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Abstract
- Past studies of the penetration of EM energy into a shielded system have been
hampered by a lack of adequate coupling and penetration models, as well as by
uncertainties in many of the parameters which define the problem geometry and electrical

configuration. This note suggests a methodology for estimating the internal responses of a
system, together with an estimate of the importance of the various problem parameters.

The report is divided into two parts. Part 1 summarizes an analysis technique that
may be used for electrically complex systems. This is based on the topological view of the
system and permits the development of an interaction sequence diagram in the usual
manner. The response at a particular observation point is viewed as a function of the
many parameters of the problem. Suitable partial derivatives of the response are taken
numerically to define the response elasticities—quantities that provide a measure of the
importance of the various parameters on determining the total response. In addition, a
Monte Carlo computational scheme is suggested for determining the statistical nature of
the system responses, due to uncertainties in the system parameters.

Part 2 illustrates this suggested methodology by considering a simple hypothetical
system model. The elements of the model that are used are discussed and justifications for
using transmission line theory at high frequencies is offered. Typical results are presented
to illustrate the responses of the system to a lumped transient voltage source excitation on
a line entering the shielded building. :
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PART 1

ANALYSIS TECHNIQUES FOR ELECTRICALLY
COMPLEX SYSTEMS

1. INTRODUCTION

For mission-critical or otherwise sensitive systems, it is frequently necessary to
know its possible responses to external electromagnetic (EM) excitations. Such EM
stresses can occur from natural lightning, man-made electromagnetic interference (EMI)
sources, nuclear electromagnetic pulses (NEMP) arising from a nuclear detonation, or
from high-power microwave (HPM) sources. The knowledge of the system response to
this- stress is useful in performing assessments on the system, in developing hardening
measures if needed, and in providing information and knowledge for future system

development.

For highly complex systems, such as an aircraft or a ground-based communications
facility, the most reliable method for evaluating system responses is by testing. In this
manner, the actual EM environment (or a suitably simulated environment) is applied to the
system and the responses of interest are noted. Given the relatively large expense involved
in system-level testing, however, a common alternative for estimating system responses is
to use analytical and numerical methods. While these models are inherently limited in their
accuracy, they do provide the flexibility of performing sensitivity studies and statistical
calculations that are usually not possible with experiments. Thus, even though analytical
models are inexact, they provide very useful information and are frequently used.

This note discusses some of the modeling techniques that may be applied to
electrically large and complex systems. Part 1 of the note concentrates on aspects of the
overall modeling, which is based on the concept of electromagnetic topology. In this
discussion, alternate ways of calculating and viewing system responses are suggested.

In Part 2 of this note, the modeling concepts detailed in Part 1 are applied to a
simple example involving conducting wire penetrations into a shielded enclosure, or
building. In this example, a fast-rise external EM stress is considered, and as a result,
there is a significant high-frequency content in the excitation spectrum. The implications
of this on the internal coupling model are discussed.




2. TRADITIONAL ANALYSIS METHODOLOGY

The analysis of electrically large systems presents a true challenge, not only
because of the complexity of the system, but also because of the different ways that EM
energy can interact with the system, including the mechanisms of inductive and capacitive
coupling, EM radiation, current and charge propagation on conductors, aperture
penetrations, diffusion through imperfect conductors and cavity-mode resonances.

Early attempts at developing analysis models for such systems were hampered by
not having a structures way of decomposing the system into smaller, simpler parts. This
led to models with errors frequently exceeding 30 dB when compared with experimental
results'. In an attempt to decrease these errors, investigators realized that for many types
of systems, there may be several layers of conducting surfaces which shield the interior.
Known as the “onion” concept of shielding?, this idea was refined by Baum® and Tesche®,

and later formalized in the literature™S.

2.1 TOPOLOGICAL CONCEPTS

The idea behind the topological decomposition of a system is really quite simple:
the system is examined for the principal shields or EM “barriers” that keep the energy
from entering the system. Various imperfections in these shields are noted and
categorized. On this basis, a signal flow diagram is constructed and an analysis of the
behavior of EM signals propagating along this signal pathway is performed to estimate the
internal responses. The elements of this procedure are summarized below, with a concrete
example of these concepts being deferred until Part 2.

2.1.1 Topological Diagram

The first step in the model development is determining the topological diagram of
the system. This is a description of the principal shielding surfaces in the system and their
interrelations with each other. Usually, the choice of the shielding surfaces is evident, as

! Carter, J. M., and W. L. Curtis, “Common Mode Model Development for Complex Cable Systems”,
Boeing Company, AFWL-TR-74-60, 1974.

2 Ricketts, L. W., J. E. Bridges and J. Miletta, EMP Radiation and Protective Techniques, John Wiley and
Sons, New York, 1976.

3 Baum, C. E., “How to Think About EMP Interaction”, Proceedings of the 1974 Spring FULMEN
Meeting, Kirtland AFB, April 1974.

“ Tesche, F. M, et. al, “Internal Interaction Analysis: Topological Concepts and Needed Model
Improvements”, Interaction Note Series, IN-248, October 1975. -

5 Tesche, F. M., "Topological Concepts for Internal EMP Interaction,” JEEE Trans. AP, Vol. AP-26, No.
1, January 1978.

¢ Baum, C. E., “Electromagnetic Topology for the Analysis and Design of Complex Electromagnetic

Systems", pp. 467-547 in Fast Electrical and Optical Measurements, Vol 1, eds. LE. Thompson and L.H.
Luessem, Martinus Nijhoff, Dordrecht, 1986.



in the case of an aircraft, where the outer skin forms the first barrier. Other times,
however, the shielding barrier becomes difficult to “see” physically, but it exists
nevertheless. An example is when two antennas are orientated perpendicularly so that
there is no interaction between the two’. This leads to the concept of a “virtual” shield, as

discussed by Karlsson®.

