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Generalization of the BLT Equation

Carl E. Baum
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Abstract

The response of a multiconductor transmission line network to electromagnetic excitation is
described by the BLT equation. This paper generalizes the BLT equation to include nonuniform
multiconductor transmission lines in two different ways. This allows one to model quite general

electromagnetic systems in the topological formalism of the BLT equation.
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1. Introduction

The BLT equation relates the waves leaving the junctions to the scattering matrices for the
junctions and the propagation on and coupling to the tubes (individual multiconductor transmission
lines) in a network of junctions and tubes [1, 2, 6]. This is being used to model various physical problems,
including large cable networks such as appear in aircraft and other complex electronic systems [4, 9, 10,

12], and other electromagnetic structures (as in Marx generators that can be modelled as a network of

MTLs (multiconductor transmission lines) [13].

In its original form the BLT equation is written for use with uniform MTLs, i.e., ones for which
the per-unit-length impedance and admittance matrices are independent of position along each particular
tube. In this case, there are two uncoupled vector waves propagating in opposite directions on each tube.
In the present paper, this is generalized to NMTLs (nonuniform multiconductor transmission lines) for
each tube in the network. The resulting NBLT equation has additional terms allowing for the coupling
between the two waves on a tube. An alternate form is found by regarding the tube as just another

junction with now two incoming waves, two outgoing waves, and two wave sources. This form of the

BLT equation (say BLT2) can model very general problems.
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2. Nonuniform tubes
For an N-wire transmission line (N conductors plus reference) we have the telegrapher equaﬁbns
d (- =, = 3(s)
-d—z-(Vn(z, s)) = — (Zn/m(z, s)) . (In(z, s))+ (I,(IS) (z, s)J
4 , (2.1)
E(I’l (2.9) = = (Ya,m(z5)) (Valz9)) + (v,?) (z, S)J
where
z = position along the tube (real)
( ~n (Z,S)) = voltage vector
(-n (Z,S)) = current vector (positive current in direction of increasing z)
( ~,/11m (Z,S)) = per-unit-length series impedance matrix
(i;m (Z, S)) = per-unit-length shunt admittance matrix (2.2)
( "ns) (Z,s)j = per-unit-length series voltage source vector
(f,(ls) (Z,S)) = per-unit-length shunt current source vector
~ = Laplace transform (2-sided) over time, ¢
s = Q+jo = Laplace-transform variable or complex frequency

This is illustrated by the diagram in fig. 2.1.

Here the vectors all have N components and the matrices are N x N. In later use, N is subcripted
(e.g., Np) to indicate a wave on one of the various tubes (MTLs) in the network. We also have {1, 7, §, 11,
17]

1
(}_’n,m(z, s)) = [(Z,’Lm(z,s))'(f@',lm(z,s))]z (positive real (p.r.) square root)
propagation matrix

(e (25 (T2 = e, 29 (Zite.9)

- T
=\Z (z,s) = characteristic impedance matrix
Cﬂ,"l

I

(an,m (z, s))

(2.3)

(ch’m (z, s))—1 = (?Cn,m (z,s))T

characteristic admittance matrix
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Fig. 2.1. Per-Unit-Length Equivalent Circuit of Multiconductor Transmission Line




where reciprocity has been assumed. Here these matrices can be functions of z , so let us also introduce

(?n,m (5))—1 = (Zn,m (5))T

normalizing impedance matrix

(Zn,m(s))

.(2-4)

Hl

which is independent of z. Combining the matrix telegrapher equations as

_d_[ (Va(z5) J _ [ } (On,m) (Z,/,,m(s)) . (?n'm(z,s))JQ { (17,,(2,5)) J
(

E(Znm®) - (Lz9))  \([Zam®)  (Fm(z9)  (0m) Zym(9) + (Ta(29))
(2.5)

(7.9
(Zunte) - (1.9

-+

gives a supermatrix (2N x 2N) equation with supervectors (2N) for source and response. The form of this

equation relies on the fact that the normalizing impedance matrix is independent of z.

