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An eigenmode expansion meéthod (EEM) is developed for dielectric bodies residing completely
within a homogeneous region of a generally inhomogeneous medium. The representation follows
naturally from the EEM method previously developed for perfectly conducting bodies, including those
with impedance loading. For the latter class of objects, the presence of loading shifts the eigenvalues
from those of the unloaded case, but leaves the eigenmodes unchanged. It is‘observed from the governing . -
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Formulation of the eigenvalue problem is described for general dielectric bodies, and the EEM is applied
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Introduction

In this note, the eigenmode expansion method (EEM) previously described [1]-[3] is developed
explicitly for dielectric bodies residing within a single homogeneous region of a generally inhomogeneous
medium. The motivation for the problem considered here is the study of dielectric targets buried in the
ground, such as a dielectric mine.

_ The EEM developed previously, and principally applied to perfectly conducting objects, has been
found to be useful for a variety of problems related to object characterization, and has a strong connection
with the singularity expansion method (SEM) [3],[4]. Synthesis of desirable object response
characteristics through control of eigenimpedance values is also possible through proper impedance
loading, and is simply described via the EEM.

It should be noted that the EEM is similar to the method of characteristic modes, which has been
described for conducting and dielectric objects [5],[6]. The characteristic modes are determined through
a weighted eigenvalue equation, and for a unity weight become the same as the eigenmodes described
here. As opposed to the treatment in [6], this note focuses attention on the fact that eigenmodes can be
found which are independent of the medium interior to the target. The separation of the relevant integral
operator into target medium dependent and independent parts was noted in [6]. In [6], though, separation
of the operator in the eigenvalue problem, which leads to target medium independent modes, was not
carried out. Explicit separation of the operator into target medium dependent and independent parts
allows classification of target modes which are only dependent upon the shape of the target and on the
medium surrounding the target, and constitutes the principle contribution of this note.

II. Formulation of Volume Integral Equation and Corresponding Eigenvalue Problem

In the following development, all electromagnetic quantities will be assumed to obey Maxwell’s
equations in the two-sided Laplace transform domain, governed by the transform pair

F(s) = f F(t) e ™'dt
) ®

) 1 Q°+joo
r — st
F( e f F(s)e™ds

Qy—j=

where s=Q +jw, and Q,w are real quantities.

Consider the geometry shown in Fig.1, which depicts a closed surface S bounding volume V
containing a generally inhomogeneous and anisotropic medium characterized by &(),u,. The medium
external to S is assumed for simplicity to be isotropic but generally inhomogeneous. In Fig. 1 multiple
planar homogeneous layers are shown, but the formulation presented here applies to a generally
inhomogeneous medium. The layered exterior medium case corresponds to the buried dielectric body
problem as long as the ground can be approximated as consisting of planar layers. In each layer, as well
as internal to S, material loss can be accommodated by defining the permittivity to be complex as
e= ¢+ o/s for real conductivity o.

A wave impedance and propagation constant can be defined for the j-th exterior region,
and formally extended to the interior region
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Fig. 1. Dielectric body in layered media.
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¥,=s[p,e]"?

. 0]
2,211, "1"?
¥(7) =s[p &A1
) ®
Z(7) =[p 'O
noting the following combinations
Y,Z=51,, V'Z=1Isp,,
. @
v,z =se;, y-Z =58
The relationship between the electric field and an electric current source can be written as
EFy)= —(z“ ‘FlFly) ;f(r)> )

where < , > denotes integration of the two terms separated by the comma over common spatial
coordinates, and the symbol above the comma indicates the real scalar product. The propagationconstanty,

is mealy symbolic, and represents dependance on all of the exterior region layers, i.e., v, E{yl,yz,ys,...}.
The electric dyadic Green’s function, -Z;,(F|7’,y,), provides the «-th component of field at 7 due to

the B~th component of a Hertzian current element at ¥/ . In general, the Green’s dyadic can be written
as

Z@I ) =s o {8F17v,) + Ly v 7 86 -71) ) ©)

where the first term is evaluated in a principle value sense for a specified exclusion volume [7]. The
second term is the depolarizing dyad contribution, which depends on the shape of the exclusion volume
as well as the material properties of the region which includes the source current (with the appropriate

value of propagation constant assigned to y). Details concerning (6), as well as general forms of the
principal value term for homogeneous and layered media surround regions are provided in Appendix B.

