permeability (e.g., iron), and this also affects the natural frequencies.

The incident field for this purpose would generally not be a plane wave as in (2.1), but
the near magnetic field of one or more loops. Skin depths in the external medium for the low
frequencies of interest are assumed large compared to all distances of interest. It is then the
induced magnetic dipole moment m(t) that one uses for the waveform to be fed into the target-
discrimination process. This is related to the magnetic-polarizability dyadic of the target via

. {(inc)
_)

€ =Me) B .- 1)

where the incident magnetic field is evaluated at some convenient location in the vicinity of

the target. The scattered magnetic field is

;)(sc) 1
H (7.5 = ——3—{

4rr
“ - = - -
1 = 1x1x+1y1y+ 1 = identity dyadic (3.2)
- -
17' = -T— ’ T=l_7?l
r

where 7 is the observer position measured with respect to the target.

The general form for the magnetic polarizability dyadic is [5,6]

H( )=I\'(:)I ZMaMaMa [5 Sa] -1
()= M=) 3 )+ 3 MMa Ma e'u(t)
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sg < 0 , ie, real and negative

- -
Mg * Mg =1 , Mg = teal vector , Mg = real scalar

(=) (=)

S 3
Ma(=) = Y M) Mo Mo
v=1 -

>(=) =) (3.3)
My, * My, = 1,4, (orthonormal eigenvectors)

Mg”) = real eigenvalues (non positive, not necessarily distinct)

—)(”)
My = real eigenvectors (three)

This is the form for the delta-function response. One can also use the step response which takes

the form

% ﬁ(s) =

0 | =

;\—’I)(O) + 2'&:‘& A_/f)a X)/Ia[s-—sa]_l
a [#

t -
L d > - -
[M()ar = M) u(t) + 2 Mo M et ufy)
Sa
a

- 3 (0) -, (0)
S - —
ME) = S MO My Mo
v=1
-0 (0 (34)
My, - My, = 1y, 4, (orthonormal eigenvectors)
M1()O) = real eigenvalues (non negative, not necessarily distinct)
—(0)
My = real eigenvectors (three)

The DC (zero frequency) polarizability applies only to permeable scatterers characterized by
‘U(7) different from Ho T (free space, or more generally, the external medium).

Returning to the subject of discrimination time {7 discussed in the previous section, in
the present context (MSI) the problem is considerably simplified. On the present time scale
(s~ ! associated with diffusion in the target) transit times across the target (as well as to and

from the target) are neglected. Se we can write

g =0, (3.5)



i.e., just a little larger than zero. In (3.3) the entire function contribution is §(¢), but in practice
will have some small non-zero width consistent with (3.5). One can also use the step response in
(34) for the discrimination which has no entire-function contribution, but has an additional

(and useful) pole ats =0.



4. A Simple Way of Constructing of a {-Pulse

Consider a sampling pulse f;(#) which is to be convolved with the data. This can be a
filter, say to remove high-frequency noise, or whatever. For convenience this can be normalized

as

[fottrat = 1 @1

unless one wishes this pulse to have zero area. This can be used as a basis function, such as a

subsectional basis function on an interval from 0 to Tg as

—1

for 0 <t £ Tq

fn = {70 for 0= 0 (4.2)
0 otherwise

Here Tp would be a sampling interval and such a basis function is often used with K/E pulses.

Consider an elementary pulse (an annihilation pulse)

ay(t) = 8(t) - 570 5(t—Tp)
ay(s) =1 - els=s1To (4.3)

51(52) =0

where Tp > 0 is any convenient time (including possibly a sampling interval). Convolving this

with an elementary target response e>¢'u(t) for any single pole gives zero after time Tg. i.e.
ag(t)o [esztu(f)] = e [ult) —u(t-Tp)] (4.4)