Consider the first-order supermatrix 2N x 2N) differential equation

2 (Ennle 29 ) (( )) © [[Ennlzzoi), ]

Z(zpz,;:s 1,,m (identity supermatrix)
(( (z0%0 ) (( ) y sup

{6

1 1if n=m
M0 i nem
Op,m = 0 for all n,m

The solution of this equation is called a matrizant 5, 14-16] (or supermatrizant if one prefers). It has the

properties

27)



Applying this to (2.5) gives

_ (Onm) (Znm(®) - (Yam(z5))
((‘fn,m(z'zcis))o_'a,) = - (Zn,m(s)) . (f’,;lm(z,s)) (On,m)
(f’,,(z,s)) _ (—n(ZOIS))
(Zn,m(s ) ) (fn(z,s)) - ((:n’m(z'zo;s))o,o’j (Zn,m(s) ) (f71(20f5))

r(r
+ ((‘::’l'm(z'zo;s))a,c’] ® | ((éﬂlm(Z'/ZO;S))GIU,)_l ° (an(s)) . (I',gs)'(Z',s)) iy’

(‘_/n(zo ,s))

- (Enntzs), . ) @ | Ennts) - (ileo.5)

There are various cases that such a matrizant can be expressed in closed analytic form (using common

special functions) as discussed in [11]. In any event the matrizant has representations in terms of a series

of repeated integrals and the multiplicative integral. Note that since

{((Enteos), . )) - o

due to zero diagonal entries, then the matrizant is unimodular, i.e.,

det(((énlm(z,zo;s))GIG,D —1

2.9)

(2.10)

Noting that our choice of positive direction for increasing z on a particular tube is arbitrary (two

choices being possible), let us define two choices as

i

zr right increasing z

zy left increasing z
zr +z¢= L = length of tube

0z <L,0<z/,sL

(2.11)




Then, defining a reflection supermatrix as

(o) = () o)

we have

(2.13)

where the r and ¢ subscripts on the voltage and current vectors indicate the z coordinate to which these

vectors are referenced. Remember that on reversing the direction of z the direction for positive current is

also reversed.

By choice of zg as 0, and z as L, then (2.8) relates the voltages and currents at the ends of the tube
to the sources along the tube. This still leaves the boundary conditions at the junctions at the ends of the
tube. Since in the BLT equation these boundary conditions need to be expressed in terms of scattering
matrices, then voltages and currents at the tube ends are not the desirable variables. A preferred form is

in terms of combined-voltage waves defined by

(‘771(7"5)) = (‘771(1/5)) + q(zn,m(s)) ’ (7,,(2,5))

q
(VISS)I(ZIS))q = (‘755)’(3/5)) + q(zn,m(s)) ) (Tl(zs)'(z's)) (2.14)
qg==*1

z, (right going reference for current)

which can be readily converted back to voltages and currents if desired. Note the use of the normalizing
admittance matrix which is not in general the characteristic impedance matrix. As subscripts let us use +
for right-going (increasing z) waves, and ~ for left-going waves in fig. 2.1. Note that here z is right going
with the left pointing direction for current in the left-going wave accounted for by the minus sign in g. In

(2.12) if we change from z, to z, reference the roles of + and — waves interchange.

Converting from voltages and currents to waves (as in (2.14)) can be regarded as a change of basis

described by the supermatrix transformation.



((Q"'m)o,o') - (8::3 _((11::1))] = ((Rn,m)g o ) (( n m)g o )
P _[(0n,m) (tn,m) »
(( n m)o,d') B [(1,1,,,1) (on,m)] (2.15)
((Rn,m)o.lo_’)—l 3 ((R"'m)o‘,c')
((Pn m)UIU')—l - ((P"'m)o c )

The inverse transformation of course changes the waves back to voltages and currents. Similarly the

sources transform as

(W (z.9), o (W)
((V,gs)'(z,s)) i ((Q"'m)a,a'] © |(Zumls) - (1765 (2.16)

Converting the matrizant to wave variables we have

(Fumterzol), ) = (@unly ) © (Enmeaod), ) © ((Qnm)yer)
[(fn,m(ZO/ZO/’S))G,G,j = ((171,"1)5,0/) (2.17)

d

ol ) - (e, ) @ (oo, )

so that the transformed matrizant is also a matrizant. In this form the coefficient supermatrix is the

propagation supermatrix

(lnrely ) == (@omly ) © ({ntes), ) @ (@nmle) -

N | =




Note the sign reversals for the diagonal blocks and for the off-diagonal blocks of the propagation
supermatrix. The new form of the matrizant (say, the propagation supermatrizant) in (2.17), being related
to the previous form by a similarity transformation, is also unimodular as in (2.10). The notatic;n is
chosen in this form since the propagation supermatrix is a generalization of that used in [1]. This is seen
by setting the normalizing impedance matrix in (2.4) equal to the characteristic impedance matrix in (2.3),

assuming for present purposes that it is independent of z, giving

- _ "(7n,m(s)) (On,m)
(('}'n,m(s))o.lo_,) = ( (On,m) (7n,m(5))
~(Fum(s)z=2] 219)

NN 001
((r"’m(z'zo's))o,a') B (On,m) e(‘?"'"'(s))[z‘zO]

with the + and — waves then separating.