Next, a volume integral equation for scattering from a dielectric body completely contained within
one layer of the surround region can be formulated [8]. Let the region containing the body be region i

characterized by e;, and the region interior to S be characterized by unsubscripted symbols (€,¥). One

can replace the medium internal to S with 2 homogeneous isotropic medium characterized by e; and
containing unknown volume polarization currents

T D =727 -2 T} EF ) @)

=Z;'00, ) EGY o) .. VFEV



EFy, ) =E™Fy )+ E*Fy D ®)

with E™ being the incident field (with the dielectric object removed) and E* is the scattered ﬁeld due
to currents excited by the material contrast.
Since

Z 0 )TN ) = E™(Fy )+ E*Fy . ¥) ®
with E*® given by (5), an IE is obtained as
ZFIF A+ 2, DIE-F)  T(F v, D)) =E™(Fy,) - (10)
By suitable manipulation of (7), another form can be found as
| (Z P 2, (D) +T8G-F) § EF oy, ) =E™Fy) . ()

In (10) and (11), as well as in the development to follow, the IE will be enforced over a range equal to

its domain, e.g., FeV for the general three-dimensional case. The forms (10) and (11) are equivalent,
and both forms have been used for computational work in scattering theory. The volume IE was
ongmally proposed by Richmond [9], with subsequent work performed by many investigators.

It should be noted that in the absence of material contrast, i.e., =g, the IE reduces to E=E gine,
It will be implicitly assumed in the following that material contrast exlsts to maintain the polarlzanon
current (7).

If the exterior region is comprised of re01procal media as assumed here, the Green’s function
involved in the above IE obeys the symmetry property

A GLRR VAR T (12)
where the superscript T denotes the transpose operation. Thus, the Green’s function is complex
symmetric, but not Hermitian, for general complex frequencies. For the most general form of the
impedance dyadic Z ., a set of eigenvalue equations for (10) can be defined as

ZFIF )+ Z,( D 8T S FaFy ) =2 (DI (BY o) )
=Y Iy I 2 - - = R ooy Tl = -
(o ¥,o¥) 5 Z5F 1Y ) + 2,00, 1) 8GF-F) = 251, DI o, T)

and for (11) as



EZAFND Z] A D +T8EF) | G D) = A5 (¥ DEFY . D) s

oy oy sy o BCrmf1= 5 - - = roquy -
(EF D) s Z°F IR )+ 2,00, D E-F)) =0 (r . D EFo v, T)

The left and right eigenmodes in (13) share the same eigenvalues, i.e., ).';"=l{3"=2.’ , and form a
biorthogonal set, .
(73 3 Ty)y=0  apwad,

Gis iy

1s)

and sirhilarly for the modes in (14). . Since the above implies a real inner product, and the eigenmodes
may in general be complex, the second inner product in (15) is not guaranteed to be nonvanishing. This
is discussed in [1], where a convincing argument is made for the second of (15).