This is fine for a single pole with 5, real (as is the case for all poles in MSI). In a more general
case (e.g., EMSI and ASI) s5; can be complex. One can generalize one’s thinking to allow complex
temporal waveforms, or recognize that such cases come in complex-conjugate pairs. In such a case

we can associate

sy = 55 (4.5)



and then form

dy(s)ag(s) = {1-8[51—51%] [1—3[51'-5]%} [1-45!"5]%] “.6)

which can be used to annihilate real valued waveforms of the form [a St 4 a”esl't] u(t) after a

time 2 Tg.
Using this procedure one can construct a pulse with zeros at
s=sy for £=1,2,...,L 4.7)

for L even or odd, including both conjugate pairs and individual poles on the negative Re[s] axis

of the s-plane. Defining for convenience

Sy=5;Tg , S=sTy , X!Eesl , X=¢° 4.8)

we have

,D_::l
&
Il
—=
LY}

4(5) = IL_[[l—X, x|

=1 £=1
L

=Y Ax"
n=1

Alt) = l(_)l ay(t) = 91 [8(t) - X8(t-Tp)]

L

= ZAnﬁ(t—ZTo)
n=0 :

Properly including conjugate pole pairs, all the A, are real.

These coefficients can be explicitly calculated as

10




Ag =1

L
A= DX,
£=1
Ay = z X 4D X ey i.e., sum over all pairs with distinct indices
all pairs
D= ,@
Ay = z X 4D X el X £ i.e,, sum over all ntuplets withn distinctindices (4.10)

all distinct
ntuplets

N
2.Xe
=1

AL

The products are the combination of L objects taken n at a time without repetition [13 (Appendix
O)]. All such products are summed for each n. So we have all the required coefficients to

construct A(t) for a given set of natural frequencies without inverting a matrix. Furthermore, all
of the A, are real since A(?) is real, even though the X, can in general be complex, since they

are included in conjugate pairs. Note that if we set all the X, = 1 we obtain the binomial

coefficients for the A,,.

Now recall our sampling pulse f;(¢) toform

L
E(t) = fs(t) o A(t) = D An fs(t-nTo)

n=0

L
55(5): fs(t) o Aft) = ZAn fs(t=nTp)

n=0

(4.11)

where we have chosen the symbol ¢ (pronounced ksee) for this late-time-annihilating

waveform (not being sure of whether to use K or E). Note in this form that the A, are

independent of the choice of fs(t) which can be chosen for various useful properties.

Relating this form to previous considerations [11], enforce the L zeros as

L
Alsg) = D Ag X;7=0 for £=1,2,..,L (4.12)
n=0

giving the matrix (L x{L+1)) equation

1



0 1 .. oxL| |4 |0
%2 % Xm0 =, (4.13)

which, by moving the first column (all elements as well as Ag being 1), gives

-1 L

' = |, (4.14)
-1 1

X[ o e X AL 1

so that the matrix is now square (L x L).

Solving for the A, requires that this last matrix have an inverse. This means that we

must have L independent rows and L independent columns. This matrix (of the Vandermonde
type) then must have distinct X;. For real 5; (as for MSI in Section 3) this requires that all the
54 be distinct. Turning this around, under what conditions do distinct 5, give non-distinct X,

i.e.

Sy Sy

Sl = o2
Re[Sll] = Re{Slz] (same damping) (4.15)
Im[Sz]] = Im[Slz] + 2mr {m = any integer)

Noting that a complex pole pair has

Qyp + jog = Q4 = Joy, (4.16)

1

and applying (4.15) to the case gives

0y Ty = wy,To + 2mrw

&)ngo = _mlzTO = mn 4.7
mir
Ty = —
0 g,

12




The smallest Tp implies m = 1 and maximum w,. This relates to the “natural” E-pulse if we
have L poles = 2N poles or N pole pairs (neglecting poles in the negative real s-axis), and the
duration of A(#) is just (for L + 1 delta functions)

LTy = 2NTy = 2% _ (4.18)

max Wy
<

This ties our present development to previous considerations [11]. Note, however, that in (4.12)
if we have, say, equal X, and X, , then thereare only L (not L + 1) equations when one goes to
the matrix in (4.13). So the A, are still uniquely determined as in (4.10) whether or not all the
X, are distinct. The “natural” E-pulse occurs when an g,(#) as in (4.3) annihilates more than one
pole, indicating that there are two values of ¢ giving the same a,(f), one thereby being
redundant.