If the EM barriers comprising the topological shields were perfect, there would be
no energy entering to the system. However, real shields are not perfect, and the EM
energy can enter by one or more of the following mechanisms:

e hard-wired penetrations, formed by wires, cables or other conductors,
e aperture penetrations through holes in the shield, and
¢ diffusion through the barrier material.

These types of points of entry (POE) must be identified in each of the topological surfaces
for use in developing the interaction sequence diagram.

2.1.2 Interaction Sequence Diagram

The interaction sequence diagram represents the paths that the external EM energy
can take from the outside to the inside of the system. Thus, it is like a signal flow diagram
developed from the topological diagram and the POEs, and in a sense, forms a diagram
that is the dual of the topological diagram.

In the most rigorous sense, the energy flow along such a pathway is bi-directional.
This implies that there can be mutual coupling between the interior and exterior regions of
the system. For systems that are designed to be hardened, however, this coupling
becomes very small, and the energy propagation may be treated as flowing only in one
direction: from the outside to the system interior. This greatly simplifies the analysis, in
that the computational models needed to describe this propagation are relatively simple.

2.1.3 System Model

With the interaction sequence diagram developed, it is possible to formulate an
appropriate system model for conducting the analysis. This model can be thought of as
resulting from the removal of all of the unimportant “clutter” in the system, keeping only
the important pieces of the system that pertain to the energy penetration or propagation
along the defined pathways.

This step in the analysis can require considerable judgment on the part of the
analyst. Eliminating an important piece of the EM problem may contribute to large
modeling errors. Keeping in too much detail, however, can make the analysis untenable.

7 Vance, E. F., and W. Graf, "The Role of Shielding in Interference Control", JEEE Trans. EAMC, Vol. 30,
No.3, August, 1988.

® Karlsson, T. “The Topological Concept of a Generalized Shield,” AFWL Interaction Note 461, Kirtland
AFB NM, January 1988.




2.1.4 Circuit Model

Once the system model is developed, it is usually desired to compute the response
induced at some component or other electrical load within the system. This is done by
reducing, or collapsing, the system model into an equivalent Thévenin or Norton circuit
which can be applied to the load. Thus, the entire system interaction model is put into the
form of a single circuit. Of course, the elements of this circuit usually are not known
analytically—they must be calculated using one or more computer programs, which
provide numerical representations of the circuits.

2.2 ANALYSIS TECHNIQUES

Using the topological approach, analysis of various systems to external EM

environments has been conducted™'®!!. Initial skepticism'? about the feasibility of using

this method for accurate calculations has been dispelled by the recent work of

Parmantier'™!®, where very good correspondence between theoretical and experimental

results has been noted.

Key to obtaining good theoretical results in this case is the use of an accurate
transmission line model for computing EM energy propagation in a system. Using system
topology as a starting point, the BLT equation was developed by Baum, Liu, and Tesche
for the analysis of energy propagation on a network of multiconductor transmission
lines'”. This analysis procedure resulted in the first multiconductor network code,
QV7TA, which permitted lumped or EM-field excitation of the network'®. Extensions of
this work have led to the CRIPTE code presently in use by the Parmantier group in
France.

? Tesche, F. M, et. al., "Application of Topological Methods for Electromagnetic Hardening of the MX
Horizontal Shelter System", LuTech, Inc. report prepared for Air Force Weapons Laboratory and Mission
Research Corporation under Contract F29601-78-C-0082, January 1981.

19 Tesche, F. M., et. al, "Summary of Application of Topological Shielding Concepts to Various
Aerospace Systems"”, LuTech, Inc. report prepared for Air Force Weapons Laboratory and Mission
Research Corporation under Contract F29601-78-C-0082, February 1981

" Tesche, F.M., "Introduction to Concepts of Electromagnetic Topology as Applied to EMP Interaction
With Systems", NATO/AGARD Lecture Series Publication 144, Interaction Between EMP, Lightning and
Static Electricity with Aircraft and Missile Avionics Systems, May 1986.

12 Longmire, C. L., private communication with the author, Mission Research Corp., 1980.

* Parmantier, J. P., V. Gobin, and F. Issac, “Application of EM Topology on Complex Systems”,
Proceedings of the 1993 IEEE EMC Symposium, Dallas, TX. August 1993.

4 Parmantier, J. P, et. al. “An Application of the Electromagnetic Topology Theory to the EMPTAC
Test-Bed Aircraft”, Proceedings of the 6 FULMEN Meeting, Phillips Laboratory, November 29, 1993.

" Baum C. E., F. M. Tesche, and T.K. Liu "On the Analysis of General Multiconductor Transmission
Line Networks", EMP Interaction Notes, Note 350, November 1978.

16 Tesche, F. M, and T. K. Liu, "User Manual and Code Description for QVITA: A General
Mutlticonductor Transmission Line Analysis Code", LuTech, Inc., prepared under AFWL contract
F29601-78-C-0002, August 1978.



2.3 NEEDED MODELING IMPROVEMENTS

Notwithstanding the previous success in modeling provided by the topological
concepts and the BLT equation, there are some deficiencies in the analysis that need to be
remedied —especially in the way that calculations are performed. Typically, the analysis
models require the definition of an excitation field (usually in the form of a transient
waveform), and the choice of an observation quantity useful for quantifying the system
behavior to the excitation. An example would be the induced voltage at an electrical
component inside the system. Applying one of the many computational models for the
system'” result in a knowledge of the transient voltage waveform at this component.
Although a significant amount of effort has gone into getting such a response, there is little
information gained as a result. Unanswered are the following questions:

how typical is the response?
what are the maximum and minimum values of the response?

e if parameters defining the system change slightly, how much does the response
change?

e how accurate is the response?