Note that generally the eigenvalues and eigenmodes are functions of y,,¥. The eigenvalue

problem for an inhomogeneous, anisotropic body is considered in more detail in Appendix A. If we now
consider the special case of a homogeneous, isotropic body, IE’s (10) and (11) are modified by replacing

Zd ,Z p ! with Z df 2 Z; 'T, respectively. The resulting kernels are then complex symmetric, in which case
the resulting eigenvalue problems become

(ZFIF ) +ZL oD T8FT) § Ty 1)) =M 1T 7oy ) 6

(ZFIF D2 o) +T8FF) | 81 ) ) = MY 1B o)

since fﬁ' =j'g :j"ﬁ for the symmetric case, and similarly for the other mode set. The eigenvalues k’g‘

depend upon vy,y, but the eigenmodes fﬁ,é'p only depend upon the exterior region through

Y, 5{71,72,73,...}, and the shape of the object. The last observation follows from the spectral mapping
theorem. "
It is easy to show that the mode sets are related by

Jp=¢€
B~ % an
Ap=Z,25

in that with those substitutions the first of (16) becomes equal to the second, and vice versa. This is also

consistent with the fact that Ajp should have dimensions of ohms [1], since (10) maps currents to electric

fields, whereas l; should be dimensionless since (11) maps electric fields to electric fields. For purposes

here, attention will be primary directed at the first of (16), with results obtained being generally
applicable to the second of (16) as well.



To be consistent with earlier notation [1], let ).jp =Z, and note that rather than (16), we can solve

1) 3 Ty =280 T ) - @

and obtain the eigenvalue as

Zy(¥ V) =Zg(Y )+ Z Ly ,Y) (19)

where Z (v,Y)=(y VAR —y,Z,'l) =s(e -¢,) provides a simple shift factor for the eigenvalues. .

The significance of (18) is that one can solve an eigenvalue problem which is only dependent on
the exterior region medium and the shape of the body, independent of the type of medium internal to the
body. Explicit dependance on the interior region medium only comes from the shift in the eigenvalue

through the term Z(y,y), which only depends on the object’s permittivity and that of the layer
containing the object. _

A further observation can be made for specific types of depolarizing dyad terms. If fa =bT, such
as for spherical or cubical exclusion volumes where b=1/3, the eigenvalue problem becomes

EEIP1) 5 Ty =25 Cu DT yFv) @0

which involves only the principle value part of the electric Green’s dyadic, and the resulting eigenvalues
are obtained as

Zy(¥ oY) =512y (1) + by + Z4(Y,Y) - 1)

I1I. Eigenmode Expansion Properties

The following properties of (18), the volume eigenvalue equation, follow directly from the
previous EEM development [1]. Consider the general eigenvalue problem

Z(FIF D) 5 Ta it DY =Zy(¥ DT p ) (22)
B

where Z represents either Z° or g, and Z, is either Z, or Z, . It is easy to show that
P p B B
G P s FyFEr)=0  Zy*Z, . @3)

Assuming that the eigenmodes form a complete set of modes which span the domain of the integral
operator, along with the normalization

Gy FvD s Ty )y =844 @4)

then : ’ -



Fy,) =);3(J'“,<F,y,> s FEy D)y, - @

where F is an arbitrary vector function in the domain of the operator. Further properties follow
immediately as

T8(r-7') =;f KARR AR (26)
ZFIFy)= EZ,, CATRARTR RS @7
Zy( ) =(7sx) 3 ZEIF) 5 TaFiv D) (28)

— 5(7.,) <Jﬁ(r,y) Z(F|F'yy ) ;J'}(F’,Y,)> 29) .
<Jp(T,YD) —Y:Jﬁ(r ,v,,>> 30)

where a—a— indicates differentiation with respect to the j-th region propagation constant.
Yj
The solution of IE (10) is

JF¥ ) =2

( <fa(f° Yo s E™(Fy )i 31)
RPN 5 {

where ZB comes from (19) with Z‘;‘ ,J-"ﬂ the solutions of (18). The field scattered by the object is



E'Gy ) =~(Z°¢FIFv) s )

= 1 TRy ) B 7 “(F|F s TaF
=Xz 010 s BT E ) s 7yr) G2)

- SFo g - pinc,— el =, P
= Xﬂ: m(],,(m,) s E™F ) o) 3 T )

where the last relation is valid for fields outside of the object since 7=7’ .

