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Abstract

Self-complementary antennas are based on the Babinet principle in which electric and magnetic
fields are interchanged (duality) with the structure invariant to this transformation. This paper develops
self complementary structures from the electric and magnetic parts of a complex potential as used in
conformal transformation. This leads to various geometries of electrically small impedance sheets with
relatively simply calculable admittance properties. These are also related to the impedance properties of
some TEM transmission-line structures (cylindrical and conical). The use of conformal and stereographic
transformations allows one to generalize self-complementary structures on planes and spheres to

structures having the self-complementary admittance properties without the restricted geometrical

symmetries.



1. Introduction

A classical concept in antenna theory is the complementary antenna derived from the Babinet
principle [9]. The complement is formed by replacing an aperture in a perfectly conducting planar sheet
by a perfectly conducting disc of the same shape in free space. Then with an appropriate introduction of
antenna terminals the input impedance of the two antennas has the relationship

Z(s) 2'9(s) = %%

(1.1)

1
Zy = [_’:&]2 = 376.73Q (wave impedance of free space)
0

where the superscript ¢ denotes complement. Which of the two antennas is the original one, and which
is the complement, is arbitrary. The above definition of complement can be generalized to the case of
portions of the plane of interest consisting of impedance sheets of scalar or even dyadic (2 x 2) form [4, 5,
14]. The complementary sheet impedance (which may vary with position) satisfies a formula like (1.1)
(with a rotation in the case of a dyadic sheet impedance). If the original and the complement are the same

except for a rotation and/or reflection the antenna is said to be self complementary and (1.1) directly

gives
(s) = Z9(s) = % = 18840 12)

which is now frequency independent. As discussed in various papers [10, 12] this relationship can be

generalized to multi-terminal cases.

As observed in [10] this self complementary relationship can also be applied to the TEM modes
on structures consisting of perfectly conducting cylindrical and conical sheets lying on a circular cylinder
and circular cone, respectively, and having an N-fold rotation axis with alternating spaces of equal
angular width to the conducting sheets. (This is described by CN¢ symmetry discussed in [5, 14].) Note
that by the stereograph transformation [13] the conical case can be described by an equivalent cylindrical

case, so that our present discussion can be carried out in terms of two dimensions on a plane.

As observed in [5, 14] the self-complementary relationship for impedance sheets, when
considered for low frequencies (quasi static), implies that such structures can be used to give lumped

impedances which have the same value (ohms) as the sheet impedance (ohms per square). A more




classical way to calculate the impedance of such structures is via the two-dimensional Laplace equation

and the common technique of conformal transformation for solving this equation.

This suggests that one might approach the concept of complementarity from the point of view of
complex variables such as are used in conformal transformation. As we shall see, there is a certain
duality or complementarity between the electric and magnetic potentials making up the complex
potential. This can be used to define complementary and, in turn, self-complementary two-dimensional
structures.



2. Quasi-Static Boundary Value Problems in Two Dimensions

Consider, for example, a uniform impedance sheet illustrated in fig. 2.1A. Here we write this as
R;, a simple resistance sheet, but later, this can be given frequency dependence as desired. This sheet is
terminated in two separate perfectly conducting terminals forming a port with (from some source) a
voltage V and current I. There are also two truncations of the resistive material as indicated so that the
current is limited to some domain Dj,. The electric field E and surface current density 75 are
perpendicular to the terminal conductors (electric boundaries) and parallel to the other two truncations
(magnetic boundaries). For the present discussion the surface current density is limited to the interior
domain Djy. One can also consider the exterior domain Dex as having an impedance sheet with similar

results. Later we shall consider the union of these.

In our two dimensional (x, y) coordinates we have

- -
E(xy) = Rs ]s(xy) = - Vs @e(.y)
®,(x,y) = electric potential

®o, = D, =V @1
Vs = ?x% +?y%
With
\ 75(x,y) = 0 (equation of continuity, static) (22)
we have the Laplace equation
V2@,(xy) = -Vs * E(xy) = -V * (R, T (x,3) 23

RV, Ty(xy) =0

since R is not a function of position. This two-dimensional potential function is to be solved subject the
boundary conditions

®.(x,y) = Pey , .- on electric boundaries
JEY

1k * Vs ®,(x,y) = 0 on magnetic boundaries
-

1h

= unit normal (in x, y plane) to magnetic boundaries 4)
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Fig. 2.1. Uniform Impedance Sheet of Finite Dimensions with Two Terminals (Single Port)



For various irregular boundary shapes one may wish to solve this Laplace equation numerically.