Answers to these questions cannot be found in the single waveform analysis

described above. However, by modifying the analysis concepts as proposed in the
following sections, some of these questions can be addressed.

'7 Tesche, F. M., M. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John
Wiley and Sons, New York, in press.
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3. SENSITIVITY ANALYSIS OF SYSTEM-LEVEL RESPONSES

3.1 OVERALL CONCEPT

The first suggested change in the modeling philosophy is to perform a sensitivity
analysis for the problem, instead of simply computing the transient responses at
observation locations. In all problems, there are errors in determining the parameters
defining the geometry, electrical constants, or other data. These uncertainties arise from
measurement errors, random variations in the parameters, or sometimes simply because
the measured data are not available and guesses (engineering judgment) are used.

A computational model, developed from the BLT equation for example, is
deterministic, in the sense that it always gives the same result for the same input.
However, it can be used in several different ways to obtain more information about the
computed result. Consider the case of a simple function f{x), where x is some independent
variable. The derivative of f, df{x)/dx , can be used to quantify the rate of change of the
function for any given x. The larger the value of the derivative, the more sensitive is the
function to slight variations in the value of x. In a similar manner, a calculated response of
a system, say a transient voltage waveform v(¥), can be thought of as actually being a
function of all of the parameters in the model: v(x;x5x3,...x,7). These parameters,

denoted by x,, may represent quantities like the line length, wire radius, aperture size—
anything that goes into describing the model.

As in the case of the single function, the sensitivity of the voltage v to changes in
the various parameters is defined by the » partial derivatives

. v
vn - 5xn * (1)
which can be easily computed from the model by using a finite-difference approach
involving a total of n+1 calculations.

3.2 RESPONSE SCALARS

Notice that the observable quantity used here for illustration is a transient
waveform. It is possible to define one or more scalar quantities, sometimes called norms,
to represent and understand this response'®. Possible norms include the energy contained
in the response, the peak values (both positive and negative) of the response, and the
maximum rate of rise of the waveform. These are useful, because the large amount of
transient data can be combined into several scalar numbers representing the system
behavior. ’ -

'® Baum, C. E., "Norms and Eigenvector Norms", Mathematics Notes, Note 63, November 1979,
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In the study to be conducted in Part 2, three scalar quantities are used. These are
the load energy and the peak positive and negative values of the waveform. Assuming a
purely resistive load, these are defined as

E= iv(t)i(t)dt =—}:T:|iv2(t)dt (22)
V. =MaxV()] and V,, = Min[V(?)] (2b)

3.3 ELASTICITIES

The response scalars, derived from the transient response, can be used by
themselves to describe the system. However, the change in these numbers with respect to
changes in the system parameters is also of interest, and this can provide significant
information about system sensitivities. One possible way of representing this information
is to simply calculate the rates of change of the scalars with respect to all n parameters as
in Eq.(1). Thus, for the energy, there are n partial derivatives

E;=Z—f: (i=1,2,..n). ()

For extremely simple models, these indicated partial derivatives can be can be determined
analytically. However, for more complicated systems, a numerical evaluation is needed.

One drawback of using the partial derivatives in Eq.(3) for sensitivity studies is
that 1t is possible to have a case in which one particular partial derivative has a large value
corresponding to a very sensitive variable, but its contribution to the overall response can
be very small. Thus, to put these partial derivatives in proper perspective, it is possible to
define the elasticity £ of the energy with respect to the various » parameters as"

OE | éx,

E/x, “)

E(E), =

Elasticities can be defined for the other scalar observables, as well.

These elasticities provide a convenient way for characterizing the relative
importance of the parameters in determining the overall response. A zero value of &; for

variable x; indicates that it plays a negligible role in determining the total response.

Consequently, it is not necessary to know (i.e., to measure) this value accurately. A large
value of &;, however, signifies a significant variable and suggests that its value must be

known accurately.

12




Furthermore, these elasticities provide guidance as to which parameters should be
controlled or otherwise modified in order to more efficiently reduce the internal response
(i.e., to harden the system.)

3.4 WAVEFORM DEVIATIONS

Another potentially useful way of characterizing the importance of variations or
uncertainties in the parameters of the problem is to consider differences in waveform
responses. Consider a particular parameter x; undergoing a change A x;. From Eq.(1), the

corresponding change in the voltage waveform is given as

av(t)
x

AV(t) = Ax, (5)

which amounts to a time-dependent difference waveform.

The amplitudes of these waveforms illustrate the relative importance of the
variations of each of parameters. More important, however, is that they also provide
information about the time of arrival of the effects from these parameters. As a result,
they can be very useful in characterizing the system.

% Thomas, G. B., Calculus and Analytic Geometry, Fourth ed., Addison-Wesley, Reading Mass, 1968,. p
255.
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4. STATISTICAL REPRESENTATION OF SYSTEM RESPONSES

The proceeding discussion has examined one way of assessing the importance of
individual parameters on a system response. It is also of interest to know the variation of
the fotal response as all of the parameters of the problem vary in some prescribed manner.
This leads to a statistical representation of the system.

Such an idea is certainly not new. Morgan® has discussed statistical ideas
pertaining to random variations in multiconductor transmission lines, and Graham®' has
treated random loops and wires in an attempt to better understand EM coupling in
systems. This approach, however, does not seem to have been widely used in system-level
EM studies involving transient excitations. This section of the note will briefly discuss a
statistical method of calculation, involving many repetitive evaluations of the model to
generate the appropriate probability functions for the responses.

4.1 REPRESENTATION OF PARAMETER VARIATION

The first step in doing this is to be able to represent the random variations of a
particular parameter in a suitable manner. This can be done by developing a probability
density function (PDF) which provides the probability of finding a particular value of the
variable. While the only way of determining such a distribution is by making repeated
observations of the parameter and presenting the resulting values as a histogram, there are
several “standard” analytical expressions for approximating these distributions. One
common distribution is the normal, or Gaussian, distribution which has the form

1 A=

e
o.27

P(x)= , (6)

where U represents the mean value of distribution and o is the standard deviation. In this
manner, any variable in the problem can be represented by a pair of two real numbers, with
the actual value of the parameter occurring at random with a probability given by Eq.(6).

