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Abstract

The theory of synthesizing a finite-impulse response (FIR) system intended for the
discrimination of radar targets is presented. The way to construct the filter is discussed
in detail in its most general form, with additional mathematical items regarding solv-
ability of the system and the way to perform quasi-inversion of the corresponding matrix
provided; the use of this system for identifying different types of aircraft according to

their backscattered responses to ultra wide band radars is considered.



Introduction

The method of digital signal processing presented in this paper is essentially in the
class of FIR filters which in the time domain are described by a window of some chosen
length 2L + 1 moving along the sequence of samples of the input signal:

L
Yi= D HiTitl 1)
I=-L
where every new retrieved sample y; is represented by the weighted sum of 2L + 1 given
input samples z;,; each of them being multiplied by the corresponding weight — the filter
coefficient p;.

The procedure of synthesizing the filter discussed is similar to that implemented by
the frequency sampling method. Recall that according to the latter scheme the desired
magnitude response |Hp(e’*)| of the filter, which is a continuous function of frequency,
is sampled providing a sequence of samples at, say, N equally spaced frequency points
over 0 < w < 2m: |Hp(e/*)|, where wy = 2mk/N for 0 < k < N — 1. Then an
FIR ﬁlt:,er is designed whose magnitude response exactly matches the desired response at
these N points, and approximates the desired response in intervals between the points
mentioned. In the approach proposed no intention exists to approximate the desired
magnitude response; it can be stated that in some sense there is no frequency response
specified, at least in the usually accepted meaning of the term. To the contrary, certain
values of the magnitude response are specified at some points on the frequency axis given
beforehand, but, however, not necessarily equally spaced. In this method the obtained
filter response in undefined frequency regions, i.e. between those given points, can have
any form. Points on the frequency axis where values of the magnitude response are set
actually represent the frequency values of the input signal components. This item can be
considered a bottleneck of the approach proposed, because the aforesaid implies a priori

knowledge of the input signal components’ frequencies. However, there are a number of




problems where this information is directly available, and in those cases the advantages
of the method are apparent. The problem of the discrimination of radar targets can be
considered one of the possible examples of the situation mentioned.

The time-domain scattered field response of a conducting target has been observed to
be composed of two distinct sets of waveforms. An early-time forced period, when the
excitation field is interacting with the scatterer, and the discontinuities in electrical char-
acteristics at-the object’s boundaries give rise to impulsive components in the response, is
followed immediately by a late-time period during which the target oscillates freely, and
the currents induced upon the object radiate energy at natural frequencies. The late-time
period can be decomposed into a finite sum of damped sinusoids (excited by an incident
field waveform), while their oscillating frequencies are determined purely by the target

geometry.

Then for the late-time period the measured time-domain backscattered field can be

represented in the form
P
r(t) = ) ape’® cos(wpt +p), t>T (2)
p=1
where a, and ¢, are the aspect-dependent amplitude and phase of the p-th mode, T;
describes the beginning of the late-time period and P modes are taken into account. The
natural frequencies s, = o, * jw, for different aircraft can be found experimentally and
are reported in several publications [1,2].
In the subsequent sections of the paper the algorithm in a general form is derived, and

its operation for the needs of target discrimination is demonstrated.

Construction of filtering algorithm

Corsider an input signal composed of M decaying sinusoids having damping factors

{0} and frequencies {w;}, for 1 < ¢ < M, and N pure sinusoids with frequencies {w;},
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for M+1<i< M+ N. The model of the input signal can be written as

M M+N ’
z(t) = ) 2A:e” cos(wit + i) + § A; cos(wit + i) . 3)
i=1 i=M+1

We adopt an assumption that the entire sets of {o;} and {w;},for1 <i < M+ N, are
known. All other parameters of the input, namely the amplitudes (2A; for the decaying
sinusoids and A; for pure ones; the convenience of the use of these notations will become
apparent later) and the initial phases ¢;, for 1 < i < M + N, are unknown. We wish
to construct a symmetric FIR filter which would pass the desired M; < M decaying
sinusoids and N; < N pure sinusoids embedded in the input and would reject all others.
Under the condition of symmetry of the filter window (meaning that g = g_; in (1), for
1 £ 1< L) the algorithm will be proved to be invariant to all undefined parameters of
the input. For evident convenience we will leave for use only the positive index in the
notation of the filter coefficient, yy, for | = 1,..., L; the first coefficient is chosen to be
2u0. In accordance with (1) and the aforesaid we write down the filter operation in the
form:

L
¥i = 2u0%i + ) pi(Zict + Tigt) (4)

=1

Let the input (3) be sampled at the rate w, (i.e., the discretization interval is At =
27 fw,). To simplify the calculations, we firstly consider the transition of a single k-th

decaying sinusoid through this filter; this sinusoid can be written as:

g®(t) = 2A4e cos(wit + i) = Ape*t (ej(“”‘t"'“"‘) + e'““’"“’“’”)

= A (e(0k+.7'Wk)t+J'<Pk + e(vk—jwk)t-jtpk)) = Ake’kt + A;el;f

where A = Are?* | 8k = o)+ jwi, and * designates the complex conjugate. Let us for the
sake of simplicity consider only one term of the complex-conjugate pair of the addenda
in the last expression — Age®** — forming the input to our filter. Then according to the

filtering algorithm (4) and assuming that the filter’s middle point lies in the time moment




t = 1y, the corresponding i-th output sample can be presented in the form

A-;,c‘k'

L .
y‘(k) = 2#01&],6"“0 + Z i [Akeak(to-lAt) + /ike'"‘(to-HAt)]
=1 N

L
= 2I‘OAke”‘t° +Eﬂ,Akeu¢o [e—aklAt + ea*IAt]

I=1

L
= 2Ape’*t [m + E i cosh(2wlsg fw, )]
=1

If we want the damped sinusoid of frequency sx = g% + jwi to pass through the filter
without distortion, then the components Aze®** and Aje’* should be transmitted without

change, i.e. the following condition should be fulfilled:

L -
2 A ekt [,uo + Zp, cosh(27rlsk/w,)] = Ape*to

=1

L -~ -
2 A%kt [po +> m cosh(27rls;/w,)] = Aje’s'

i=1

or

. o + i w1 cosh(2rls,/w,) =1/2
: 1:1

po + l‘_[; p1 cosh(2wlst fw,) = 1/2 (5)

The possibility of cancelling the complex conjugate terms Axe®** and Aje’*t actually

implies the proof of the algorithm’s invariance to amplitudes and initial phases of the input

components. From the theory it is known that using a symmetric (or antisymmetric, i.e.

when p; = —pu_;) set of coeflicients of an FIR filter ensures a linear phase response of that

filter. Note, however, that in our case the algorithm’s invariance to phase means not only.

a linear phase response, but also having a zero value, i.e. introducing no delay to any
sample processed.

In the event that certain frequencies are undesirable in the output mixture, (5) should

be rewritten for each such component in the form:

L
to + Em cosh(2rls;/w,) =0

. =1



L
pio + Y p cosh(2rlsy fw,) = 0 (6)

=1
From (5) and (6) it is evident that the only information needed for fiiter construction
is knowledge of the complex frequencies s, = oy + jwi. Written for M damped sinusoids,
the conditions (5) and (6) provide 2M equations.

In the case where the k-th pure sinusoid
a:(")(t) = Ay cos(wit + @k)
forms an input of our filter, then the ¢-th output sample of this sinusoid is

y,(k) = 2uoAi cos(wit + i)

L
+ Y Ak [cos(wi(t — 1AL) + @x) + cos(wi(t + IAL) + )]

=1

L
= 2poAk cos(wit + @) +_ 2m Ak cos(wit + @i) cos(lwpAt)
=1

L
= 2Aicos(wit + ©k) [po +> cos(27rl%)]
. =1 s

If this component is to be passed without distortion, the following equality must be

satisfied:
L
2A cos(wit + @) [po +> cos(Zwl:i)] = A cos(wit + @)
=1 s
or
L Wi
po+ > pcos(2rl—) = 1/2 (7
=1 W,
In order to reject this sinusoid, 1/2 in the last expression should be replaced by 0:
L Wi
po+ Y m cos(27rlw—) =0 (8)
=1 8

As before for the case of damped sinusoids, the last two expressions prove that the
filter is invariant to amplitudes and initial phases of the given input components. For N
pure sinusoids, expressions (7) and (8) provide N more equations. Thus, we have 2M + N

equations for 2M + N variables.