For present purposes of obtaining analytic results we introduce the usual complex coordinate and

potential as

{==x+jy
w({) = u(l) + jv(0) (255)

where w({) is also referred to as a conformal transformation. This complex potential can be used to

express the potentials and fields [2, 15] as

®.(x,y) = = u({) + constant
®u(x,y) = ?M’A——vd,h; v({) + constant
Au = u, - u_ = change in u between electric boundaries (terminals) 2.6
Av = v, - v_ = changein v between magnetic boundaries (edges)
_ N ... (1)
B(C) = E:() - i) = - 3

Note that w is constrained to be an analytic function of { so that the derivative exists independent of the
direction of approach to the point {. This is expressed by the Cauchy-Riemann conditions

Ml) _ o) Ml) _ _ov(d)
o vl v % @7

so that the electric and magnetic potential functions are closely related to each other.

The potentials ¥ and v can also be regarded as coordinates in a (u, v) plane as indicated in fig.
2.1B. This conformal transformation gives what are called carvilinear squares in that equal decrements of
constant ¥ and constant 2 contours give square patches in Dj,; in the limit of small decrements between
contours. Such a small square is characterized by a resistance R;. Counting the decrements in u (to total

Au) and in v (to total Av) gives the resistance for the entire domain D;y, as

vV
R = T° fg Rs

Au (2.8
fg = -~ = geometrical factor

It is this geometrical factor which can be used to scale any sheet impedance, the wave impedance in the

case of a cylindrical transmission line, and the inductance and capacitance of related two-dimensional

structures (together with the length).




3. Two-Dimensional Complementary Structures

Let us now define a complementary structure and boundary-value problem by interchanging the

rolesof u and v, i.e.
w(c)((') = u(‘)(C) + jvO() = £ v(¢) £ ju(l) + constant (3.1)

As indicated, there are various choices of sign that one can use, and being potential functions, an arbitrary
constant can be added. It is the change in the functions (taken positive) between the appropriate
boundaries that is relevant. If desired, one can choose the complementary potential function as an
analytic function of {, e.g. '

29() = ~jw(g) = v(¢) - ju¢) 32)
which is a rotation in the u, v plane.

For our example problem in fig. 2.1, this corresponds to interchanging the roles of the electric and
magnetic boundaries. The perfectly conducting terminals are placed along the magnetic boundaries
denoted by magnetic potentials v,, and v_, and removed from the electric boundaries denoted by electric
potentials u, and u_. This gives a complementary resistance

o _ a9 _av
Y 33)
fgfg:) =1, R R© _ Rg

R(C) = féc) R ,

Comparing this to (1.1) we have the same form of complementary relationship with Zy/2 replaced by Rs.
One way to define self complementarity is then

fo=f?=1, su=av , R=RO =R, G4

This is rather general, but in the example in fig. 2.1A, this may still allow rather unsymmetrical shapes.
Note, however, in fig. 2.1B, that in the w plane the domain Dj, is a square. Keeping the distinction
between electric and magnetic boundaries, this has a two-fold rotation axis (C2 symmetry, equivalent to
inversion in two dimensions) with two axial symmetry planes (C2, symmetry) and self complementarity

(C2ac symmetry).



Comparing the highly symmetric form in fig. 2.1B to the generally unsymmetric form in fig. 2.14A,
remember that they are related by the conformal transformation w({{) and have the same impedance
properties. So we can take a symmetrical shape, including self complementarity, and transform it to a
variety of other shapes which can be analyzed as though they had the symmetries of the original
symmetrical shape.