13




5. Application of {-Pulse
The £-Pulse has a time-duration

tg =.LTg + {4

ts

time duration of f(t) (e.g., To for subsectional basis function) (5.1)

When applied to a target impulse-response waveform containing the target natural frequencies
Sg as its zeros, the late-time response becomes zero (except for noise). The time at which this
occurs depends on the target discrimination time and the duration of the {-pulse. The &-pulse
has a duration proportional to L, the number of natural frequencies used in its construction.
While targets generally have an infinite number of natural frequencies, only a finite number,
the important natural frequencies are used in practice. So it is only an approximation to regard
the late-time response to be zero after the application of the {-pulse due to this truncation. Of
course, it is necessary to have such a truncation of the ¢-pulse so that it does not have an

infinite duration (for fixed Tp > 0) and thereby remove the concept of a late-time region with

ZETO TeSponse. _
The ¢-pulse need not only have zeros at target natural frequencies; others can be added

for convenience. A transient radar will transmit some incident waveform which is not a perfect
delta function (finite height, non-zero width, zero time integral (antennas not radiating DC),
etc.), or the waveform might be quite different from the delta function. The target impulse
response can be recovered by deconvolution techniques, but of course only approximately so. An
alternate technique w-vould be to construct a {-pulse which anihilates the late-time portions of
the transmit and receive impulse responses, and combine this with the ¢-pulses for the
individual targets. The £-pulse can also incorporate some noise filtering by choice of f(2), to

remove high frequencies beyond some frequency of interest. Inclusion of a zero at s = 0 in the ¢-

pulse also serves as a low-frequency filter.

Sections 2 and 3 have considered the target discrimination time f7. Times (after initial
backscatter) need to be greater than this to establish the particular set of s, characteristic of a
particular target. For EMSI this is bounded below by 2ty where {p is the transit time for the
target maximum linear dimension. For MSI this is a negligible time compared to the diffusion
time through the target. For some set of N targets we have N sets of s and N corresponding ¢-
pulses which we can designate £, (t). Corresponding to this we have durations tgﬁ as in (5.1).

Then we can define

14




T, = t'fn + i (5.2)
giving a time interval (after first signal return with worst case aspect) after which the &,(1)
will annihilate the late-time of the target impulse response. We can also find the longest such
time as

Tmax = max Ty (5.3

1<n<N

Let f,(t) be a target scattered waveform which has been processed to remove the radar
transfer functions (to some extent), and which presumably contains noise. Then form for this mth
target (m =1,2,..., M)

(5.4)

As illustrated conceptually in fig. 5.1 we have some waveform which continues on beyond Tpy.
When operated on by &,(f) the late-time behavior (f > Ty;) is dramatically different

depending on whether ornotn =m.

One way that one may wish to quantify the judgment of which'-target is present is by

forming

[

[ tsxmax)

B2 mlt)at
Tﬂ

t](_lmax)

JP,%m(t)dt
|0 (5.5)

ﬂ}',l,,,, (t){u(t ~T,)- u(t — {max) ﬂ
]

which is a kind of 2-norm evaluation of the residual (energy relateq). Since f,(1) is assumed to

0
ug

2.t

begin at f = 0 for present purposes, negative times are excluded from the integrals. We also need
to truncate for times greater than $3"® to avoid an infinite value due to integrating the
squared noise out to e. An optimal choice for £73%) concerns when the residual from fm(t) (after
filtering by &,(t)) becomes less than the remaining noise (as filtered). The choice of Ty isas

previously discussed. Then we find

15
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Ui m = min Uik,
fiin = value of n achieving this minimum (5.6)

it

value assigned to m

If there are other m approaching this minimum. i.e., other US,OZ,, / Ul(.gl?nm not too much greater
than one, then there is some uncertainty in our choice of m for the correct target. At this point

one may wish to introduce probabilistic estimates.

