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ABSTRACT

The chain of physical processes which lead from exterior RF
(microwave) -illuminating flux. to- the power induced in spacecraft interior
cabling (and thus conducted into subsystems) is described. A sequence of
physically derived algorithms for computation is presented. For conditions
appropriate to randomized RF energy in overmoded spacecraft cavities
(roughly, that interior dimensions >> RF wavelengths), the result is simple
and requires littte knowledge of cable parameters and their detailed
geometric configurations. For convenience, an effective cable coupling cross
section is defined by which the exterior flux is multiplied to get power induced
in a cable.



Objective
We wish to compute the energy coupled into subsystems in the interior

of a spacecraft illuminated with narrow-band microwave RF radiation. We
start from a given Poynting vector describing the incident radiation of

frequency f:

tncident Flux
S(w) = watts/ meter?2 inrange w — w+dw, wherew = 2xf,

is a vector pointing from the illuminating source (earth) to the space craft.

Spacecraft RF Characterization

For the spacecraft we assign an arbitrary axis, (say along a line of
symmetry if it exists) and locate all the apertures, assigning each an index"i"
and a vector cross section o; depending on the relevant parameters (major
dimension "ag", shape factor "s{" , aperture resonant frequency "fgi"). The
vector direction "ni" points toward the interior of the spacecraft.
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Power Reaching Spacecraft Interior
The power penetrating the spacecraft through the apertures is "Pin (w)".

We have three choices for this, depending on what we know about the
orientation of the spacecraft:

If the craft is oriented and stabilized,
Pin (w) = ZiS'no; ul Sni]




If the craft is tumbling or of unknown orientation, we average, so that
(one-half the time any aperture will be shielded, and < cos > = 1/2):

Pin (w) = 2i <S*nici u[S'nil> = 1/4 2 ISlo;

For a worst case estimate,

p|n ((!J) = 2| |S|0‘ .

(The step function "uf S-n;]" allows only unshadowed apertures to be
counted.)

Energy in Spacecraft Cavity
By definition of the "quality factor" "Q" , the energy "Wiot" inside the

cavity satisfies

dw
tot w _
gt * 220 Vi = Pplo.t) sothat
W, =~ 2Z9p () =%p  iftheincident pulse lengthis >> 17 ,

= P.x (incident pulse length) otherwise .

For convenience we define W as one-third the average energy density.

1

W
W = tot with @/ the spacecraft interior volume.
3 VvV p

Statistical Description of Interior EM Fields
If the cavity is "overmoded" (many modes in the narrow bandwidth of

the illumination, or equivalently, cavity dimensions are large compared to
3



incident wavelength) the energy will be "randomized" and distributed
probabilistically with equal amounts in each of three orthogonal directions.” In
particular, the energy density Ws in each direction is exponentially

distributed (x2) with p.d.f.

- Ws
w

In a like manner, the electric field is randomly distributed. In any
particular direction "s" , each of the two cavity eigenfunctions (analogous to
two polarizations) of the electric field, Es; , is normally distributed:

Here, 7 ¢, E = + W , with equipartition of energy between

the two eigenfunctions.

Correlation of EM Fields
Electric fields in different directions are independently distributed (i.e.,

uncorrelated). Electric fields in the same direction but at different locations, for
the same eigenfunction, are correlated for relatively close separation.

Specifically, following Lehman's work:

. () - 27
Wlth k L 1 F — _A_ .
<E; (0 Es; (X)) > sin k Ix - x'|
> S et By p
=2 X - X

" The exponential distribution for RF power has been observed in many experiments with
various cavities. A careful theoretical derivation has recently been given by T. H. Lehman, “A
Statistical Theory of Electromagnetic Fields in Complex Cavities", Interaction Note 494, May
1994. Our description of the statistical properzies of the fields follows this work.



Where necessary, we can approximate the correlation coefficient as:

x(x,x') = 1, Ix-x1| <« %

= 0, otherwise.

Thus, the joint probability distribution for electric fields at different

locations is:
2 2
S _2«xE_.E +E.
plfs,i(x)' ‘Es,i(x')] - B _1 exp |- S,i S, :"__28"
2 EJ1 -2 2(1-«d E

where x = k(x,X) and Egj = E5i(X); Esi' = Es(X) .