Given a specific pair of parameters (1, c), a mapping of the random deviates
generated from a wniform probability distribution (as obtained from a standard random
number generator in the interval [0 - 1]) can be made to provide random deviates having
the normal probability distribution of Eq.(6). As discussed by Press®, a randomly selected
value of the parameter x is given by the expression

% Morgan, M. A. and F. M. Tesche, "Basic Statistical Concepts for Analysis of Random Cable Coupling
Problems," IEEE Trans. AP, Vol. AP-26, No. 1, January 1978.

2! Graham, W. R., and T. C. Mo, “Probability Distribution of CW Induced currents on Randomly Oriented
Subresonant Loops and Wires”, JEEE Trans. AP, Vol. AP-26, No. 1, January 1978.

2 Press, W. H., et. a., Numerical Recipes, Cambridge Press, New York, 1866, p. 203.
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In(y? + y3) (7)

X=Uu+y o.-2
HF N (2 +¥)

where y; and y, are both independent, randomly chosen variables between -1 and 1.

These latter variables may be expressed in terms of random deviates in the interval [0-1], .
which are denoted by z; and z,, as

y1=221-1 andy]=221-1. (8)
These latter numbers are easily generated using a random number generator.

As an example, Figure 1 illustrates the probability distribution function for a
variable x having a mean value of yu = 2 and a standard deviation ¢ = 0.2. The solid line
represents the analytical distribution function and the thin line is the result of 10,000
random samples.

3 _I [ ) I [ L L I T T 1T 1T T orTTd l TTrvrirrr i
o Gaussian distibution 1
. Simulation (10,000 samples) ]
2F | .
P(X) : :
1F E
0 —l | I N N T N A | 11 ‘l 13 1 I 1 1 ¢t 1 J I | D U S O I S 2 | l-
0 1 2 3 4

X

Figure 1. Illustration of the normal probability distribution of a variable with a mean value
of n = 2 and a standard deviation o = 0.2.

In representing parameters of a complex system problem in this manner, there are
several issues to consider. First and foremost is the question as to whether the Gaussian
distribution is really appropriate for representing the data. As noted in Figure 1, the
distribution function is symmetric about the mean value, and in some circumstances, this
can lead to unphysical values being selected. For example, a variable with a small p and a
large o could result in a negative value of x being generated. If x represented the radius of
a wire, say, this would be unphysical and indicates that the distribution is not the correct
one for the problem.

A second consideration is that there are interrelations between the various
parameters of a problem. For example, in the case of a wire of radius a and height A
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parallel to and above a ground plane, it is always required that # 2 a. Clearly, if values of
h and a are chosen at random, there may be instances in which this condition is not met
and the resulting geometry is unphysical. Such cases need to be identified and eliminated

in any calculation.

4.2 MONTE CARLO SIMULATION

Once a method of generating random values of the parameters of a particular
problem has been developed, it is a simple matter to perform a series of calculations using
the deterministic analysis procedure to evaluate the probability distribution functions for
specified responses in the system. This Monte Carlo approach is quite simple, although it
may require a very large number of calculations—especially if there are a large number of
independent parameters in the problem.

Figure 2 illustrates the computational procedure for the Monte Carlo simulation.
From a practical standpoint, it is important to realize that the iterative loop may involve a
significant amount of computer time, during which there may be a computer interruption
due to a power failure, processor “glitch”, or other occurrence. Thus, it is important to
write the computed result at the end of each iteration in an append mode to a data file, so
that not all of the data are lost in the event of a failure.

4.3 NORM RESPONSES

For the Monte Carlo simulation, the calculated results are the various scalar
quantities that have been discussed earlier. As the calculations proceed, each of these
variables are stored on disk, and when the required calculations have been completed,
these data are sorted into bins according to their values. Typically, several hundred bins
may be used, each of which will then contain an integer number representing the number
of times that the calculated result occurred with the value represented by the bin width.
This raw binned data can then be used to develop the probability density function and the
cumulative probability function for the data.

4.3.1 Probability Density Functions

For a continuous function, the distribution of a variable x is described in terms of a
frequency function N(x), such that N(x)dx represents the number of times that the variable
takes on the particular value x. The probability density function (PDF) of x is defined in
terms of NV as

P(x) = :&_ ? (9)
[N@)ya
where the integral serves to suitably normalize the function. In this manner, the quantity
P(x)dx represents the probability that the parameter takes on the particular value x.
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Figure 2. Computational procedure for Monte Carlo simulation of system responses.

The PDF for a discretely sampled functi-on, like the binned data discussed above, is
represented by the discrete integer function N(x;), where x; is the midpoint value of each

) bin and the bin width is Ax;,. The discrete PDF is given as in a manner similar to Eq.(9) as

17



N(x,)

=—+—1i=12.nbins . (10)
zN(xk )Ax;,

P(x,)=

As we take the data computed from the Monte Carlo simulation and put it into discrete
bins, it is this latter equation that is used to compute the PDF for the selected observables.

4.3.2 Cumulative Probability Distribution

Another way of presenting exactly the same information contained in the PDF is to
use the cumulative probability distribution (CPD), denoted by £. This quantity is simply
the running integral of the PDF, and as a consequence, it appears as a much smoother
function.

This function is defined as

X TN(:)dé
e(x)= [P(&de==2— a1
= [N(&de

and physically, it denotes the probability that the parameter being described will take on
the value of x or less. Consequently, for very small values of x the value of £ is small, and

as x increases, ¢ increases and eventually reaches the probability of 1.