An alternate definition of Uy ,, might be

F m(t) e 2 u(t

2,t

In this formulation the late-time contribution is not abruptly cut off, but is weighted by a
decaying exponential with a time constant (width) #,,. This allows one to weight the late time
less as one goes out in time and only noise is left. One might choose ¢, as comparable to the

decay constant of the longest decaying pole (largest -Qzh of significance. Yet another

definition is

u@ = 2! (5.8)

This gives a stronger weight to the late-time regime used for the target discrimination.

17



6. Use of Window Laplace/Fourier Transform to Evaluate Late-Time Residuals

Instead of considering the “total energy” remaining in the late-time interval as in (5.5),
one can look more in detail in this time interval by various transforms. The window-Laplace

and wavelet transforms use a triwave-transform kernel [14] of the form

1 i)e‘“ , >0 , i real
tw tw

complex frequency (6.1)
time shift

time dilation (width of window or wavelet)

«
fl

ts

tw
An interesting form to choose for this for present purposes is

5(¢) = e"gu([) , { real
Fo)ac - 1 62)

With this kind of normalized window function this is appropriate to think of as a window

Laplace transform.

Apply this to the filtered waveforms as

Fym(s.4s,ty) = J.Fn,m(t)——e o ylt—t)e (6.3)

As one increases ts from zero, we first have the contribution from the large response for all

targets. As f; passes Ty, the contribution to the integral in (6.3) should drop for n = m by

comparison to other n # m. Setting

s = ja) (6.4)

we can have the phase-space diagrams as illustrated in fig. 6.1 where we plot in a rough
illustrative sense th_e magnitude of the transform versus both @ and f; (for some selected #).

For s > T;; and the correct choice n = m we have noise, whereas for n # m we have poles from

18
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Fig. 6.1. Phase Space for Target Discrimination (Merely Nlustrative)
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the target and zeros from the filter appearing with the noise. This may be a more sensitive
discriminant than a simple 2-norm of the late-time, but one would still like to reduce this
information to a few numbers (ultimately from a computer) that distill this phase-space

information, say by looking at peaks (and perhaps valleys) in the late time.

There is still the question of normalization for better comparison of the F, ,,(t). One

choice might be the 2-norm denominator in (5.5). For present purposes one might define a

normalized transform related to (6.3) as

: 1

~ 1 —
FTE?YZZ(SItSItw)= n,m(t)t_e tw u(t Fn,m(srtsrfw)
w

1 (6.5)
t t

1 & P 1 i
n,m(t)ge twu(t) = J’I'Fn,m(t)lge twu(t)dt

1t

The 1-norm is used to make the result dimensionless, but other norms could also be used. A norm
is desirable to avoid a possible zero denominator. Note the use of the same exponential decay

in the denominator (avoiding a discrete late-time cut off) as in the numerator.

The window width f, is a parameter available to us to choose for optimal results. It
should be comparable to or somewhat larger than the decay time of the dominant target
resonances (those of significant amplitude which last for the longest times). However,

should not be too large so as to reduce the influence of the late-time noise (when the target

information is negligible).

At this point let us note that this phase-space view of the late ime may be more
appropriate in the case of EMSI for which we have large jw, parts of sy which can carry over
in late ime. For MSI with only g parts of sy, resolution along the jw axis may not be too
useful. Note that if we set s = 0 in (6.3) and (6.5) then the normalized transform in (6.5) begins
to look like (5.8) except that different norms are used the present numerator is a linear
operation on the filtered waveform. With s = 0, this leaves two parameters #;; and {5 which
one might also use. This can be viewed as a wavelet transform with t;l (frequency like) for the
vertical axis and #s for the horizontal axis to give the phase space [14].

Additional properties of the transformed filtered waveform can be found by manipulat-

ing (6.3) as

20




d

= st 2 [tz
Fﬂ,ﬁl(s'tS'tw)=et : JFn,m(t)“(t_ts)e—[s+w][ s]dt
w
- (6.6)
—st. = 4
___et s JFn m(t+t5)u(t)e-{s+tw]td
w

This effectively replaces s by s+ t;,l in the transform. With s = jo this is like looking off in the
right half s-plane a distance o). As the sampling pulse width {p is made larger and larger
the Fourier transform (s = jw) of the late time (after 5) is pushed closer and closer to the jw

axis. The factor e /®s in frontisa phase shift with magnitude one.