Using the [one, zero] approximation for the correlation coefficient,

2 2
_ ‘Es,i+£s,i
e 2E2 N
p[zsi(x): £S,I()(')] - _ = U IX - X >'2_
2nx E
=
2
e 2E A
= B[E;- E] — . Ix-xl <5
2:tE2
We note that
<Eg; (X) Ex)> « 0, Ix-xI >%.
« E2 ., Ix-xI< .%

In what follows we may use this property to simplify our computation.
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To get the total averaged electric field in a particular direction, we
combine, incoherently, the contribution of both eigenfunctions and look at the

magnitude:

E, = / Z: S ii , » Which has a Rayleigh distribution, with p.d.f.

p(E) = e

Coupling to Cabling and Subsytems
The coupling of the RF energy to subsystems is dominantly by means

of the currents and voltages induced on inter-box cabling and thereby
conducted into subsytems, rather than by direct field penetration into boxes.
Thus we next compute the cable interaction.

We might use transmission-line formalism for this purpose; however,
the wavelengths and geometries involved do not meet the conditions for this
to be valid. Instead, we use an approach which has been used for lines
above ground interacting with high-altitude EMP and does not require that
wavelenths be large compared to separations. We shall first consider a semi-
infinite line and later modify the result for real segment lengths.

Voltage Induced in Cables
For an illuminated line above a ground plane, the open-circuit voltage

induced at the end is given (in the frequency domain) by:
° (w)s
Vi (@) - f ds eY E; (s, w) , where s is measured along the line.
]

y(w) is the complex propagation constant for the line-ground plane

configuration. For idealized perfectly conducting boundaries we would have
y(w)= yo = jko = jow/c;, for realistic conductors, y(w)= yo4{(j »), where
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Ln{ 1_+h /jwpoog }+ 1
H(j w) = {4 - hw/_j“’“oog Bt /| © Bo Ow
2h
iLn=—
- Qett -
Here h is the average height of the bundle above a ground plane, og
the ground plane conductivity (generally, that for aluminum), ow the wire
conductivity (that for copper) and aetf is an equivalent radius for the multiwire
bundie. For a bundle of diameter d. made up of n wires of radius ay,

n n-1

and the common-mode characteristic impedance of a mutiwire cable-ground
plane configuration is

where Ty is the impedance of free space (377 ohms).

Probability Distribution of Induced Voltage
In general, the p.d.f. for a new function of a random variable y = f(x) is

given by

p(yy = fdxp(x)d[y-f(x)], with the Dirac delta-function.
Thus, the p.d.f for V¢ is given by
0 ‘s
P(Vo) = [AE P (E)8[Vy - [ds e E(S)]
- 00

To evaluate the integral we note that it can be expressed as a sum of
random variables. If they were independent, and there were many of them,
we could use the central limit theorem and get a normal distribution for Vgc . A
probilem arises, however, when the random variables in the sum are
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correlated; the ensuing computation is unmanageably complicated. We
avoid this with an approximate solution which should be quite accurate.

An Approximate Solution
if we use the "one, zero" approximation for the correlation coefficient,

the various terms in the integral (sum) are independent if separated by more
than one wavelength. So we shall approximate the integral by a sum of
segments of length A :

L

°  Yw)s "S-
w - n

fds e E(s0) = re ' E (spo)

"0 n=1
- YAN
Each of the N random variables is Ae E (w), which has
mean zero and variance
- 'y - )
&2 = 22 le 2 n|<£52> = 32 gT2Revan 2

n

Then, by the central limit theorem (or, since each of the random
variables is normally distributed) the p.d.f for the sum for each polarization is

normal with zero mean and with variance = X On2. Thatis,

%c‘l n=N=%
2
e .
P (Vi) = -J__—=_2— , wrtho% = & o,
210V
or
L
n:N:-—
A -2Rey A N —_—
~2Reyan .2 2 1 - 23
o = 2. e M<EI> = e A E
-2Rey L —_ —_— —_
L e 2 E %AZEZ - LAE




Here we have used the fact that for typical spacecraft, the propagation
attenuation distance is very much longer than any cable lengths, so that
(Re y )L << 1. (The evaluation of the relevant cable parameters is given in
the appendix.) This approximation, which is equivalent to omitting the
exponential factor from the integral from the start , produces a tight upper
bounding. Substituting for oy ,

2
VOC,i
. 2E2LA
p(VOC,i) = —
2xES L A

Power Induced in Cable

Since the voltage V has zero mean, and because we are interested in it
anyway, we give the distribution for the power flowing to the cable end (if
terminated in a matched impedance); for this we incoherently add the
contributions from both polarizations. That is,

Voo, + Vo,

oC,
P = P1 + P2 = — , with Z, the characteristic
Z

C

impedance as defined earlier.