As a result we will have the following matrix equation:

Zi=5 _ (9)
where the matrix Z has the form:
[ 1 cosh (275, /w,) cosh (2723, [w,) ... cosh(2nrLs;fw,) ]
1  cosh(27wsp/w,)  cosh(272sp/ws) ... cosh(2xLspy/w,)
1 cosh(27s}/w,) cosh (272s} /w,) ... cosh(2wrLs}/w,)
Z=1.-- ... (10)
1  cosh(2ms}/ws) cosh(272s}s/ws) ... cosh(2wLsys/w,)
1 cos(2rwmer/ws) cos(2n2wprp1/ws) ... cos (2w Lwpryr/ws)
[ 1 cos (2rwm+n/ws) cos (2m2wprenN/ws) ... cos (2w Lwpyn/ws) |

£ = col{p;} is the column vector of the filter coefficients, and bis composed of 0’s and
1/2’s according to (5), (6), (7) and (8). Solving the equation (9) for i, we are able to
construct the filter desired. From inspection of system (10) it is evident what the value
of L, i.e. the filter window length, should be: it must be equal to 2M 4+ N — 1 so that the
matrix Z be square and inversible.

It is easy to show that the components of the vector i are real. Indeed, consider the

complex conjugate for the equation (9):
2 =5 =%

The complex conjugation Z* results in just the transposition of rows of Z corresponding

to conjugated frequencies s, and s} without changing the vector b itself. Thus from (10)

it follows that

Zi*=5b

and consequently the vector f is real.



Existence and uniqueness of the solution

Now let us consider the problem of solvability of the matrix equation (9). The following
lemma provides the answer.

Lemma. The unique solution of the equation (9) exists if w, > 2max{w;}, for 1 <
t<2M + N.

Proof. It is known that the condition of a unique solution is defined by the value of
the determinant of the matrix Z: D = det(Z). If D # 0 then the solution exists and is
unique: g = Z™! b. Thus our aim is to show that D # 0 when the conditions of Lemma
are satisfied. For this purpose we use the following expansions (3):

cos(nz) = 2™ lcos"r
(n—-2)/2 —1 k+1
2 k=0 k + 1
cosh(nz) = 2" 'cosh™z
n (22 (_1)k+1
+ - Y Ck_ ;2" %2 cosh™ %2z = f, (coshz) (11)
2 k=0 k + 1

C,’f_k_22""2k'2 cos” -2z = f, (cosz)

where
falz) = Y a2k (12)
k=1
is a polynomial of order n, and

@ —gnmt G g g R(DH

y G = Ay = 2 k+1 Ck 22""%“2 (13)

Applying (11) firstly to the third column of D, we have:
. cosh (2731 /w,) 2 cosh? (273, fw,) — 1

.=

1 cosh (27spr/w,) 2cosh2 (27spfw,) — 1
1 cosh (27s}/w,) 2 cosh? (27s% fw,) — 1

1 cosh (27s}y/ws) 2cosh2 (27shgfws) — 1
1 cos(2mwam+i/ws) 2cos? (2rwprr/ws) — 1

1 cos (2rwpmsn/ws) 2cos? (2rwpren/w,) — 1
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and then adding the first column to the third, we get:

LR

cosh (27s; fw;) cosh? (2781 /w;)

1  cosh(27spr/w,)  cosh? (27spr/w,)
1  cosh(2ws}/w,) cosh? (275} /ws)

1 cosh(27sis/ws)  cosh? (27s}s/ws)
1 cos(2mwprer/ws) cos? (2rwpr41/ws)