It should be noted that in formulating the eigenvalue problem (16), and in subsequent expansions,
e.g., (25), it is assumed that eigenmodes exist, and that they form a complete set of modes which span
the domain of the integral operator. Since the kernel (and associated operator) are complex symmetric
but not Hermitian, this is not guaranteed to always be correct.

For additional insight, it is helpful to consider the matrix form of the integral equation, such as
would be obtained by employing a method of moments (MoM) solution. This reduces the IE to an NXN
matrix equation. A matrix is said to be of simple structure if it is similar to a diagonal matrix, i.e., if
it is diagonalizable. If the MoM matrix has N distinct eigenvalues, then the matrix is of simple structure
and the eigenmode expansion is valid. This follows from the fact that eigenmodes corresponding to
distinct eigenvalues are linearly independent, and so the N linearly independent eigenmodes would form
a complete set. Even if the eigenvalues are not all distinct, an N-element linearly independent set may
exist, although it is not guaranteed for a matrix lacking sufficient special properties. An important case
of degenerate eigenvalues would occur at a branch point in the complex plane, where two or more
eigenvalues coalesce. It has been conjectured that branch points may always be present when sufficient
object symmetry is lacking [11]. The occurrence of branch points may invalidate the eigenmode
expansion at certain points in the complex plane, although at other complex frequencies the expansion
would remain complete. The eigenmode expansion would remain valid even at points of eigenvalue
degeneracy if the geometric multiplicity of the eigenvalue is equal to its algebraic multiplicity, resulting
in N linearly independent eigenmodes. It is assumed here that the matrix representation of the IE is of
simple structure, such that the eigenmode expansion is valid, as was assumed in [1]. If this is not true,
a generalized expansion may still be obtained involving root vectors [10], although this would
considerably complicate the analysis. Some of these issues are summarized in [12], and further discussion
can be found in [1], [13]. Lastly, it should be noted that for one of the examples used in [11] to illustrate
the occurrence of eigenvalue branch points, the non-uniform transmission line, the geometric multiplicity
was equal to the algebraic multiplicity for the cases checked, validating the EEM for that example.
Perhaps this will be the case for most physically realistic problems of interest, although it would be
premature to make that conjecture at this point.

IV. Conclusion

In this note the EEM previously developed is applied to dielectric bodies immersed in
inhomogeneous media. It is found that for the case of a homogeneous, isotropic object, eigenmodes can
be found which only depend upon the space external to the body, and the shape of the body. Eigenvalues
for a specific interior medium are related to the set of interior-independent eigenvalues by a simple shift

10



factor. This allows the general study of objects which may be considered as belonging to a certain class,
which is defined by object shape and background environment, independent of the specific medium
comprising the object.
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Appendix A. EEM for Inhomogeneous Anisotropic Objects

In this section, the general inhomogeneous, anisotropic volume IE (10) will be considered, along
with its eigenvalue equation. Rather than defining left and right eigenmodes as in (13), it will be found
that eigenmodes that are in some sense independent of the interior region permittivity can be found for
a wider class of objects than the isotropic, homogeneous case considered earlier. The most general class
of objects which would share this common set of eigenmodes can be inhomogeneous and anisotropic, but
must be connected to one another by a simple scalar relationship.

The appropriate IE to consider is

Z P )+ 2,00, 8G-F) TF 1, 1)) =E™(7.,) -. (A1)

where

-1
Zd(?f:?)z(gy(f.)—%lf) (A2)
1

5~1

with Zi'y () =¥(F)-Z'(F). Let the dyadic for the interior region be written as

- " Yiw
d,{(r) = kZ(r)»+ 7il (A3)

where d(7) is similar to a diagonal matrix, de) ~diag{f,(F).f,(F).f;(F)} with £,>0, which can generally
be assumed to be invertible for a real material. The IE becomes

(Z°@|Fy,) +k7 37 P87, T(F) =E™(F.y,) (Ad)
which can be written as

(ZF|F'n ) d" ¢ yd 2 G )