At this point we can note a connection between the window-Laplace/Fourier transform

and the time-domain form. Considering the energy-related 2-norm the Parseval theorem gives

1/2

F"""(jm'ts’tw)ﬂz,w = Jl-‘En,m(jmrfs,fw){z do

o t—t 2
= 27zJ' Fn,m(t)—;— e tw u(t—tg)| dt
—o w 6.7)
) t—tg
=202 ()t fo (-t

w

So integrating the magnitude squared of the transform over all w gives the integral of the
square of the late-time ({5 = Tp;) weighted filtered waveform as in (5.8). In this form 2-norms

are appropriate, including the normalization.
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7. Generalization to Dyadic Waveforms

Depending on the design of the radar, one can have more than one waveform from a
given target in backscatter. One can, of course, use multiple copies of the same waveform
(stacking, same polarization). Here, however, one may have two polarizations (h,7 radar
coordinates) in transmission combined with two in reception to establish the 2 X 2 scattering
dyadic (only components transverse to ?i ) for EMSI as in (2.2). Since the natural frequencies s,
are aspect independent (i.e., are the same for all directions of incidence and polarizations),

then the four waveforms inherent in the scattering dyadic operator all have the same spset.

So form
« « o
—I':n,m(f) = én(t) i Abm(1i,t) o)
Frm(s) = Enls) Kom(Ti,5)

with subscript m for the scattering dyadic operator (impulse response) of the mth target
(subscript m) analogous to (5.4). Then the norms used in (5.5), (5.7), and (5.8) can be readily
generalized to dyadic functions [1, 2]. Furthermore, the transforms used in Section 6, being scaler
linear operations which commute with dyadics, can also be directly appiied to {7.1). In phase
space (as in figure 6.1) the magnitude of the transform is readily replaced by the 2-norm in

matrix sense. While (7.1) is defined in terms of backscattering, it is readily generalized to

multistatic scattering.

For MSI as in (3.3) or (3.4) we deal with SEM representation of a 3 X 3 magnetic-
polarizability dyadic (in general symmetric). Depending on the type of experimental data
available one may have some or all of the components of this dyadic available for analysis. So

form (to the extent components are available)

[

R
En(t)e M(D)

>
Fn'm(f) = J07' (7.2)

t <>
AOP J' M) dr

—co

\

similar to (7.1). The late-time evaluation including transforms then proceeds as discussed

previously.




8.0 Concluding Remarks

There is still a Iot to be considered. Noise is an obvious limitation. To supress the
effects of noise one can filter out frequencies outside the range of interest. By enhancing the
transmit waveforms in the frequency range of interest one can increase the signal-to-noise ratio
for the frequencies. The receive waveforms then need to be deconvolved to produce an
approximate delta-function response (or some other convenient form such as step-function

response).

Another subject of interest is a possible adaptive ¢-pulse. In the case of metal targets
(approximated as perfectly conducting) buried in soil there are scaling relationships for the
natural frequencies [4]. If one knows the £ and o of the soil (say from measurement using the
same radar) then one can alter the A, coefficients by the scaling relationship. Another
approach would consider the approximate affine scaling of the s; (in a simple soil) which
preserves the pattern of the s, in the s-plane, and iteratively adjust £ and o to achieve the
late-time annihilation. For dielectric targets in the soil the problem is yet more complicated,
but some asymptotic formulas for the s, movement in the s-plane may be helpful [7]. This
problem of the movement of the s, in the s-plane due to the variabih'ty of the external-
medium constitutive parameters is a significant one, perhaps indicating that a quite different
approach to the target identification (say explicit instead of implicit) may be useful.

With all of these problems to be addressed (as well as others as yet not identified)
there is clearly much to be done, both theoretically and experimentally.
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