4. Lowest-Order Self-Complementary Rotation Group; C2¢ symmetry.

In the simplest form, Cac symmetry, we have a two fold rotation axis (C2 symmetry) and the
operation of self complement on rotation by /2. By self complement we take the interchange of the roles

of electric and magnetic potentials as in Section 3, now on rotation by n/2, as

7
@ =jr= ¢?2 ¢ (x/2 rotation of coordinates)

= £© 4 jy(C) =-—y+jx
w(c)(C(c)) - u(c)(C(C)) + jv“’({‘") = w() = u(l) + jv(¢)
w() = —jwlg) , w(t9) = ju()

“4.1)

Note that taking the complement also involves the interchange of the role of electric and magnetic
boundaries. So the complementary structure looks just like the original structure, except rotated by /2,
and it is therefore self complementary. In terms of shape the structure has C4 symmetry (4-fold rotation
axis) except that there are two each of alternating electric and magnetic boundaries. Fig. 2.1B gives a
simple example of such a self-complementary two-terminal device with a square shape. Fig. 4.1 gives a
more general example. Other examples are given in [5, 14]. There are other ways to define complement,
such as by interchanging u and v as +v and tu with various combinations of signs. Which one chooses is

but a matter of convenience.

Carrying the development further, the transformation in (4.1) can be carried full circle as

£ o G g5 [0
c(4) - {(0) =¢ , C(l) = C(C) 4.2)
w(n)(;—(n)) - w(O)(C(O)) = w(() , w(c)((:) = w(l)(;)

So Cac symmetry has four group elements as special kinds of successive %/2 rotations. Note that

(D o O B _ D
2@(®) = —uO((0) = LO(-L®) , O D) = LV(;O) = ZO(-£®) “3)

This illustrates that rotation by n/2 merely changes signs, the structure (including respective positions of
electric and magnetic boundaries) being invariant to this rotation. This gives C2 symmetry (which is also

two-dimensional inversion) as a subgroup.



Fig. 4.1. Cy. Impedance Sheet
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A consequence of this symmetry is that w({) can be taken as an add function of {, i.e.

w(-() = ~w({) @49
which specifies the arbitrary additive constant for potentials with now
w(0) = 0 45)

suggesting that our potential reference be at { = 0. The boundary conditions as in fig. 4.1 now take the

form
U, = —U_ =V, = —vV_ 4.6)

Referring back to Section 2, this suggests that one express the electric and magnetic potentials in the
symmetrical form

so that voltages at and currents into the two terminals (electric boundaries) are equal and opposite for a
completely differential system.

Here we have illustrated the case where Djj contains the sheet resistance. Moving Rs to Dex also
produces a two-terminal device with Cy symmetry and resistance Rg. In this case the reference potential
of zero can be taken at { = . Note that in the conformal transformations one encounters branch cuts as

discontinuities in v({), but these can be placed for convenience outside of Djj, or outside of Dex.

11



5. N-Fold Rotation Axis: CN Symmetry

As a prelude to CN. symmetry, consider CN symmetry (N-fold rotation axis) which is a
subgroup. We have the cylic group with N elements

Cn = {(Cn) e = 1.2+, N}

L . 2
(Cn), = (CN); = rotation by N (5.1)

N . .
(Cn); = (CN)y = (1) = identity
This has a scalar representation

(CN), = C(92) = €/*
(5.2)

Being a scalar representation, the group is clearly commutative. One can also have a commonly used

matrix representation [14].

Compared to the previous section, for N 2 3, there is a new complication in that the boundary
conditions are not neatly equal and opposite for both electric and magnetic potentials as in (4.6). With

three or more terminals there are N - 1 2 2 potential differences to consider. We can generalize (4.6) and

(4.7) by constraining
N N
Zu,, =0, ZV,, =0 63)
n=1 n=1

where the up and vy are the boundary conditions assumed on the successive electric and magnetic
boundaries. This is illustrated for the case of N = 5 in fig. 5.1 (taken as self complementary). On a
physical basis, the N-1 potential differences can be chosen independently, implying that w({) is not
unique. One can similarly interpret this in terms of N-1 currents that can be independently chosen,
subject to the Kirchoff condition that the sum of the N currents be zero. Note that the subscript index n
runs from 1 to N since only the alternate boundaries (the electric (N) or the magnetic (N), but not both)

are counted.

For rotating the potential functions we can define a coordinate rotation by

12




° - J

Fig. 5.1. Cs. Impedance Sheet
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[N o O G4
and rotated potentials by
w(Zl)(C(Zl)) = W(O)(C(O)) = w(l) (55)

The factor of two in the superscripts is to allow for later inclusion of odd indices for self-complementary

rotation.