(A5)
+kd P EFY-dPEO AP E Y- d R ED e F-F)  IF) =ETF y,)
Applying d 2 ) to (AS) results in
(Z9FIF )k ToG-F) TP =E™(F,,) (A6)

where

12



ZFIF v ) = AP F) ZFIF v ) 3 )
T¢) = dPF)-J6) @
E"@) =d"@)E"@)
This leads to the eigenvalue equation |
(ZUFIFa )+ T8 57y Py )Y =2/(r,. 07, Fox,) (A8)

where the eigenmodes are independent of k as in (16). Thus, the same set of eigenmodes can be used
for any interior region for a fixed anisotropic spatial dependance ar).

13



Appendix B.  Electric Dyadic Green’s Function

For convenience, the specific forms of the electric dyadic Green’s function are presented for a
homogeneous space, as well as the general form for a layered media environment. In all cases, isotropic
media characterized by e(F),p, will be considered.

| .Homogeneous Space: Spatial Form

For a material characterized by e, p,, the appropriate equations are
VxE(F) = -sp H(F)
V() =se BF) +JF) (B1)
V-J(F) + sp(F) =0
The divergence of the first of (B1) yields V-p H(¥)=0, from which the magnetic vector potential is
defined as

poH(F) = VXA(F). (B2)
Substitution back into the first of (B1) yields Vx[E(F)+sA(7)] =0 leading to the scaler potential
E(F) = ~sA(F)-V4(F). ®3)

Inserting the fields in terms of the potentials into the second of (B1) and invoking the Lorentz condition
V-A(F) = —sp,€ $(F) leads to

(V2= ¥2)AF) = -1 I (7). (B4)

The solution of the above is
AP =p,lim, , f T G(F|Fyav! (B5)

Vv,
where
—y|7-F
GerIry =2 B6)
4 |F-F|

is the free-space Green’s function and ¥ is a small exclusion volume surrounding the point F=F ". The
exclusion volume, having some specific shape and position, has functional dependence on the observation
point 7, where & is the maximum chord of the exclusion volume. The volume within the exclusion

14



region vanishes while maintaining the original shape of the volume [7].

That (B5) is the proper solution of the wave equation can be seen by application of an appropriate
Green’s theorem in solving (B4), where some conditions must be imposed on terms in the Green’s
theorem, such as continuity and continuity of derivatives. The limiting form of (B5) is often omitted,
since (B5) converges to a unique value independent of the shape of ¥, as long as the current is piecewise
continuous [14). Special care must be taken when operating on (B5), especially when performing
differentiation [7].

Once A(F) is determined, the electric field can be obtained from either of the following, -

_ VxVxA(R) _ J(P)
SPo€ se

EF)
: ®7)
B = —s[l - V_‘z"]z(;)

¥

One appealing method of obtaining a dyadic Green’s function is to carefully interchange the

VxVx operator in the first of (B7) with the volume integral operator in (B5) using a three dimensional
form of Leibniz’s rule for the curl operator [15]. This leads to

()= -solim , [ FEF)TEV -2 ®8)
V-¥, ' S€ b
where
EFIFN =[i - %Y} G(F|F") (B9)
Y

For formal manipulations, (B8) can be written as an integral over all space as

E@) =~ [Z°G1Fy-Jav! 510
1 4
= - @ I

where
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2

L |
Z¢ F’)=sp.o{P.V. BFF) +M} B11)
Y

The notation P.V. indicates that the term about to follow should be integrated in the limiting sense as

fPV F(F')dV’ = lim, f FGEav! . B12)
V-¥,

. Homogeneous Space: Spectral Form

It is often convenient to express the Green’s dyadic in the spectral domain. This is especially so
for the case for layered media environments, which naturally prompt Fourier transformation on the two
transverse coordinates. For homogeneous space, one of several forms for the homogeneous space scalar
Green’s function is [16]

