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1. Introduction

A recent paper [5] has considered the effect of target symmetries, specifically the point symmetry
groups (rotation and reflection) on the symmetries in the scattering dyadic. The commonly applicable
symmetry of reciprocity is also assumed there. The present paper extends the results to the case of a self-
dual scatterer (symmetry on interchange of electric and magnetic parameters).

As indicated in fig. 1.1, let there by a scatterer contained in a volume V bounded by a surface S of

finite linear dimensions. The scatterer is characterized by constitutive parameter dyadics

o= Pae d

€(r,s) = permittivity
L(7,s) = permittivity (1.1)
~ = Laplace transform (two sided) over time
s = Q + jo = Laplace-transform variable or complex frequency
One can also have conductivity, but for present purposes, this can be included in the permittivity.
The incident wave is taken as a plane wave
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The scattered field (superscript sc) is given in the far-field limit by
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Fig. 1.1. Scattering of Incident Plane Wave
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where 7 = 0 is appropriately centered near or inside the target. This scattering dyadic contains all the

properties of the target that one can observe in a radar.

A common symmetry which is sometimes assumed (and often applicable) is reciprocity as

SH-o - ST 5 -
A(lo,1i;5) = A (—1i,—1p;5) 14)

giving a symmetry on interchange of transmitter and receiver. A sufficient condition for this is that the

constitutive-parameter dyadics be symmetric. For backscattering this gives

- -
10 = - 1;
- - -T (1.5)
& o T ) & -
Ap(1li;s) = A(-1i,—1i;8) = Ap(1i,s)
Note that the scattering dyadic is transverse to both incidence and scattering directions as
e - - - o -
A(lo,1i58) * 1 = 0=1; * A(lo, 1iss) (1.6)

due to the transverse nature of the incident and scattered far fields.

For later use, define some dyadics associated with incidence and scattering directions as

o L e A ) -

1; = 1-1; 1; = dyadic transverse to 1;

« L ) -

1{ = 1- 1,1, = dyadic transverse to 1,
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1 =151 + ly ly + 1z 1z = identity dyadic
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=|-1 0 0|in 14,1y,-1; coordinates
0 00

= - n/2 rotation in h, v plane

(observer looking in 7 direction)
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To = 10X 190 = 1o X 19 =— T o with similar interpretation with respect to 1o direction (1.7)
o2 “ o2 o

Ti =-1i , Ti =-1p

o T © o ol © . . .

TiTi=1i , To-To= 1o (two dimensional inverses)

- - -
In terms of the standard h, v radar coordinates we have (with 15 , 1y , — 1; as a right-handed

system)
o - > - -
1i = 1nlp + 1vlv
- o - >
(?i= lhlv— ]vlh

1.8)

Consider an angle y for positive rotation in the usual mathematical convention (counterclockwise) in the

h, v plane
© A d © - -
Ci(y) = licos(y) — risin(y) + 1i 1;
« T -1
Ci(~y) = Ci(y) = Ci {v)
R d L d L d
Ci(w) * Ci(-y) = 1 (identity)

Similarly for the scattering direction we have

- -

L d o “ .
Co(y) = 1o cos(y) —Tosin(y) + 1o 1o

- - -
with similar properties. Theninthe 14, 1v,- 1i coordinates we have

- cos(y) -sin(y) O
Ci(y) = |sin(y) cos(y) 0
0 0 1

(1.9)

(1.103)

(1.11)



as an explicit form of the rotation. A similar form can be written for the scattering. Note that for

backscattering we have .
©
- - © ©
lo==-1i , lo=1i , Te=-7i
«
Ci(w) = Col-v) (1.12)

so that in backscattering both conventions merge with attention to signs.