Given a particular w({) subject to (5.3) then a set of w9 ?9) can be generated as per (5.4) and
(55). Considering first the electric potentials 424({29), form the sum

N
w(g) = Y u®() 5.6)
£=1

which is also a solution of the Laplace equation for Djn. The potential at the electric boundaries is the
sum of the electric boundary potentials for the #@_ Define

61 = {%0) = point on 1st electric boundary
0 . 2 (1) . .
Co=0) =elf1gy = N7 T = elhigy = ey 5.7)

= corresponding point on ‘th electric boundary

We then have

u = uSO) = uOz,)

N N
uy = w(ly) = D u¥(y) = Y u@N(EN-")

n=1 n=1
N . N & '
_ 2“(0)( em(N-h)Cgm) - Z“(Cﬁ)u—n) = Y u(tn) (5.8

n=1 n=1 n’=1

N
= Zu;, =0
n’=1

14




4

Thus we have all the electric boundaries (all £) with zero potential for computing u’({). The only

solution is

w()=0= iu(z")(c) (5.9

n=1

Similarly, considering the magnetic potential and magnetic boundaries, the same steps as above lead to
the same result for v’({), giving

) =0 = 3 u) - iww)(;(zm—n») - SO(gen) 5.10)

n=1 n=1 71'=1
Applying this result to { = 0 we have

C=0=>C(2"')=Oforallm

0= )N:w(")(o) = N w(0) (5.11)
n=1
w(0) = 0

Thus CN symmetry with the sum of the terminal potentials equal to zero (as in (5.3) implies that the
complex potential is zero at the coordinate origin. Considering a sheet impedance in Dey instead of Din,
the same arguments lead to a zero of the potential at «. Note that only CN (N-fold rotation axis) instead
of the more restrictive CNc has been assumed for obtaining this result.

The N terminals have voltages Vp with

Vi =V, uy (5.12)
and N currents with
Iy =Ig[vy = vu1] » vo = VN (5.13)

Since the ratio of voltage drop across an elementary curvilinear square (equal decrements of 4 and v) to

the current through this curvilinear square is just Rs we have the normalizing condition

Vo = I R (5.14)

15



Note that the V;, are referenced to { = 0 which is not a terminal, and the voltages from an experimental
viewpoint are voltage differences between terminals. In some problems (such as multiconductor
transmission lines [6, 7]) there is another conductor (such as a cable shield or ground plane) which is

taken as zero voltage, giving a total of N + 1 conductors. If we define an impedance matrix via

(Va) = (Zam) - () + (Zam) = (Zam) 515
we have the consequence
Zyp = o 5.16)

i.e., a single current into the nth terminal is forced to zero by the constraint in (4.15). Defining an

admittance matrix we have

(Un) = (Yum) - W) + (Ym)' = (Yn,m)

N
ZY,,,,,, =0form=12,---, N
n=1

(5.17)

The zero row- and column-sum constraint comes from setting all voltages to zero except one and
requiring the sum of the currents to be zero. Within these limitations, one can regard these two matrices

as mutually inverse in a generalized sense.

As discussed in various contexts [6, 7, 10] the CN symmetry makes (Yy, ;) circulant, i.e.

(5.18)

Yn,m = Ypen+1

so that the admittance between two terminals is only a function of how far apart the two terminals are
around a circle. Furthermore, due to reciprocity, the matrix is symmetric and it does not matter which

direction one goes around the circle. The matrix is then symmetric circulant or bicirculant as
1M Y2 ¥3-W

2 1 Y-
(Yom) =13 Y2 1 -

16
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n
&
-

L Y
1
s
L
Z

YN+2—-¢

N (5.19)
Yy, =0
2=1

witha similar form for the impedance matrix. Note that there are not N distinct entries, but only N/2+1
for N even and (N+1)/2 for N odd. This can be diagonalized by the Fourier matrix (unitary) [6, 7] or
other related forms.