1  cos(2mwaren/ws) cos? (2rwpr4n /ws)
Using this technique step by step for each column from the third to (2M + N)-th we
finally obtain:

1  cosh (27sy/w,) .. cosh™*N=1(9xs, Jw,)
1 cosh (27wspr/w,) ... cosh®™ N1 (27rgy fw,)
1  cosh(27s}/w,) ... cosh™*N=1(oxg*/0,)

D = olt2+.+@M+N-2)| cee s
1 cosh (278} /w,) ... cosh®™+N=1(2xsr fu,)
1 cos(27wasr/ws) ... cos?MIN=1(Qruwpgyy/w,)
1 cos(2rwamen/ws) ... cos?™MIN=1(2xuwprn/w,)

— 2(2M+N—2)2(2M+N—1) det(z) (14)

The matrix Z is the Vandermonde matrix; its determinant can be easily found [4] as

the product of all possible difference combinations of its second column elements:

det(Z) = II (cosh(27r3—k) - cosh(27rﬂ)) (15)
k#l Wy Wws
where
T if 1<:<M
5,-={ sy i M+1<i<2M
jwiem if M +1<i<2M + N

Therefore, det(Z) = 0 if and only if there exist k and [ such that

cosh (27rs—k> = cosh (2#3)
W, W,



Because all 3; are different, the last equality is valid only when such an integer n exists

that

orZk — 192l 4 2nnj
W, Ws

or
§p £ 5 = njw,
[Re(3x) £ Re(3:)] + j [Im(3k) £ Im(51)] = njw, (16)

It follows from (16) that
Re(3;) &= Re(51) =0

Im(3x) £ Im(8)) = nw, (17)

According to the Lemma condition |Im(5x)| < w,/2, hence
[Im(3x) £ Im(3)| < |Im(3k)| + |[Im(3))| < ws

thus equality (17) is valid only in the case n = 0, which however leads to a contradiction
of the Lemma condition 3§ = 3;. So the determinant of the system (14) is not equal to

zero implying that the inverse matrix exists and the solution 7 = Z-1% is unique.

The quasi-inversion method for solving the matrix equation

It is clear that the matrix Z in (9) may have a considerable dimension, which obviously
will cause difficulties when trying to reverse it in order to solve for the coeflicients vector.
The problem of ill-conditioning of the system arises, sometimes making the whole task of
implementing the filter impossible. Below a method allowing this difficulty to be avoided
is proposed. °

First of all, recall the expansions given in (11) in a modified form:

n
cos(nz) =Y a{™ cos™(z)
k=0
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cosh(nz) = ) a{™ cosh™(z)

k=0

Further, applying the notation of the formulae (11) and (12), we can rewrite (10) in the

form:
[ fo[cosh (2781 /w,)] oo famin-1[cosh (27sifw,)] T
folcosh (2msar/w,)] ... fam4n-1[cosh (2msar/w,))

. fo[cosh (278} [w,)] <o foM+N-1[cosh (27s}/w,)]
folcosh (2msys/ws)] ... faman-1[cosh (27s}s/w,)]
foleos (2mwprs1/ws)] ... famen-alcos (2mwarsr/wi))

| folcos (2rwmin/ws)] ... fomran—1[cos (2rwmin/w,)] |

One can readily verify that Z as written in (18) equals

Z=VA
where
[ 1 cosh (273, /w,) cosh? (27, /w,) ... cosh®™+N-1(ors, /0,)
1  cosh(27sp/w,)  cosh®(2mspr/w,) ... cosh?™+N=1(2x8y,/0,)
1  cosh (273} /w,) cosh? (275} /w,) cvo. cosh®™*N-1 (97 sxfu,)
V= e cee cee e
1 cosh(2ws};/w,)  cosh?(2ms}s/w,) ... cosh®™*N-1(2zs* fu,)
1 cos(2rwpry1/ws)  cos? (2rwprgr/ws) ... cos?MAN-1(2xups s /w,)
| 1 cos (2mwpren/ws) cos? (2rwaren/ws) ... cosPMIN= (2rwp N fwy) |
is the Vandermonde matrix, and
ad) o .. g@MN-D
A0 a® . GEM+N-1)
0 o0 cee a(;'jf,"f,{,"“)

where the elements of this matrix are as defined in (13).