2. Duality

By duality is meant the symmetry in the Maxwell equations on the interchange of electric and
magnetic parameters [8]. Using the combined field and current density

Eq(r t) = E(r t)+ jqZ, H(r t)
T4@0 =770+ ]——Ih(r B

(2.1)
g=%t1= paratlon index

the combined Maxwell equation is

[Vx —;Z gt:l q(_r),t) =jq2Z 7q(7,t)

(2.2)
The electric and magnetic current densities can here be interpreted as
S C Ll =
15(7,5) = s[?(_r),s) - g l] - E(7,s)
_ (2.3)
s 2 Lad =
J (7.9 = s[‘ﬁ’(‘r’») - U, 1] * H(7,9)

Source currents can also be included in (2.3) which in this form include electric and magnetic polarization
currents, conductivity having been lumped in with the permittivity

The duality transformation is just

@ S

Eq (7,0 = -qj Eqg(r,t) 2.0
—@ - - - 4
E (7.0 =2H7.H , H (?,t):-El-E(‘r’,t)

0

Applying this twice gives the negative of the original fields. The identity is recovered by four applica-

tions which makes this like C4 symmetry in the complex plane [8]. Applying this to the current densities
gives
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where we have
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Comparing the dual to the original current densities gives

) o, oW o,
u (r,s) _ e(r,s) ) £ - u(r,s) 2.7
Ho & & Ho

as the relation of the dual target to the original one. From this we conclude that for a target to be self dual
we need

o ISR
u(#ro,s) _ s(gr,s) 2.8)
1]

Scalar permeability and permittivity are merely a special case of this. Note that reciprocity (symmetric
dyadics) has not been assumed for this result.




3. Scattering by Self-Dual Target

From (1.3) scattering from the dual target is given by

- () -, = (inc,d)
A N - -
Ef @o=5—A (10,19 E (0,9
4nr
~ (inc,d) - > (inc,d) (inc,d)
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Et (0 ) = Zon(r t) = lo x Ef(r t) = 10 *Ef(r,t)
and substituting into the dual scattering equation we have
- ~(d) &, (ino)
wid N T
Ef79)=-5—F A (10,159 Fi"E (0,9 (33)
47r
Comparing this to (1.3) we have
e A CORN
3 d
A(lg,li;5)=— To * A (10,11,5)
~ (d)
- A d -5 =
= - 10XA (10,11,5))( 11 (34)
@ o ©H6- o
A (1o,1i;5) = — To * A(lo,1i;s) *

S o

= 10XA(10,11,S)X 11

For a self-dual scatterer (as in (2.8)) we then have a restricted form of the scattering dyadic

obeying

- - S-H -
1o, 1; To * Ao, 1i38) * Ti (35)



This is an interesting kind of symmetry which makes the scattering invariant to rotation of the fields

about the directions of incidence and scattering. From the basic scattering equation (1.3) we have .

H ‘:) e_?r > (:’ - = :)("15) o 4

Ef(f S)=-E To ° A(1i,1i;9)* E (0,s)

7 = ~ (inc)
i o H
= —54—; “?o A(lo, 11:5) * E (6)15) (3'6)

e—yr (:) - = :)(inC) -

= i A(lp,14;8) " 74 E (0,s)

Weighting this by -sin(y) and adding to (1.3) weighted by cos (y) gives

(inc)

—
(0,s) 3.7)

A= R T ar
E

(v’) Ef(r s) = ———A(lo,l,,s) (v)‘

where the rotation-by-angle-y dyadics are in (1.9) and (1.10). So rotating the incident field by y (about

?,‘) results in rotation of the far scattered field by the same angle y (about ?o). The waveforms

(incident and scattered) are invariant to this transformation. Applying this to the scattering dyadic itself,

—_
dot multiply (3.7) by Co(-y) giving

B = 2y BT T - S - :’(m)(o )

f r,s) = 4717 o _w o, 1i;5 ‘,‘, 'S (3.8)
S o o SH-H -
A(1p,1i;8) = Col=yp) * A(1l,, 1i;8) ° Ci(l;f)

This is a generalization of (3.5) to arbitrary rotation angles. Note that

© U -
(-2)= % BT Co(Z) = -%or T (39)

giving (3.5) as a special case.
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4. Backscattering by Self-Dual Target

Applying (3.5) to backscattering for a self-dual scatterer we have

- — « <
To=-1i , lo=1i , To=-7i @n
C S o o oo
Kp(Ti,9 = R 1;,Tiz) = Ti * Ko(Ti,9 * i
In terms of the more general rotation in (3.8) we have
I3
0(—",) = l(v’) (42)

L
C
2t o o — L

Ap(Ti,9 = Ci(y) - K10, 7039 * Ci(y)

- -
Note that in backscattering rotation about _1’0 is reversed when referred to 1;. Also note in (4.2) that
reciprocity has not yet been assumed.