Another related function is the complementary CPD, &, which is evaluated as
e.(x)=1-¢€(x). (12)

This function represents the probability that the parameter in question will take on the
value of x or more, and consequently, at small values of x it is unity, and it drops to zero
for large values of x. Frequently, the distinction between these two functions is not made
clear, and both are referred to as the cumulative probability distribution. In this event, it
should be immediately evident from the nature of the function what it is representing.

4.4 DISCUSSION

This section of the note has reviewed some basic statistical tools that can be used
to understand the behavior of an electrically complex system through computational
models. A Monte Carlo simulation of the expected responses has been outlined, and a
way of determining the importance of various parameters in_the system was suggested. In
the next part of this note, these concepts are illustrated using a particular example—that of
a shielded building with EM energy entering on a conducting path, such as a power or

signal cable.
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PART 2

ELECTRICAL MODEL FOR HPM ENERGY PENETRATION
INTO A SHIELDED ENCLOSURE

5. INTRODUCTION

As an example of the use of the various calculational techniques suggested in the
previous part of this note, we will consider the re-distribution of externally-produced EM
energy within a shielded enclosure. As will be noted shortly, the most general version of
this problem can be very complex, due to the many different penetration and propagation
mechanisms can exist in the real system. In this problem, however, we will consider only
the propagation and re-distribution of energy along a single-wire pathway in the form of a
tree network. This clearly is a subset of the complete problem, but the goal here is not to
perform a complete analysis, but to illustrate the overall computational philosophy and to
discuss some of the modeling concepts.

As mentioned in part 1, the key to modeling this type of problem is in the
development of a topological diagram and interaction sequence diagram for the system.
This will be discussed in the following section.

6. PROBLEM DESCRIPTION

6.1 GEé)METRY

The geometry treated in this analysis consists of a long external line leading into a
building, as shown in Figure 3. An example of such a conductor is the electrical power
line or telephone cable. The line passes through a weatherhead connection at the top of a
vertically oriented conduit and then enters into a circuit breaker/distribution box located
inside the building. At this point, the cable fans out into several different internal lines,
each containing an electrical load at the end.

In this model, we assume that the external line #1 extends to infinity away from the
building, and that the excitation of the network is provided by a localized voltage source,
Vs, on this line. The responses to this source are determined at the load impedance

located at the end of one of the internal lines.

Note that this problem involves only a single conductor network Realistic power
or communication lines usually have multiple conductors, and as a consequence, their
responses can be considerably different from those predicted here, due to the existence of
both common and differential modes on the lines. In the present analysis, only the common
mode responses are estimated for such multiconductor lines
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Figure 3. Problem geometry.

6.2 TOPOLOGY DIAGRAM

The key to modeling this problem is the use of topological shielding concepts In
this manner, the system can be thought of as consisting of several shielding surfaces or
"barriers", which attenuate the external EM energy. In the simple system model treated
here, the EM energy is assumed to enter the building only along the conducting paths
formed by wires. In a more general problem, there will be aperture and diffusive
penetrations, as well, but these are usually of secondary importance, and are neglected
here.

The diagram in Figure 4 provides a representation of the shielding topology of the
building. It illustrates the principal shielding surfaces presented to the external EM
energy.

Distribution Building enclosure
box

internal

External feeder External feeder distribution lines

conductor #1 conductor #

< 1

Internal conduit /
line

Building interior

E Points of entry
(possible protection devices)

Figure 4. System topology.
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6.3 INTERACTION SEQUENCE DIAGRAM

The interaction sequence diagram (ISD) is related to the topological diagram, in
that it illustrates the paths along which EM energy propagates from the outside to the
inside of the system, the penetration points in the shielding barriers, and the interrelations
between the paths. For the system under consideration in this example, Figure 5 illustrates
the ISD.

From this diagram is possible to estimate signal strengths at internal observation
locations of interest, due to an external EM source. Furthermore, it can be used to
identify the requirements for possible protection devices that might be placed at the points
of entry (POE) locations.

Primary
Ba[rier
< ﬂ Inside conduit
; ----------------------- sccondary barrier
: Inside distribution
. box
secenes T . T B-..... Secondary barrier
. ®
. Inside building
Unshielded Region . Level 1 Shielding
I 2

Figure 5. The interaction sequence diagram

6.4 SYSTEM MODEL

From the interaction sequence diagram, it is possible to develop a more detailed
system model for calculating the propagation and penetration of energy along the
network. This problem is modeled by an interconnection of transmission lines, as shown
in Figure 6 below.
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Figure 6. A transmission line model for the interaction path.

The first line is the external line #1 which represents the long line approaching the
building. It is represented by an infinitely long conductor of height 4, over the ground and
a radius a;. The voltage source exciting the line is located a distance L, away from the

building end of the line.

The second line represents the external portion of the vertical conduit leading
down to the circuit breaker box. The bottom end of this line is connected to the earth
through a low footing resistance (which is assumed to be a short-circuit in this model).
The length of this line is L,, and the conduit has an outer radius given by 7..

Line #3 is comprised of the internal portion of the conduit line, which has the
coaxial cross-section shown in the figure. Its length is also L, and the two radii of the
coaxial cross-section are »; and a,. This line conducts the external energy to the interior of
the distribution box where it flows onto »nb individual feeder lines distributed into the

building interior.

Each of these internal lines is assumed to be described by its length L, height A,
radius a and load resistance, R;, as shown in the figure.

6.5 CIRCUIT DIAGRAM

The interconnection of transmission lines developed in the system model can be
represented as a circuit model as shown in this figure. This permits the analysis of the
voltage response at one of the internal transmission line loads. This analysis involves
collapsing each of the lines down to a Thévenin equivalent circuit and then combining
these circuits to compute the desired load response at-a user-selected internal load

resistance.