—'{|r ?| Jk(-" -x’y Jk,()’ 3%) -p]z z |

GFIF') = dk_dk (B13)
| 4r 4m [7-7| f,_f 227)p 7

where p=‘/k3+k3 +y2. The singularity at F=7/ of the space domain form is manifested by non-

convergence of the spectral integral for z=z’. Since the singular point is excluded by the principal value
integration, the spectral integral is convergent, allowing the interchange of the spectral integral and the
differential operator in (B9), resulting in

-  JTkE=x) ey plz-2]
g(FIF/) — _V_V__ ffe € ¢ dkx dky
¥: )i 22n)’p
“ (. Jee-x"y_ k=¥  plz-z'|
=ff i Vie e _ e Pk k,dk, (B14)
- 22n)°p
Jk (x-x') Jk,(y " -p]z z’)
= f f k. dk,
2(2n)*p

where k = % Jk +Y Jk, +Zsgn(z’-z)p. It may be convenient to write the Green’s dyadic as

16



., Ls@F-7
z‘<?|?'>=suo{P-w gcrlr’»#}
»

. (B15)

- SP-O fj‘{(u kk) e -plz- Zl L 6(7. 4 )} ]k,(x-x’) ]k,(? y)dk dk

(2 1:)2 ,YZ

For this geometry, the depolarizing dyad is fa =£Z. In the first term in the integrand of (B15) the P.V.
notation is omitted since the absolute value naturally decomposes the problem into two regions,

z<z’,z>z’, thereby implicitly enforcing a "slice” type principle volume [17] of vanishing thickness.
1. Inhomogeneous Space: Planarly Layered Media

For media external to the object as depicted in Fig. 1, it is convenient to use scattering
superposition to determine the Green’s function [16]. Attention will be focused on the special case of
source and observation point in the same layer, which provides the relevant kernel for the IE of interest.

Let A=A”? +A° where the first term is the principle part (for an unbounded region containing the source)
and the second term is the scattered part, such that

(V2 =y AP(F) = —po J()
(v2-y2) A% =0

(B16) .

The total potential A satisfies the appropriate boundary conditions at the interfaces. Defining the
transform pair

Alk,skys2) = ff-g(x,y,z) e 50 THOID g
i B17)

T _ 1 T jkfx-x")_jk(y-y"
Awyd= f [ Atk ke, 2e™ M0 ar, dk,

and substitution of the second of (B17) into (B16) allows for the determination of A ’(kx,ky,z) , with A%
determined as in Sec. B.II. This leads to the form

Ay =p, [[37FIF) +5°FIF) TV’ (B18)
| 4

where the P.V. type of integration is implicitly implieci for the principle term, and

17



gr(rir) =1 G(FIF')

, (B19)
EUIF) = 224998, F|F') + 228,71 +(é£;% +i>‘*j";)g:<r”l 7))

In the above, G(F|F’) is given by (B13) and

LyTpy -1' : /
& F|7) - |R K, ky,z,z) e;t,u-x’)ejk,(v-y’) 20
g FIF = [ [ 1Rk, sk, ,2,2") oy b ' .
—sf =, - *
g.FIF") Rk, k,.2,2) i

The Green’s dyadic is then obtained as

L,3(-F )}

.Y2

z¢ 7)= Suo{(l - —] [P.V.2?FI7") +&°(FIF))] +
Y.

SHo ff [ V.V, )[Ie Ple-z |+(xx+yy)R, +22R) [zi(]k )+Zy(k )}R ] (B21)
(2 1 2p

.Y2

i: ) z—z’ : N i o/
, Ls3( )}ejk,(x N0 gy ax,
where fé =22 and V,=%(jk)) +)‘)(jky) +Z éa— The above definition allows the formulation of IE’s for
z

dielectric objects in layered media in a simple and consistent way. The relevant IE’s for three, two, and
one-dimensional dielectric objects in layered media are, respectively,

(ZFIF) +2,16(F-7'); JF'Y) =E™F)
(Z°®18)+2,18G -5, T3)) =E™ (5 k) (B22)
(Ze|z") +2,T8(z-2"); T2)) = E™(z, k. k,)

where the dependance on the spectral parameters in the second and third of (B22) is included on the rhs
to indicate the appropriate one and two-dimensional Fourier transformation, respectively. In (B22)

Zr |7’) is given by (B21), and the two other kernels follow from Fourier transformation of (B21) once
and twice, respectively. The above formulas and corresponding discussion are presented here for
generality, and to provide a foundation for the one-dimensional exafmnple presented in Appendix C.