- - -

Writing out the components of the backscattering dyadic we have, referred to the 14, 1v,— 1i

‘ coordinate directions,

S - - - - - - - - - - - - -
Ab(li,s)=Abhh1h1h+Abhv1h1v+Abvh1v1h+Abvv 1v1ly

- o - -
= 1; x Ap(14,s) x 1;

- - - - - -5 - - - - - -
= —Abh,h lv1ly + Abh,v Iv1pg + Abv,h 1phlyv - Abv,v 1h1p
Abh,h = —Abv,v 4 Abh,v = Abv,h

S - ey - e T & - T )
Ap(1i,s) = Aby (1i,8) [1h 1h—1v 1v| = Ap,(1i,s) | Thlv+ 1y 1h

& — & -
Ab, p(1i,8)  Ap,,(1i,5) 0

& - & -
Abh,v(li’s) —Abh’h(lils) 0

4.3)
0 0 0
=~ ~T
o L I )
A(1i,s) = Ap(1i,s) (symmetric)
. Note that the backscattering dyadic is symmetric even though reciprocity has not been assumed.
Furthermore, this dyadic has only two independent components.
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As in [5], let us now consider some implications of geometrical symmetries. Consider the case of
an axial symmetry plane (containing Ti) which we take without loss of generality as containing ?h-
Such reflection is described by the group and dyadic representation

Ry = {(1) , (Ra)}

o o o o o 100 (44)
M>1,R)>Rrn=1-1pTp=|0 10
0 01
Applying this to the backscattering dyadic as
S - o S - o
Ap(1li,s}) = Rp * Ap(1i,s) * Ry 4.5)
gives
- 4 - -
Abhv(li.s) = Abvh(li,s) =0
- -
Ap, ,(1i,s) 0 0
AN S - ' N “.6)
0 0 0

with now only one independent component. However, noting the minus sign in the v, v location, this is

—_
not proportional to 1; . Note that this dyadic is also invariant with respect to another axial plane contain-

. -
ing 1vas
100
“ o - -
Ry ={1), (Ry)} , Rv=1-1v1lyv=]0 -1 0
0 0 1 4.7)
S > o S - ©
Ab(llls) = RV ¢ Ab(llls) ¢ RV
This backscattering dyadic is then invariant to transformation by the direct product group
Coa = Ry ® Ry 4.8)
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which is also described as a two-fold rotation axis with two axial symmetry planes.

e 3
Now consider rotation about the — 1; axis. Such an N-fold rotation is described by

Cy = {(CN)ll t=12,.., N}

(Cn) = (Cn)? = rotation by ¢; = 2—;‘- 4.9)

N = (Cn)y = O

This has a dyadic (matrix) representation

>

Ci(eg) = Ti cos(¢;) — 7isin(g,) + T 1
cos(¢y) -sin(¢,) O
= [sin(¢y) cos(¢y) O (4.10
0 0 1
© PR HN © (—-)‘1 «
Ci(#¢) = Ci(d1) ., Ci(d1)=1 , Ci (82) = Ci(-9¢)

As discussed in [1, 7, 8] backscattering for targets with such symmetry has the form

&S - - - TEN - - o
Ab(1i,s) = Ap 1(1i,8) 1i + Ap,(1i,8) 7T

- - - -
Ap 1 (1i,s)  Ap ,(1i,5) 0 @i

~ - ~ e d
—Abm(li,s) Abm(li,s) Ol for N 23

0 0 0

where reciprocity has not yet been assumed. (With reciprocity the coefficient of i is zero.) For N=2

>
the above result is not obtained and a general transverse Ap (four non-zero components) is invariant to
Cp transformation which is equivalent to a sign reversal of the incident and scattered field, a consequence

of linearity.