Any one of the nb internal loads may be selected for the calculation. The
responses of interest that may be computed at the load include the transient voltage
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waveform at the load, the peak maximum and minimum values of the load voltage, and the
. energy delivered to the load.

Internal branch # nb Internal branch #1 Internal
load R,

internal

load R

Internal
conduit Lz
Thevenin source Earthing
resistance
Vil .
Z External line External conduit =0Q
- L, L,

Figure 7. Circuit model for the transmission line network.
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7. MODELING DETAILS

7.1 THE TRANSMISSION LINE MODEL

The basis for the model used in the calculations is the transmission line model
shown in Figure 7. The choice of a transmission line type of model stems from past
successful work with such models in lower-frequency problems, involving NEMP
excitations, as well as recent work showing that transmission line models can be
generalized in order to treat higher frequency problems.

The key element of the model is the representation of an end-fed transmission line
of length L by a lumped equivalent circuit, as illustrated in Figure 8. For this line, it is
assumed that it is described by a frequency dependent characteristic impedance, Z (@),
and a propagation constant {w). Details of these parameters will be discussed later.
Using the BLT equation for this transmission line”, it can be shown that the open circuit
voltage source, V. and the input impedance, Z;;, have the following expressions:

@=Ly @) (13)
1+ pet
Z, ()= 1- peF Z (@) (14)

where p is the frequency dependent voltage reflection coefficient defined as

_Z(0)-Z (o)

A)= G @)1 Z.(@) (13)
v,
Z. vy <—\./°°
—s =-Zn
< L >
!
+

Figure 8. Representation of a single transmission line section by an equivalent Thévenin
circuit. }

# Tesche, F. M., “Plane Wave Coupling to Cables”, Chapter 4 in Part I of Handbook of Electromagnetic
Compatibility, R. Perez, ed., Academic Press, 1995.
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This equivalent circuit representation of a transmission line section can be used to
analyze the network shown in Figure 7 by applying it to successive branches and
combining equivalent circuits in series or in parallel as needed. This procedure is
illustrated in Figure 9, in which the external lines are first collapsed into two parallel
equivalent circuits at the input of the coaxial line, (part a of the figure). These circuits are
combined in series and then transformed to the end of the coaxial line (part b of the
figure). The other internal branches are also collapsed and added in parallel, resulting in
the circuit in part ¢. Then, this final transmission line circuit is collapsed down to the
single lumped circuit shown in part d. The load voltage response is then calculated from
simple circuit theory as

Z, (»)

V(@)= 2", (@) +Z,(»)

V(o) (16)

Observation
load

Observation
load

(b)
‘ Observation
V™. v, load
' + e
-~ -
(d) (c)

Figure 9. Analysis procedure for calculating the load response for the network in Figure 7.
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7.1.1 The External Line Parallel to the Groundplane

For the model of the conductors of the system, there are several different classes of
transmission lines used. Both inside and outside the facility, some of the lines can be
viewed as a long conductor of radius a and parallel to a reference (ground) conductor at a
height 4. In the application of transmission line theory as described in the preceding
section, it is usually required that the separation of two conducting wires be small
compared with the wavelength (i.e., # << 1). However, recent work by Neff* and
Tesche® suggest that the analysis can be extended to higher frequencies by using EM
scattering theory to derive the per-unit-length impedance Z’and admittance Y”elements of
the transmission line. Effectively, this implies that the propagation of EM energy along
the conductors behaves like a TEM wave with its behavior being determined by the
Telegrapher’s equations, but that the characteristic impedance of the line is determined

from an EM scattering problem.

Using this scattering theory approach, the propagation of energy along the line is
close to be that of a wave in free-space:

v(w)=jolc, (17)

and the characteristic impedance Z, of a line of radius a and height % over a perfect

conductor is expressed as

Z (0)=JZTY' ~ f—;[Hg”(ka)- H®(2rh)), (18)

where Z, = 377 Q is the characteristic impedance of free-space and H®() denotes the

cylindrical Hankel function of the second kind. This last expression comes from the
expressions given in ref.[25] for the per-unit-length line parameters obtained from

scattering theory.

Simple transmission line theory provides the low-frequency characteristic
impedance of the same line as

Z, (Zh)
Z. == —/, (19)

which is valid for # << A. Figure 10 presents a comparison of the characteristic impedance
magnitudes for a wire with height # = 1m over a prefect conductor, and with a radius a =

# Neff,, H. P., Jr., and D. A. Reed, “The Effect of Secondary Scattering on the Induced Current in a Long
Wire over an Imperfect Ground from an Incident EMP,” IEEE Trans. AP, Vol 37, No.12, Dec. 1899, and
private communication with the author.

*% Tesche, F. M., "Comparison of the Transmission Line and Scattering Models for Computing the HEMP
Response of Overhead Cables", IEEE Trans. EMC, Vol. 34, No. 2, May, 1992,
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0. 5 cm, as calculated for the high frequency (scattering) model and for the low frequency
(transmission line model). Note that these parameters are almost identical, as long at the
condition A << 1 is maintained. However, as the frequency is increased and the line height
becomes comparable to or exceeds the wavelength, the two impedances become quite
different, as indicated in Figure 11. This illustrates one of the reasons why the low
frequency transmission line theory begins to become inaccurate at higher frequencies.

400t

High frequency

300 model
I
. Low frequency

Zd 200 model
100
0

0 0.5 1 . 15 2
Wa

Figure 10. Comparison of the characteristic impedance for a line with # = 1m and a = 0.
5 cm for the high frequency (scattering) model and the low frequency (transmission line
model).

400 -
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3001} - ~—\ model —
\\\_ "”. h\\
- \\ ""‘~\
| High frequency |  "~<~ ~ .
[z 200 model
100 —~————7~" "~ 7 ° T
ol- - _
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h/A

Figure 11. Comparison of the characteristic impedances of Figure 10 at higher
frequencies.