With the propagation supermatrizant, the solution for the waves on the tube is

(‘771(2/5))

( n(z, 5))

+| ((f‘n,m(z'zo;s))c,c’J ®

Since we will need the waves at the two ends of the tube we have

(‘771(01 5))
(7a(0,9))

+



3. The NBLT Equation

In order to incorporate the waves and sources on a tube as in (2.21), define a matrix (¢ ;,) (a

topological matrix like others in [1]) with

1 if nand v are on the same tube and u # v
“uv = 19 otherwise G

Here 1 and v are wave indices with

wv=12,.., Ny
Nw = number of waves on network
2NT = twice the number of tubes

(3.2)

Replace each ¢, by matrices

(n,m),, , (size NuxNy = Ny xNy) if ¢y =1

U

(size Ny, X Ny) if ¢, 5 =0

N, = number of wires (N, conductors plus reference) in tube with uth wave

Ny = Ny if ¢y =1

((Cn,m)u,vj = ((Cn,m)u,v)T (3.3)

Then we have (for later use)

N
* (Com)

v'=1

: (Vn(zv,s))v, (3.4)

(Vn(zv,s))v =

u, v’

When v’ = vthis term is picked out and associated with the index u. Here zy is the coordinate (ranging

from 0 to L) for the v’ th wave. Each tube has two waves, say the uth and vth , with

z, +zy =L, = L, = lengthof tube 55)

0<z,<L,,05z, 2Ly
which 1 and v paired this way being determined by (cy,2)-

The r0le of the junctions is summarized in the scattering supermatrix as

((705), ) = ((Enmts), , | © ((Fnte),)
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_ Ny Ny
((Snlm(s)) J = scattering supermatrix, size | > Ny | x | D, N, (3.6)
uv u=1 u=1 -
This relates the waves incident on the junctions, i.e., at the end of the tube (zu = Lu) for the uth wave, to
the waves leaving the junctions, i.e., at the beginning of the tube (z,, =0) for the uth wave. At each
junction, the coordinates are all zero for outgoing waves, but L;, for incoming waves, the same position on
a tube being described by two different coordinates for outgoing and incoming waves as in (3.5). Note
that (3.6) does not include sources since, for present purposes, all the sources are considered to be located

on the tubes.

Let us substitute for the incoming waves in (3.6) in terms of outgoing waves on the same tube

using the results of Section 2. In (2.21) relabel as

+ > u,--v

(\7,1 (o, 5))

= 1:‘nmeO/'s , © _
(( m ))o’,o') (V”(L”’s))v (3.7)

- (),
- » dz!
+ g (( (L 20 S))G,U') (\7,(15),(25'5))1; ”

The matrizant is here referenced to the z; coordinates as indicated by the arguments Lu and z;, The
integration is over z;, but could be changed to z;, or to a mixed form with terms integrated with respect
to z,, or zy depending on which combined source is involved. Now consider the first vector block using

the first matrix superrow in (3.7) as

(Pltws)) = (TnmlLa 0:5)), - (7:(0,5)

+ (T m(Ly. 0 )17 . (\7 (Lv,s))v

(
i

123

s

VE)(s) )
L, )
(‘7’§5)(5))11 = J (f‘n,m(ﬂﬂ,z{l;s))lll . (17’(15) (Z{(’s))zl azy
?‘u (3.8)
+ J (fn,m(thrZ{l;s))lz ) (\7,&5)’(2;},5)) dzy,
0

11



[(f‘n,m(Lﬂ'Z{l;s))Ll +(fn,m(11112{1))1 2:, ) (?és)l(zzlus)) dzy,

’

+

o I—.:h o ._‘:h

[(f‘n,m(Lu/Zzlds))lll ‘(f‘n,m(Lll/Z{t))ll2:| ) (Zn,m(s))“ ) (TT(IS),(Z{US)) dz;,

In the last form, the source vector is represented as integrals over the per-unit-length voltage and current

source vectors, in case this is more convenient for computation. Note that the label u is still retained to

indicate which tube is intended and what is the positive direction for current

Substituting for the v-wave term in (3.8) via (3.4) and rearranging gives

N,

'z_:l [(171,m)u,v, - (f‘n'm(Lulo;s))lﬂ . (C”’m)u,v'] . (f/n(Lv"S))v'