The p.d.f. for this cable power flow is:

PP) = fAVy [V 5 P (Vg 1) PV ) 8IP - ——5——==]

Y, + Y,
e 20%

2"‘0%/1/)'1 Y,

= fdyd'dyz Zcé[ZCP—(y1+y2)]
0 0

where y1,y2 = Voo 1 Voc 2



Thus,

Z P
T 208 ZeP : P
e v dy 4 -
p(Py= [ . =TT

We note that this is distributed exponentially in the same manner as the
RF energy density in the cavity.

P

_ _cable
e P 5
p( Pcable) = & ., where the mean power P is given by
2
5 205 _  4mAln, E _ 4x AL my W,
B Z; B tn2h B n2h ¢ 3y
aeff aeﬂ o
4n7»LnOQPin 4:|:C7xLQPin
- 2h
3e,f Vg 3f ¢ tn2lh
eff eff
4m cA L Q apenzuref' n; G
= IS
3f ¢ nsh ISI
eft
or 4xcrlQ apegngi
= " y ISl
3f 9 Ln-?l—
eff
or 4xcilQ

- 2o I8l

.‘?ﬂ apertures
3f 1Y 4n 5,
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depending on the choices originally made (see above). As before, vV is the
spacecraft interior volume.

Effective Cable Coupling Cross Section
We can express this mean cable-coupled power in terms of an effective

cross section for the incident flux:

P = Oeﬁ: cable 1S1 , where
4xcrLQ 2 s n; G
o _ apertures
eft: cable - T
a
eft
or
4xcAhLQ E g,
_ . apertures
3f vV Ln%—h 4
eff
r
° 4 cALQ
= > o
2h apertures'

eff

This is the final result we have sought. We note that very little
information about the cabling is needed; the length and rough dimensions for
cable size and stand off are all that is required. (The characteristic impedance
depends only logarithmically on the latter dimensions; thus details are not
necessary.)

11



SUMMARY

We list the sequence of physical processes which lead from the exterior
incident RF (microwave) flux to interior coupled power in cables, and indicate
the quantities computed and used in back door estimates.

Incident Flux

Spacecraft Back Door Apertures

Power Penetrating Through Back Door

Mean Energy in Cavity
Distribution of Cavity Energy

Distribution of Electric Field Components

Correlation of Electric Fields

Distribution of Total E-Field Magnitude
Cable-Ground Propagation Parameters

Distribution of Cable Induced Voltage

Distribution of Cable Power Flow

S(w)

i (w), nj

Pin ()

Wiot (@)

p(W): Exponential
p (Es,): Normal
<Es (x) Es (x)) >

p(Ey) : Rayieigh
Y, Z

P (Voo) : Normal

p (Pcabie) : Exponential

Equivalent Cable Coupling Cross Section <Pcane> = Ot cable S

12



APPENDIX

NUMERICAL EVALUATION OF SPACECRAFT CABLE
PARAMETERS o

First we numerically evaluate the most significant cable parameter --
the propagation constant for a cable-ground system. From above, y(w) is the
complex propagation constant for the line-ground plane configuration. For
idealized perfectly conducting bo_undaries we would have y(w) = yo = jko =
jw/c; for realistic conductors, y(w) = yo H(j w), where

N

i { 1 +h /jmp.oog} 1 i
in . + -
H(j ») = ] h Jiou, o it | @ Mo Ow

- eft

+

Here h is the average height of the bundie above a ground plane, og
the ground plane conductivity (generally, that for aluminum), oy the wire
conductivity (that for copper). and aeff an effective cable bundle radius
defined previously.

With appropriate values for the metal conductivities:

Copper conductivity = 5.5 x 107 mho/m
Aluminum conductivity = 3.5 x 107 mho/m
we find,
1 123 h a

Fev - meters, with f in GHz, h,aff in cm.
ey Yt (h+ 1.25a_ ) °

" .
and, Z, = =>tn20 - 60 tn2M ohms, which ranges between
2n Bert Bett
_h

42and 180 ohms as 7 goes from 1 to 10.

eff
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Using the following values as typical:

Frequency = 10GHz = 1010 Hz
Effective cable radius = itecm = .01m-
= 2cm = .02m

Height above ground plane

we find, 1/Rey = 240 meters. This is very much longer than expected cable
runs, so that attenuation of the induced signals will be due to other than ohmic
loss; this justifies the approximations made earlier. For these same values,

Z. = 83 ohms.
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