Comparing (4.11) to (4.3) the unique solution is

13



©
A

- L e d
p(1j,s) = O for N 2 3 . 4.12) .

i.e., zero backscattering. This is a generalization of the result in [6] where zero backscattering is derived

for the case of N = 4, invariance to rotation by n/4. Now the result is also generalized from scalar to

dyadic permittivity and permeability.
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5. Forward Scattering by Self-Dual Target

Applying (3.5) to forward scattering from a self-dual target we have

- - -> - L) o

lo=1;i , 10=1; , To = Ti

~0 1 } 1) 1 o ~l (5.1)

oS
X)f(?i,s) = R0, Tz = -7 - Af(Ti,9 * 75
From (3.8) we have the more general rotation
& < S o <
Af(_l’i,s) = Ci(-y) * Af(1i,8) * Ci(y) 52)

HOE (Iz\)f(—fi 5+ Ciw)

so0 that the forward scattering dyadic is invariant to rotation about ?i (independent of any symmetries in
the target other than self duality). Writing out the components as in (4.3) we have

o - - -5 -5 - - - - -5 o - - -
Af(14,s) = Afhh 1hlp + Afhv 1p 1y + Afvh 1v1p + Afvv ivily
- o - -
=-1; x Af(li,s)x 1;
- - - - - - - - o - - -
—Afhhlvlv_Afh,v lvlh—Afvh 1h1v+Afvvlh1h
Afn= Doy 7 DMfuv = ~Dfun
o - yary - e - — o
Af(1i,5) = Afy W (1i,8) 1i + Ag (1i,s) 7

-~ —> - —_
Afh'h(li,S) Afh,v(li’S) 0 (5.3)
- —> ~ —_

= —Afh'v(li,S) Afh,h(li’s) 0

0 0 0

which is a combination of the transverse identity and a rotation. The forward scattering dyadic has only

two independent components.

If the target has an axial symmetry plane parallel to T}., then the reflection described by (4.4)
applied to the forward scattering dyadic gives [5]

15



- —)' - —)_
Afh,v(ll’s) = Afv,h(ll's) =0

&S - - = «
Af(1i,s) = Af(li.s) 1;

(54)

which is symmetric even though reciprocity has not been invoked. Furthermore, there is no change in the
polarization from incident to scattered field. This forward-scattering dyadic has C.., (or O3) symmetry.

(rotation by any angle with infinitely many axial symmetry planes).

Considering _1),' as an N-fold rotation axis, one can apply ?i(¢g) as in (4.10). Howéver, note that

this is just a special case of the general property of the forward scattering dyadic in (5.2). So Cjy symme-

try here adds no new property to the forward scattering dyadic.

Inversion symmetry is described by

I={1, D}

(1)-—>(—1+ . (I)—)—?

Applying this to the backscattering dyadic for a target with this symmetry gives

- 1 = -14

&S - &S o

Af(llls) = Af(_ lils)
which with (5.3) gives

~ - -~ - - -_ -~ -
Remember, however, that on inversion we have

« - - “ o
11. . T _; .

-1)-

(5.5)

(5.6)

(5.7)

(5.8

o o . =
and one of the h and v directions reverses. While inversion produces the above form for any 1;, various

other symmetries which reverse T (including reflection R; through a transverse symmetry plane, as
well as rotation reflection and dihedral Dy symmetry with this principal axis) produce similar results.
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Consider now the implication of reciprocity. From (1.4) we have
o o aT >
Af(-14,8) = Af(1i,s)

- - > - - =Y
= Ap, , (1i,8) 1i— Ap, (1i,5) Ti 59)

-~ -> L d - - =Y

- -> P - - - - -
b, 10,9 = Ry, , (11,9 , Ay, (- 1i,9) = -Rp, (1i,9)

which is a kind of invariance to direction reversal. Note the change of sign on 7i on direction reversal,

and the change of the i direction or v direction.