The admittance matrix has the dyadic form [7]

N *
(Yn:m) = ﬁZIYﬂ(xn)p (x”)ﬁ (a purely real sum)
B

N Y
j
yp=XYme N , Ynu=N
=1

1( .._B - 28 .. 3B

1 2l jaatl  j2a2E :

(g = N 2N, 7N, TN .. o2 (520
Yp = Yn-p (@ll real and 2 0)

. (x,,);, = (xn)N_p

with the spedial case for 8 = N

N
YN =2Y =y =0
=1
_1
Xa)y =N 2 (L1, 1, 1) + (x), (5.21)

For more general cases of CN symmetry involving a reference conductor y5 > 0 and the diagonal-
ization still applies. There is an alternate form of the above which can simplify matters. For an even N

we have N/2+1 eigenvalues from (5.20) with

N _4
2 17 B YN
yp="n +2 E,lYgﬂ cos(Znﬁ) + (1) - *1 (5.22)

. B=012-,N/2-1

17



For an odd N, we have (N+1)/2 eigenvalues with

N1
2 1]
vp =%+ 2| Srmeoze ) 523

B =012, (N-1)/2

The eigenvectors can be put in a purely real form by taking linear combinations of the two in (5.20)

associated with equal (non-distinct) eigenvalues to give two real eigenvectors associated with each

distinct eigenvalue as
1
(*n)p,. = [% Z(cos(zzﬁ), °°s(2"ir_ﬂ)""' m{zx(N;’l)ﬂ)’ 1)
1
-2 B 28 . (N-l)ﬁ)
(xn)p,o = [N]—(sm(Zz ), sm(Zn' N) ., sm(Zzz—N , 1) (5.24)
_ , N/2 - 1 for N even
b= ,(N -1/2 - 1 for N odd

with the special case for 8 = 0 in (5.21) (only one eigenvector). The subscripts ¢ (even) and o (odd)
distinguish the two eigenvectors associated with a particular 8. This is an example of two-fold

degeneracy of eigenmodes as discussed in [8].

Now any acceptable w({) can be constructed in terms of the eigenvectors above. For each
eigenvector (x,,) p¢ » there is a complex (analytic) mode function @ Y (¢) satisfying the electric boundary
"0 0

conditions (at {,) given by the eigenvectors. A linear combination of these will give the desired electric

boundary values subject to (5.3). For this purpose we have the identity

0

(nm) = 2 (el - I 529

for calculating the coefficients of each of the eigenmodes via

> p * = X, X u
(m=%mwmmoﬂ-£u)kn * ()] (526)

The coefficient of the N (or zero) mode is zero due to (5.3).

18




6. Self-Complementary Rotation Group: CNc Symmetry

For constructing the self-complementary rotation group Cnc begin with the self-complementary
angle

6.1)

=8 _Z
¢ =3 =5

so that twice application of this rotation gives rotation by ¢;, the elementary rotation for CN. Consistent
with this define rotated coordinates

c(n) = ¥ C(O) , C(ZN) = C(O) (., {(N) =-¢ 6.2)
Taking the complement as in (4.1) we have the first application of complement

w(l)(;(l)) = w(O)(C(O)) 6.3)
which interchanges the electric and magnetic boundaries. The second application of complement,

@ ( 5(2)) = w(l)(c(l)) = w(O)(c(O)) 64)

returns the boundaries to their original type, but with the potentials rotated by 2¢, = ¢;. Generalizing
this we have

w(")(g(")) = w(O)(c(O)) , n=12,..-,2N

w®() = w ()

6.5)

The group structure of CN is the same as Sy1y , rotation reflection symmetry where interchange of electric
and magnetic boundaries is replaced by reflection through a transverse plane, this being appropriate to a
three-dimensional structure where rotation by ¢, is accompanied by reflection (z —» - z) through the x, y

symmetry plane. These two groups are said to be isomorphic, and CN is a subgroup of both.