18



Appendix C. Eigenmode Expansion Applied to Infinite Slab

As an example of the EEM method described here, consider the problem of an infinite dielectric
slab immersed in homogeneous space, as depicted in Fig. C1. The appropriate IE is the third of (B22)

Z el )+ 2,01 TG -2) ;T ) =E ™.y €D
with
= V Vv, [fe ‘Plz"-'l] 27 6(2 ‘Z/) (C2)
N = _ 'z 'z
Z°(z|z") sp.o{(l 72 ) 27 + " .

since R’=R; =R;=0 for the homogeneous background environment. If the incident field is

E() =g ¢ 755 R ©

with jk_=y,sin6;, jk, =ylcos' 6,, the correct transform domain field for the rhs of (C1) is $e ™** with

P = ‘/kf +ky2 +y2= v,cos0,. Integral equation (C1) becomes

(Z,, @12 ¥ )+ 20114 3(2-27) [T (2, 41,750y = e (C9 .
with
e —pllz—z/}
Z, (2l v =s g C2p, ©

The relevant eigenvalue problem is

‘P1|7-’7-’|
<'3T ;fp(z’,v1)> = Z3(v)Jp(2,7,) (C6)
1

with actual eigenvalues for the object given by

Zp(YpYz) =Sko Z;(Yl) + d(YpYz)

Y2 _ Y1) ©n

The kernel of (C6) is the traditional transmission line kernel, which can be derived from transmission line
theory. The IE (C6) can be solved analytically by the method described in [18],[19]. Taking two
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Fig. Cl. Plane wave incident on infinite dielectric slab.
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derivatives of (C6), with regard to the fact that the integration implicitly omits the singular point z=z’
we obtain

d? a2},
— ~Y8|/p@=0 (C8)
(a’z2 ﬂ] P
where yﬁ = pf——lu-. Boundary conditions for (C8) can be obtained by applying one derivative to (C6),
Zp

leading to

i@ -Pijs@|, L =0
2

(C9)
Js@ +p1i,(2)|z_§ =0
The solution is
J'g(Z) =g T8% g inng "Yp? (C10)
where y, satisfies
vy =1BT + Lyp (P17 Ye) (C11)
L Pi*Yp

In [18], various properties of the modes were determined, such as symmetry of the eigenvalues,
orthogonality of the eigenmodes, and completeness of the modes, thereby justifying the eigenmode
expansion which follows. It was also shown that the nullspace of the integral operator in (C6) is empty,
which must be true based upon physical reasons.

Based upon an eigenmode expansion, the induced current in the slab is, from (31),

1 1/, .. pz\
L@=3 7’;7;:<]°(Z)’e %) jp@) (C12)

where

Np =<jp(z) :Jp(z)> (C13)

and
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Z,=sp,

1
7 *Z4(¥1572) - (C14)
D1 ~Yg _

The backscattered field (z<-L/2) is, from (32),
E,()=-(Z,,z|z));J,@"))

(C15)
_ 11 p'o -4z Pz
= EFZ——O“() N '> !
As a check, the reflection coefficient at the slab interface is
r'= E/| - - ___l_ﬂﬁ<] @;e P12> Pl (C16)
£ Ny Z,2p ple)€
Y k=-Ipn

Numerical results based upon (C16) were compared to standard reflection coefficient formulas to verify
the formulation presented here.
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