(3.9)
= [ : - 7(s) )
(FomlLu0:9), (Val05)), + (706)),
For convenience, define two supermatrices as
Nw
(( (1 )(LH,O 5)) ) = @ (rn,m(LurO}S))
u,v u=1 11
Niy (3.10)
=(1,2) : ) - = .
((Tn,m (LHIOIS) u,v) 121 (rn'm(Lu’OIS))l,Z
where the direct sum constructs a block diagonal supermatrix from square (N;, X Njy,) matrices as
Nw .
(( ngmg )(LM,O 5)) ,v] = uE:Bl (rn,m(LurO/'S))U’O_,
- (1‘",1,,,1(14,0,-5))(7 . (ntm(LZ,O;s))G . @---@(I:,Z’m(LNW,O;s)) , (3.11)

o,0

diag ((fn,m(Ll'O"s))g,o' ! (I:"'m(LZ'O;S))G,G’ 'm'(fn’m(LNW’O;s))UIU']

it

Aggregating over u in (3.9) to form supervectors and supermatrices (with dummy indices u, v) gives

K(ln ), v) (( 21, 0; s)) ,v) ® [(C"’”‘)u,vﬂ ® ((Vn (Lu,s))“)
(( T (L. 0; S))ll,vj ® ((17,1(0,5))”) + ((1755)(5)%) (3.12)

with the source supervector having elementary vectors described in (3.8). Substituting in (3.6) for the
incoming waves (at the L;;) in (3.12) gives

12



L

(36),) - [Br),,) © (9,

- ((gn,m(s))ulv) ® [((1,1,,,,)”,0)—((ﬁ‘&;ﬁ)(Lu,o;s))u,vj ® [(Cn,m)ulvﬂ_l (313)
o (R, ) o (#0s),)« (70),)]

This is rearranged as

() (5060, ) [ (520009, ) (o)
® ((f’rg;%)(Lu,O;s))ule} © ((#009),)

- (6umt),, )@ [((nm) o) 0009), ) @ [(c)ﬂ o (7))

(3.14)

This is one form of the NBLT equation (nonuniform BLT equation, or nonuniform sandwich equation, or
other identification of the letters as appropriate). As in the BLT equation in [1], this is cast in terms of
outgoing waves at the junctions; incoming waves can also be used. As exhibited in (2.19), if the tubes are
assumed uniform with the normalizing impedance matrices taken as the characteristic impedance
matrices, then the supermatrices with (1,2) superscripts are all zero supermatrices, and the NBLT

equation reduces to the BLT equation.

13



4, Tubes Treated as Junctions

In the foregoing the sources were derived from the per-unit-length sources along each tube.
These were than “positioned” at the ends of the tubes to add to the waves leaving the tubes which are
equivalently incoming at the junctions. As such, these sources do not appear in (3.6), the scattering

equation for the junctions. If we model the tubes as junctions, then sources need to be included in the

scatering equation as

((7:6),) = ({Bumt@),, ) © (705, ) + (#09), ) w1

Note that with no tube lengths appearing, all the waves are both outgoing from one junction and
incoming into another. The sources are taken as adding to the outgoing waves, or equivalently are taken
as just inside the junctions, as illustrated in fig. 4.1. This is consistent with modeling a tube as a junction

where the sources are additive to the outgoing waves as in (3.7) and (3.8).

Modeling a tube as a junction, note that it is a special kind of junction with two vector ports, two
incoming waves and two outgoing waves, as illustrated in fig. 4.2. Compared to (3.7) where there are two
waves labelled 1 and v, but evaluated at two locations, there are now four waves: 17 and v at one end of

the tube, and up and v at the other. Then (3.7) can be rewritten as

(f‘n,m([‘uz,l 0 S))o’ o’

’

(%), ) [

(Va(s))

J . (7)),

(Va(s))

[%) Uy

({/Igs)’(z{lz'l ,5))
(177(15)1(2211,2 ,s))

where the integration is along the z;,_ . coordinate which is the same direction as #1 and u3 in fig. 4.2.