Concentrating on the admittance form (to avoid unbounded elements) we have the original

problem

19



(In) = (Ya,m) * (Vi)

(V) = Vo i) ©6)
(In) = Ip (Vl = VN, V2 — Vi, VN-VN-I)
Vo =1Io R

The complementary problem is found by interpreting the vy,s for voltage and uys for current (thus

interchanging the roles of electric and magnetic boundaries) as

(I'('c) - (Y,(,f%; ) . (V,ﬁ")

(Vn) = Vo (va) ©7)
(In) = Io (“2"“1, Uz —uz, -+, UN —UN-1. ul—uN)
Vo =Ip R

Imposing self complementarity implies (from (5.20))
Y9 > *
( ":"') = (Y,,,,,,) = Elyﬁ ("n)p (x'l)p 6.8

Here we have used the complex form of the eigenvectors in (5.20) for the reason that

1( .. B .. 28 . (N-Df . NB
Sl nB joa2B 2w N8 o, NP
(xn)g = N 2 JON L STN T N TN
. B( .. NB .. B . (N-DB . (N-DB
LB j2aNE  janf 2 2
=N 2N TN , ¢ N , oy ¢ N ¢ N 6.9)

B 28 3B NB B

1 _jogB | j2n2E jancP 2 2L

_ NN SN SN J*N N

So, for these eigenvectors, shifting an index merely multiplies the eigenvector by a complex constant of

magnitude one.

Considering the voltages and currents in (6.6), then let us specify the (u,) as proportional to one
of the (x,) p and obtain

20




(Vi) = Vo[ (xa) * (n)] (xn),
(1) = Vo[(xa)p " (4n)] ¥5 (xa),

6.10)

so that the current is proportional to this same eigenvector. Then from the shifting property in (6.9) the

vps in (6.6) can be expressed as

(va) = (v1, v2,,vN) = [l (vn)] (2a)g

—jnB —jan
(N V1o N = € N (v) = € NGzl (va)] (en)

)
(In) = IO[(xn);g' (Vn)][l - CIZZN](xn)p

Equating the two forms for the current vector gives

—jpn
Io[(xn) * (vn)] [l - " N] = Vol (xa)} * (un)]| v

6.11)

6.12)

with the eigenvector removed as a common factor. Turning to (6.7) expand the (vp) as proportional to

one of the (x,) g and obtain

(V) = Vo[ (xn)}* (va)] (n)y
(1) = vo[ (=a)g = (va)] ¥8 (xn)p

Again using the shifting property the u,s in (6.7) can be expressed as
(ua) = (w1, w2+, un) = [(xa)p " (n)] (3n)

b ion B
(“2: usz ,,UN, ul) = e] N '(uﬂ) = elan[(xn);. (u")] (xﬂ)ﬂ

2
(1) = 10[(xn)p * (un)] [e’z"N -1](::,.),,

. Equating the two forms for the complementary current gives

21
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(6.14)



e B
1o (xn) * ()] [e’z"ﬁ-l} = Vo[ (xa)j * (v)]¥ (xa), (6.15)

Combining this with (6.12) gives
B . B
V¢ 2 2 9 jan i o B
—2—y =RS y =1{e N—l 1-e¢ N = 4sin (ﬂ—)
5P A N 6.16)
(B
Rsyp =2 sm(n:-N—

where the positive square root has been chosen since the eigenvalues (admittances) must be real and non-

negative. This is in agreement with [10] noting the replacement of Zg/2 by Rs. Note that

YN =y =0 6.17)

as required in (5.21). By the symmetry in the sine function about x/2 the eigenvalues pair as in (5.22) and
(5.23) reducing the number of distinct ones to roughly N/2 as previously discussed.

Having the eigenvalues of the admittance matrix, as well as the eigenvectors, the elements of this

bicirculant matrix may be obtained as

N
Rs Yy =R Yy, = Rspzyﬁ X1;8 x;;ﬂ
=1

N[ al  _inb ol _omb
=—jN—IZ N _ N | TN TN
=1
[ . B . B
N — Lt - Ll
_ —jN'l z e;n{ 2£+3]N _epr[ 2!+1]N
=1
i z -2¢043)n . z [-22+1)%
_ —jN-l e][ 2£+3]N 1_311 ]” —e]I 2!+1]N l—e’[ ]’r
1- 811-21+3]§ _ ell-z“'ﬂﬁ
n , n
B N_l e]I—2!+3]m . e][—2[+1]§\]—

sin([Zt -3] {ﬁ) sin([Zl -1] %)

22




). =)
sin((20-3175 Join(22-117) N eo(je-157 -0 T (618)
L)

N cos(e-hor)-cof %)

From these matrix elements various combinations of connections of the N terminals may be connected to
give a single port with various impedances of the form of a constant times Rs. Examples of the same are
included in [10] where Ry is replaced by Zg/2.