As an example of the differences in the.line responses when the scattering-derived
parameters are used, consider the case of a single section of transmission line of Figure 8
with a line length L =5 m and =1 m and a = 0.5 cm. Assuming that the load impedance
is Z; = 100 Q (with no voltage source for this example), Figure 12 presents the input

impedance magnitude at the open end of the line as a function of frequency. Notice that at
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low frequencies, there is a good agreement between the two, but at high frequencies, there
is a substantial deviation of the results.

-

Low frequency model 1

e LW ﬂ\

High frequency model

AL

(
>
]
0y
O

10 20 30 40 60
h/A

Figure 12. Example of the input impedance for a line withL =5m, A=1m, a= 0.5 cm
and termination impedance of 100 Q2 for the two different analyses.

Because the scattering results are based on a high-frequency solution to Maxwell’s
equations, they more accurately represent the actual behavior of the fields bound to the
line. However, it is important to realize that in this model the presence of higher-order
modes on the conductor have been omitted. These may contribute to the fields in the
vicinity of the wire, and a detailed study of these modes in the context of HPM analysis
appears not to have been done. Thus, this subject remains for future work.

4

7.1.2 The Vertical Transmission Line Section

The vertical transmission line section (i.e., the conduit exterior) appears much like
a vertical antenna, on which current and charge propagate at the speed of light.
Approximations to this type of problem are described by Schelkunoff®®, and this involves
viewing the vertical section as a very thin biconical antenna of length L, cone half-angle y
and average radius a. This structure has a characteristic impedance given by

Z,
27

V4
Z. = 27‘; ln(cot(y/ / 2)) ~

In(2L/a). (20)

Thus, using this expression and the propagation constant given in Eq.(17) permits
the vertical conduit section to be treated like a transmission line. This approach has been

26 Schelkunoff, S.1., and H. T. Friis, Antenna: Theory and Practice. John Wiley & Sons, 1952, p 426.
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used by Degaque®’ and Tesche? for the very early-time modeling of transmission lines
with vertical sections, with good results.

7.1.3 The Coaxial Line

For the coaxial region within the conduit, the usual TEM mode of propagation is
valid as long as the conduit cross-section is electrically small. For cross-sections on the
order of several cm, which are typical for cable routes, the transmission line model will be
valid for frequencies up to a few GHz.

For these cases, the line impedance is given by the simple expression

Z,. T
Z,=—2In-t 21
e =5, 21
where 7; is the interior radius of the conduit shield and a is the radius of the internal wire

within the conduit. As before, Eq.(17) is used for the propagation constant of the cable.

%" Degaque, P. and J. Hamelin, Electromagnetic Compatibility, Oxford Press, 1993.

? Tesche, F. M. and B. R Brandli, “Observations on the Adequacy of Transmission Line Coupling
Models for Long Overhead Cables”, Proceedings of the International Symposium EMC'94 ROMA, Sept.
13-16, Rome.
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8. COMPUTED RESPONSES ' .

The system interaction model discussed above has been implemented in a
computer code called SWNET?, and this has been used to conduct a limited analysis of a
hypothetical system to illustrate some of the issues discussed in the previous sections.
With reference to Figure 6, the following hypothetical system parameters have been

chosen:

External Line #1: Li=10m
hl =3m
2,=0.0lm

External Line #2 L:=25m

(and coax) h,=25m
r.=0.05m

ri=004m

a,=0.0lm
Internal Line #1 Hy(1)=20m

hB(l) =05m

az(1)=0.01m

RL(I) =50 Q
Note that this is a very simple example, using only one internal transmission line, which is
the observation line.

For this particular example, we will assume that the excitation voltage source is a
simple exponentially damped sine wave given by

! V() =V,I(e" sin(27 £,1)) (22)
with V, =1v, a=0.1 (1/ns), £, = 100 MHz, and T is chosen so that the peak value of
V(?) is equal to V,. This results in the fast-rising waveform pulse shown in Figure 13,
with a rise time of a bit more that 1 ns.

# «User’s Manual for the Single Wire Network Program (SWNET)”, prepared by F. M. Tesche, February
20, 1996.
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Figure 13. Excitation waveform V(f) for sample calculation.

The Fourier spectrum of this waveform is expected to have a peak at the carrier
frequency f,, but it will also have significant energy away from this frequency, since the

. waveform is not purely sinusoidal. Figure 14 presents the calculated spectral magnitude
for this excitation function.
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Figure 14. Spectral magnitude of the damped sing excitation function.
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8.1 SYSTEM RESPONSES

- 8.1.1 Baseline Responses

For the given transient excitation of the sample problem, a calculation of the
internal response was performed, and the resulting waveform is illustrated in Figure 15.
Calculation of the response scalars provide the following values: V., = 0.072 V,

V,pin = -0.048 V, and Energy = 0.87 x 10712 Joules.

This waveform exhibits several interesting features. First, its amplitude is
considerably lower than the 1 volt initially applied to the conductor. The attenuation is
due to impedance mismatching at the transmission line junctions. Furthermore, there are
several reflections of the initial waveform which occur from the “ringing” of energy on the
network. Although the secondary pulses generally do not affect the peak voltages of the
response, they do have an effect on the load energy.

Figure 17 presents a comparison of the spectrum of the computed load voltage and
the driving voltage spectrum. The overall attenuation of the spectrum is noted, but also,
we see that there are many peaks and nulls in the response spectrum introduced by the

internal ringing on the network.
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Figure 15. Transient load voltage at the internal load.

i
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Figure 16. Comparison of the load voltage spectrum and the excitation spectrum.