Now combine inversion symmetry from (5.6) with reciprocity to give

e oT 5 e
Af(1i,8) = Af(1i,8) = Ap(1i,8) 1 (5.10)

) I
= Af(-1i,8) = Ap(-1i,s) 1;
The coefficient of ‘7; vanishes and the scattering dyadic is proportional to the transverse dyadic with a

coefficient which is invariant to reversal of 1;. Similar results hold for other symmetries which reverse

7 for particular choices of Ti.
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6. Low-Frequency Scattering by Self-Dual Target

For low frequencies the scattering is dominated by the induced electric and magnetic dipole

moments via the respective polarizabilities [2, 3, 5] as

oS- - o O o &
A(1o,1i;8) = 72[— 10 * P(s)* 1i + Ti M(s) - (?1] as s—0 6.1)
From (3.4) the dual scattering dyadic is
~ (d) ~
N ] o> -
A (15,1658 = Do * Allo, 1is9) * To
o &@ o o9 4 ©62)
=§5-10* P (s)* 1i+ 70 "M (s)° 7i|ass—>0
from which we identify
a9 &5 s 5
P (s)=M(s) , M (s) = P(s) 63)

This should be apparent from the interchanged roles of € and ¥ in (2.7) together with the interchange

of electric and magnetic fields. For a self-dual target then evidently

S o
P(s) = Mls)
& o o O © S
A(To,Ti;8) = 73 =10 * P(s)* 1i + To * P(s)* Ti|as s>0 6.4)
2 OD D
= ¥° X(1p, 1i;s) ass—>0
Note a general symmetry on reversing both directions of incidence and scattering [5], giving
- -
(6.5)

O - - o
X(—10,—1i;s) = X(1o, 1i;5)

For backscattering this becomes
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o - S - - o O S
Xp(1i,8) = X(- 14,1539 = =15 * P(s)* 1i =i * P(s) * %
- - - = - - - - - - - - (66)
- [Pv‘v(s) - p,,,,,(s)] [1;, 1h - 1vlv|- [Ph,v(s) + Pv,h(s)] Thilv + 1v 1k
This exhibits the fact that the backscattering dyadic is symmetric without invoking reciprocity.
In forward scattering we have
& = o> — © s © 'y
()_(’f(l,',s) = ‘)_()(li,li;s) =-1; * P(s)* 1i + Ti * P(s) * i ‘
) . - _ _ 6.7)
= ~[Bunls) + Poy(s)] Ti - [Buv(s) - Punls)] 2
consistent with the general form in (5.3). Invoking reciprocity gives
« oT L) oT
Ps)= P (s) , M(s)=M (s)
& - T - - - o
Xf(1i,9 = Xf(1i,9) = —[Byuls) + By y(5)] Ts 6.8)

o o

Sections 4 and 5 consider the influence of geometrical symmetries on backscattering and forward
scattering, respectively. For low frequencies these results also apply. Of course, it is the symmetries in
the polarizabilities, whether or not they come from geometrical symmetries that are important. Various
geometrical symmetries (with reciprocity) induce simplifications (i.e., symmetries) in the forms of the
polarizability dyadics as tabulated in [4, 5]. A special case is that of a generalized spherical (O3),
tetrahedral (T), octahedral (O), or icosahedral (Y) symmetry (including reciprocity), each of which gives

6.9

Note that the forward scattering is polarization independent and independent of the orientation of the
target. For a spherical target, this is immediately apparent, but for the regular polyhedra this relies on the
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fact that the multiple rotation axes make the polarizabilities (related to dipole moments, not including the

higher order multipoles) invariant to all rotations and reflections.
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7. Concluding Remarks

Self duality gives some special properties to target scattering. For general angles of incidence and
scattering, rotation of the incident field produces an equal rotation of the scattered field. For backscatter-
ing, this means that the scattered field is rotated with sense opposite to the incident field when both are
referred to the same direction, i.e., the direction of incidence. If, in addition, the target has a three-fold or
higher rotation axis parallel to the direction of incidence, the backscattering is zero. When combined with
various geometrical symmetries and/or reciprocity in the target, the scattering dyadic attains various

simplifications (symmetries) as well.
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