7. Reciprocation of Two-Dimensional Structures

The self-complementary impedance sheet has been considered for the interior domain Dijp.
However, it applies equally well to the exterior domain Dex (e.g., in figs. 4.1 and 5.1). One way to see this
is by the operation of reciprocation [15]. For this it is convenient to introduce complex cylindrical

coordinates as

£ =x+jy=Yel* 7.1)

Then introduce the analytic transform

x+jy = \I’lej’l = bz/C (7.2)
V2/Y , ¢ = ¢

&1
¥

which is a conformal transformation. The operation of reciprocation (non analytic) is given by

X +jys = Wel®2 = b2/ = ¢f (7.3)
B2IY , 4 =¢

{2
W

These formulas describe the simple transformation by which the angle ¢ is kept the same, but the radius

¥ is replaced by its reciprocal, appropriately scaled by some radius b.

As illustrated in fig. 7.1A, consider some impedance sheet (here illustrated as C3. self
complementary), where the sheet occupies Djn as previously discussed. Accomplishing the analytic
transform as in (7.2) produces the configuration in fig. 7.1B. Since this is an analytic transformation
({ = {1) then the values of u on the electric boundaries and v on the magnetic boundaries are
unchanged and the admittance calculations as before are still applicable. Hence fig. 7.1B also has C3¢
symmetry and the previous results apply. Going to fig. 7.1C the reciprocation transformation ({ — {5) is
just a reflection through the x axis. This is equivalent to looking at the figure from the backside and the
admittance results are the same. So both transformations of a self-complementary structure with CN¢
symmetry produce other Cn self-complementary structures and the same admittance results apply.

Going a step further, as in fig. 7.2A, combine two self-complementary structures with the same
CNc Symmetry. Let one have R$™ on the original Din. Let the second have R{*) occupying a subset of

Dex (by making the dimensions of the interior boundaries sufficiently large so as not to intersect Djp).

Note that the outer structure need not be related to the inner one (or even have the same value for N).
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Fig. 7.2. Self-Complementary Combination of Internal and External
Impedance Sheets with C3. Symmetry
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With the same values for N the inner and outer structures can have their corresponding electrical
boundaries (terminals) connected together to give a combined structure with CNc symmetry where the
previous admittance formulas can be used with Rs replaced by R$™ //R°“") (parallel combination), or
by R;/2 if Rg"’ = Rg‘”"). A limiting case of this combination is seen in fig. 7.2B where the two sheets
are made to occupy the entire plane with respective boundaries coinciding so that R°“" now occupies all
of Dex. Note that the magnetic boundaries now correspond to a cut (small separation) between the two
resistive sheets so that no surface current density can cross such a magnetic boundary. The electric

boundaries (terminals) are now common to both resistive sheets.

As discussed in [15], it is possible to have a self-reciprocal structure, i.e., one which maps into
itself in the transformation (7.2). As shown in fig. 7.3A, this could involve two resistive sheets with at
least partly disjoint boundaries. The portion of the plane between the electric boundaries can be enclosed
by a closed conducting boundary as in fig. 7.3A. In the case of a TEM transmission line such closed
electric boundaries correspond to a (perfectly) conducting tube. However, the corresponding portion of
the plane between corresponding magnetic boundaries has no such simple analog in two-dimensional
TEM transmission lines due to the difficulty in realizing magnetic boundaries in such a case. If we are to
have the magnetic boundaries one and the same for the two resistive sheets under reciprocation then the
magnetic boundaries become arcs of a circle of radius b as in fig. 7.3B. Self complementarity then
requires that the electric boundaries also lie on the same circle. Note that applied to TEM transmission-
line configurations this last type of structure is that discussed in [10].

The self-reciprocal self-complementary configuration in fig. 7.3B is a special case in that no cuts in
the resistive sheets are needed to stop the current flow across the portions of the circle that are magnetic
boundaries. The reciprocation principle assures us that the mapping from Djp to Dex preserves electric
potential (voltage) in mapping from { to {. On the circle { = bel® = {2 and the electric potential is
the same on both sides of the circular boundary implying no current flow through the circle where there

is to be a magnetic boundary. Note, however, that one can still have different values for
R™ and R4V
S S .