Ly

A (R L

0 ,

1‘2,1 ,
dZ“Z,l (4'2)

U1,2

For clarity, the coordinates along the tube are now Zy, (from 11 to up) and Zy,, (from v to v1) so as not

to be confused with the u and v wave indices used in this section. Rewriting (4.2) in terms of the blocks

relating the v1 outgoing wave to the 1] and vpincoming waves we have from the second superrow

+ (Tam(L2,2,08))  (Vuls))

1y 2,2 2

(), = (Fum{t22.0:5)), *(%06)

L“Z,l

+ (f" (L Lzl ;s)) ‘(Vgs)'(z't s)) dz]
g n,mi Uy 2.1 2.1 7 “21 iy U32,1 (4.3)

14
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(V,, (5)),,

(gn,m(s))u,v

Typical junction

Fig. 4.1 Junction Model
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adjacent
junction /

adjacent
junction

Fig. 4.2 Tube Modeled as Junction
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L"Z,I ( )’
T ’ . NEYCl ’ ’
+ (rn,m(Luz,vZuz,vS))n (Vn (zvllz,s))v i,
0 ' L

Considering v1 as the output we have the scattering equation

(‘7n<°'5))vl = (én,m<s))vllul (%),
+ (én,m(s)) . (‘771 (S)) (4.4)

+ (7 (9)

'01,'02

(5]

where the scattering matrices and sources are given by

~ - _1 =
(5)1,m(5))v1 " == (Fn,m(LHzJ ’O;s))z 5 ) (r"'m(L"‘z,l'O;s))z 1

~ _ -1
(Sn,m(s))vl,vz = (Fn,m(Luz’l,O;s))z,z
(5 S )
(s _ _ (% ) = VR o), ,
(Vn (5))01 = (rn,m(Luzll/O/S))z’z g (rﬂ,m(Lﬂz,1""113,1’5))211 (Vn (2”2,1’5))“2’1‘12112,1
L“Z,l ( ),
= ’ . 7{S ’ ’
+ j (rn,m(Luzllzzuz'l;s))z , (Vn (Zvll_,_zS))U dz“z,l
0 < 1,2
(4.5)
~ -1
= - (rn m(LuZII/OIS))? 5
L“Z 1
J [(Fn’m(g‘zrl'z{’ll;s))? 1 B (r’l’m(u‘zll'zz‘ll’.s))? 7] ' (V'(IS) (Z{‘Z,l’s)) D
0 2, 2,2
Ly,

"'m(L“ZJ Zi ;S))') 1 (r"’m(Lﬂ?'l Fitgy ;5))2 2] . (Zn'm(s))uz 1 . (YHS) (Z{‘Z'l 'S)) i,

<

,_.
| a—
TN

!

Note that after the scattering matrices and source vectors are computed, the indices are relabeled with v1,
u1, and vp assuming certain values of u and v in the overall network, these values of u and v being

different from the earlier identification with waves on the tubes.

Having the scattering matrices and source vectors, then (4.1) is rearranged as

17



U [((1n,m)u,v)-((én,m@)uﬂ)] ® (%), ) = ((?£5>(s>)u) , a0

This is a very general form of the BLT equation, say BLT2, discussed in [2, 3]. Here the tubes have been
replaced by junctions with sources configured according to outgoing waves (instead of incoming waves if

one merely shrinks the tube lengths to zero).

Comparing this result to the NBLT form in (3.14), note that the NBLT form appears more
complex. This is becuase of the interaction of the two waves on a nonuniform tube. Note, however, that
the dimension (size) of the vectors and matrices is only helf that of those in BLT2. This is associated with
the fact that Ny, the number of waves for the NBLT is twice the number of tubes, while for BLT?2 it is four

times the number of tubes due to the four waves used to reduce a tube to a junction (as in fig. 4.2).
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5. Concluding Remarks

In this paper, two ways of including nonuniform tubes (NMTLs) in the BLT equation for a
network have been considered. For the present discussion a normalizing impedance matrix which is
independent of position along each tube has been assumed for simplicity. This is not an essential
assumption. As discussed in [11], there are various ways to formulate the NMTL equations to arrive at
the relations between the incoming waves, outgoing waves, and sources. These can be used in place of
those in (3.8) to give the NBLT equation, or of those in (4.2) to give the BLT2 equation. The normalizing
impedance matrix need not be the same at the two ends of the tube; one merely needs to use the

appropriate impedance matrix to define the junction scattering at the corresponding tube end as in [1].

In the BLT2 form one is not restricted to MTL networks. The junctions can be used to model
electrical networks and even cavities with appropriate care given to defining equivalent voltages and
currents for the cavity ports. In the NBLT form, one need not consider only MTLs for tubes, but anything
that connects to precisely two junctions. The number of equivalent voltages and currents need not be the
same at each “end” of the tube. This gives two quite general formulations for complex electromagnetic

systems.
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