8.1.2 Elasticities

. ' Using the SWNET code, it is also possible to compute the elasticities of the
response scalars as discussed in Section 3.2. These quantities are presented in Figure 17
for the sample problem. Note that the 3 scalar observables are all plotted on the same
plot, with both positive and negative directions being indicates. Plotted along the x-axis
are the names of the various parameters for which the elasticities are computed. Note that
the lengths of the lines appear to be most important in determining these response
characteristics.
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Figure 17. Elasticities for the scalar parameters.

8.1.3 Difference Waveforms

In the same calculation of the response elasticities, the SWNET program computes
the response waveform differences for a 1% change in each of the parameter values.
Thus, for the problem under discussion here, there are a total of 12 separate waveforms to
study. Shown here are only 3, one for a change in the line #1 length, L;, another for a

change in the height parameter /1, which pertains to the average height of the conduit over

the ground, and the final waveform which illustrates the effect of changing the radius of
the internal line radius, a,;. These waveforms are shown in Figure 18, Figure 19, and

Figure 20, respectively.
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Figure 18. Plot of the difference in the load voltage response for a 1% change in the
value of the external line length, L;.
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Figure 19. Plot of the difference in the load voltage response for a 1% change in the
value of A,.
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Figure 20. Plot of the difference in the load voltage response for a 1% change in the
value of the internal line radius, ay).

8.2 STATISTICAL RESPONSES

Performing the Monte Carlo calculations as described in Section 4.2 permits the
best understanding of how the response quantities of the system might vary in a real
situation. In doing this, it is necessary to be able to quantify the uncertainties in the input
parameters of the problem, as discussed in Section 4.1. In the present study, we have
assumed that each parameter is described by the Gaussian distribution of Eq.(6), with a
standard deviation of 10% of the nominal mean value of the parameter. Thus, we assume
that o = 0.1u. This is a rather large variation in the parameters, and in a real case,
considerably smaller uncertainties might be possible. Of course, this depends on the
nature of the problem and on the ability to measure it accurately.

Using the baseline data for the sample system previously given, the SWNET
program' was run to compute a total of 214 = 16,384 individual cases with random
variations in the input data. (This is the largest number of cases that may be run at one
time in the program, due to dimension limitations. The time for such a calculation was on
the order of 6.8 hours on a 60 MHz Pentium computer.) The results of this calculation
are presented in the next sections.

8.2.1 Probability Density Functions

The computed PDFs for the minimum and maximum load voltages and the energy
delivered to the load are illustrated in Figure 21, Figure 22, and Figure 23, respectively.
Notice that even though 16,384 cases were run, there still is a definite graininess in the
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distribution. As a check of these calculations, we see that the peak values of the
distributions occur very near the calculated scalar values for the baseline case of V., =

0.072 'V, V,,,;, = -0.048 V, and Energy = 0.87 x 10"12 Joules.

Recall that these PDFs are normalized so that the total probability is unity. This
accounts for the rather large values of P in Figure 23 for the energy, since the values of
the energy along the abscissa are very small.
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Figure 21. Probability density function for the peak negative load voltage.
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Figure 22. Probability density function for the peak positive load voltage.
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Figure 23. Probability density function for the energy delivered to the load. .
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8.2.2 Cumulative Probability Distribution

The computed CPDs for the observable quantities are presented in Figure 24,
Figure 25, and Figure 26. Each of these figures show the probability of the observable
quantity exceeding (in unsigned magnitude sense) the value specified along the abscissa of
the plot.

Notice that these plots are very smooth in nature, due to the integration process
mentioned earlier. Very good approximations to these curves can be obtained by running
only a few hundred calculations. Hence, if only approximate CPDs are desired in a
calculation, the required computer time can be considerable less than that needed for the
6,384 cases.
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Figure 24. Cumulative probability distribution for the peak negative load voltage.
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Figure 25. Cumulative probability distribution for the peak positive load voltage.
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Figure 26. Cumulative probability distribution for the energy delivered to the load.
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9. SUMMARY AND OBSERVATIONS

The purpose of this work has been twofold: to illustrate ways of using
computational models to understand how electrically complex systems respond to EM
energy, and to show how some previously-developed models for low frequencies (f < 10
MHz) can be extended to higher frequency problems.

What is suggested in the first area is familiar to anyone having a background in
differential calculus—that the dependence of a function on many different variables can be
understood by taking partial derivatives of the function with respect to each variable. In a
complex system problem, this is not possible to do analytically, but with a computer model
of the system, such derivatives can be evaluated numerically. Thus, a sensitivity study for
the system can be performed. In addition, the repetitive use of such a numerical algorithm
for computing system responses can be used in a Monte Carlo simulation for the
distributions of selected responses.

Performing such an analysis for a real system may be more difficult that it first
seems, however, in that it is necessary to have a reasonable probability distribution for the
parameters of the problem. As mentioned in the text, a Gaussian distribution may not be
the best choice, and additional work in understanding which of the analytical distributions
are best for this purpose seems warranted. Moreover, the parameters needed to describe
any chosen distribution must also be known. This implies that additional input data must
be developed by the analyst, above and beyond that needed for a simple, deterministic
analysis. However, as noted from the sample calculations here, the benefits of this type of
calculation can be great, because the range of responses are given, not just the nominal
value. This information is invaluable for system assessments and design.

In the second area of model extension for high frequency use, it is obvious that
much work remains to be done. For example, the validation of the scattering formulation
for the transmission line equations has been undertaken in ref.[23], but this has been done
only for a limited range of frequencies. Quantifying how well these models work for
frequencies when the line height approaches 20 to 100 A would provide needed confidence
in these high-frequency models. Other issues, such as the effects of radiation on the
transmission line solutions, the changes of the propagation constant as higher frequencies
and the possible effects of higher order modes on the line responses, are all interesting and
deserve consideration. Consideration of these effects, however, was beyond the scope of
the present study.
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