The conformal transformation for C2, symmetry (two-fold rotation axis with two axial symmetry
planes) for two conducting plates on the circular boundary is known explicitly [1]. (The self
complementary configuration C2,¢ is a special case of this.) Via the stereographic transformation [13] a
cylindrical TEM transmission line (plane wave) can be converted to an equivalent conical TEM
transmission line (spherical wave), so the foregoing results can also be applied to conical-transmission-

line structures. (They can also be so applied to sheets on a spherical surface.)
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8. Reflection Self Complementarity

Another type of self-complementary structure is one which is its own complement on reflection.
As illustrated in fig. 8.1, let us take the reflection with respect to the x axis. The reflection group is then

Ry ={[&)). 0} . (&))" = @ ®D
If {3 is the transformed complex coordinate, we have

(3=x3+jy3 =¢ =x-jy 82)
Thus reflection is the same as conjugation, or reversing the y coordinate.

With electric and magnetic boundaries around Djp as in Section 2, we have the interchange on

reflection
WO = vyl = v 83)
ng) = u+ ’ V(_c) = Uu_

So we have
wO(g) = O(Q) + jvOQ) = v() + jult) = jw* () 8.4)

This is one of the choices in (3.1), one which is appropriate to reflection (an improper rotation). Except for
the coefficient, then conjugation of the complex coordinate results in conjugation of the complex potential.
Furthermore from (8.3) we have

Au=Av , fo =1 8.5
as discussed in Section 3.

In addition, the reflection symmetry gives

w{¢*) = W) + jv(e") = v(e) + jult) = jw°(¢)
29(¢) = w¢°)

8.6)
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Fig. 8.1. Reflection Self Complementary
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As previously discussed, this type of self-complementary structure can also be transformed by conformal,

‘ reciprocal, and/or stereographic transformations to give other structures with the same impedance
properties.
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9. Concluding Remarks

Complex potentials and the associated conformal transformations are then another way to define
and analyze self complementary structures. The impedance sheets with uniform Rs (or even with
frequency dependence) are appropriate to electrically small structures which can be analyzed via the two-
dimensional Laplace equation. However, the results are the same as those derived from the Babinet
principle for more general electromagnetic scattering and antennas involving planar structures (not in

general electrically small).

This interchange of electric and magnetic potential functions for defining self complementarity
leads to some generalization of the concept of self-~complementary structures. Starting from some self
complementary structure involving geometrical symmetry (e.g., rotation, reflection, etc.), the original
geometry can be changed to a generally non-symmetrical one via a conformal transformation. The values
of the electric and magnetic potentials are unchanged by the transformation, thereby leaving the terminal
impedance properties unchanged. So one can think of any single-port device (two terminals) with fo =1

(or Au = Av) as self complementary, and similarly for N-terminal devices with an admittance matrix

described as in Section 6.

By including both Rg") and Rg‘"“) to fill the entire plane, and invoking reciprocation symmetry
so as to make the electric and magnetic boundaries all lie on a common circle, one has a self-
complementary geometry applicable to a special cylindrical TEM transmission line (plane wave). The N
terminals occupy equal arcs, equally spaced around the circle. By a stereographic transformation (plane
to sphere) a conical TEM transmission line (spherical wave) is defined. However, there are various
possible stereographic projections depending on the selected radius of the sphere, and point of tangency
of the sphere to the plane (i.e., not necessarily in the center of the circle). This gives various possible
conical transmission lines, all with the same admittance properties. If desired, one can apply the
stereographic projection back to a different plane to obtain yet other geometries for a cylindrical
transmission line. All of these can be considered self complementary in the generalized sense discussed

above.

Here we have considered rotation and reflection symmetry, but various kinds of translation
symmetry can also be included [3, 11, 14]. In terms of the complex-variable approach studied here, one
can also approach periodic arrays of resistive sheets with appropriate conformal transformations. In [4, 5,
14] special kinds of self-complementary dyadic admittance sheets are found. It would be interesting if

they had some relation to the present complex-variable approach.
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