Then (9) can be rewritten in the form:
VAji=15b

11
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Ai=V1}

The matrix A is upper triangular; its inversion can be carried out using the Gauss

1 q1 [P q;"—l

: 1 gi-1 “ee q!:_l

im = (—1 vm : l

Qim = (-1) 1 g qﬂll
1 gamin—

m+1
¢11+

m—1 m+1
QM+N-1 DMIN-1

thus we are to find cofactors Q;,, to each element V},, of the Vandermonde matrix:

2M+N-1
UL +

IM4+N-1
91

2M+N-1
%

2M+N-1
2M+N-1

method and is not very difficult. Moreover, the leading elements of the rows of A are
powers of 2, which in principle allows us to avoid the problem of the matrix be ill-
conditioned during inversion. So what remains to be done is to define the matrix inverse

to the Vandermonde one. The determinant of the Vandermonde matrix is given by (15);

This determinant is known [4]; it can be found using the procedure presented below.

In order to calculate the cofactors, let us firstly prove the following equality:

1 a a ... &P a7t .. gt
1 e @ ... a1 ot a?!
2 m-—1 m+1 n—-1
1 @p-1 a5y ... @y ap’y ... an_;

1

_ 1

= Ekx k2 peeskme1—i Bk1Qhg « o~ Qi
1

= n-l(aly ag,-.. 1an—1)

a
az

Gn-1

ai
a3

a2

numbers from the total quantity of (n — 1) numbers 1,2,3,...,(rn —1).

(19)

where 0 <t <n-1,1 <m < n—1 and we sum over all possible combinationsof n —1—:

Let us note that the both matrices in (19) have the dimension (n—1) x (n—1), and the

{al’ az,... ’a'n-l}-

12

matrix in the righthand part of the equality is the Vandermonde one having the elements




To prove (19) consider the following determinant:

1 =z 2 ... ™t

W = 1 a a? ... ay!
n—1

1 @pq a2, ... a3;

On the one hand, this is the Vandermonde determinant and can be calculated as

W = (z—a1)(z—a3)...(z — an1)(a1 — a3) ... (an-2 — @n-y)
1 a . a7}l
n—-2
= (z—al)(z—ag)...(z—an-l) '1” a2 e G2 (20)
1 dpn-1 - G::g

Note that the product of factors preceeding the determinant in (20) is a polynomial

in z of the order (n — 1) and can be presented as
" 1—(ay+az+. . .Aan-1)2" 2 +(a1024+ 0185+ . Ha180-1)T" 3~ H(—1)""(a10z. . . @n-1)

. On the other hand, expanding the original determinant by the elements of the first

row, we have:

1 a a? oo aPl oGPt L a}7?
W= (-1)""2""1 a & ... @ o ... 7! (21)
=0 [ .- . ese e e
2 m-1 _m+l n—1
1 apy a;_, .oany o oarty ... an)

Comparing coefficients of the same powers of = in (20) and (21), we prove the desired
equality (19).
Assuming in (19) n = 2M + N and

G =q
a2 = q2

Am-1 = gm-1
Gy = dm+1

. Gn-1 = @2M+N-1

13



we get

Qim = (—1)‘+mF2M+N-1(¢11, q2y--+-3qm-1y9m41y- -« ¢I2M+N—1)
) 1 Gm1 @ ... @IMiN-2
= (=1yt"PpP. m m-—1 m _
(-1) 1l gmn Q12n+1 .- q:zb-i{--l*N 2
M N
1 gamyn-2 Q§M+N-2 .- ngIN-g

(—)*"Pm I (&x—a)

k#lk#m iEm

where we introduce the notation
Pim = Z (qu e q2M+N—1)
kykz enk2 4 Nt
Thus, elements of the matrix V! inverse to the Vandermonde one can be easily

calculated according to the formula:

1 _Qim  _ (=1)*™ Pim Tkt ot o (@ — @1) _ (=1)*™ Pim
™ T det(V) ITksi(gr — @) Mkgm(gm — g&)

The proved feature allows a simple iterative procedure for calculating the factors Pip,
from the last equation to be realized. To do so,'we will sequentially compute products
composed of one, two, and so on until we have 2M + N —! components of the form (z —¢;),
for i =1,2,...,(2M + N). For the k-th sequential step we will get:

k
P=T[(z—g Z:c’ (k)
i=1 =0

Expressing Py in terms of P, and gx4y, we have:

Peyn = P (SC —Qk+1) = (El" (k )) (37 —Qk+1)

+=0

T e 3 g = 3 i

=0 i=0 =0
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Setting coefficients of the same powers of z to be equal, we get the following rule for

calculating the coefficients:

(i+1) (i)

Ui = 4o Gk+1
g = ¢ =1 (22)

r(:;+1) = 11:(1:)4-1 - ,(.';)Qkﬂ

where 1 < m < k.

After the necessary number of iterations (steps) the desired coefficients are obtained.

In the above sections we discussed the case of the unique solution of the matrix equa-
tion (9). In principle, however, there is no apparent objection to choosing the sampling
frequency to be less than that dictated by the Lemma. This could lead to the appearance
of a certain non-trivial solution of the homogeneous equation Zi = 0 for some value of
w,. (Under the conditions of the Lemma, the solution of the homogeneous equation is
always unique and trivial.) In the next section we will consider the choice of w, less than

that according to Lemma.

Relation to the E-pulse technique

Different methods for identifying targets by their backscattered time-domain responses
exist; their discussion is beyond the scope of the present paper. An interested reader can
address a number of references; many techniques are mentioned and briefly discussed in
[5]. Certain discrimination and idetification procedures can be interpreted as linear filter-
ing, which will be demonstrated in this section. The particular case of a discrimination
technique which we will consider is known as the extinction pulse.

The so-called extinction pulse (E-pulse) method is one of the most important tech-
niques in the field of radar-target discrimination. An E-pulse is defined as a waveform of

a finite duration which, when interacting with the radar response of a particular target,
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eliminates a preselected number of of its natural resonances in the late time response (2).
In this section we show that this technique can be considered a particular case of the
approach discussed in the present paper.

Let.us consider the case of choosing the sampling frequency w, < 2max{Im(s;)}.
Besides this, we assume that we are only concerned with eliminating a set of frequencies
{si = oi + jw;} given beforehand. For any o; the only one corresponding value of w; is
assumed. In this event the vector b of free terms in equation (9) consists only of zeros

and the corresponding matrix equation acquires the homogeneous form:
Zi=0

This equation has a non-trivial solution only when det(Z) = 0. ;From the proof of
the Lemma it follows that this is the case only when numbers k and ! together with the

sampling frequency w, can be found such that

_cosh (27r8—k) = cosh (27:'1)

Wy Wy

This is possible provided s; and s; have the same real parts, which in turn leads to

the conclusion that the condition s; = s} should be satisfied. If so, then equation (22)

holds when
ork = 3972k 4 27nj
W, W,
or
w,
we __wk
W, W,

which means that w, = 2w /n.

These results coincide with the expressions corresponding to the E-pulses obtained in
[6]. In the references dealing with this subject elimination of a DC component from the
target response has not been considered, and the E-pulse itself contains some constant

level. If in addition to the set of N frequencies {s;}, for 1 < ¢ < N we want to suppress
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the DC term, we will get 2N 4 1 equations and in the E-pulse the constant component
will be absent.

LFrgm all the aforesaid it follows that the E-pulse technique can be technologically
realized in the form of an FIR filter using delay elements. A possibility of implementing
the filter in the analogue form is noteworthy, since responses to be processed are high-

frequency which demands an even higher sampling rate.

Application to target discrimination

It should be mentioned here that an approach to radar target discrimination similar
to that described in the present paper had already been proposed in the past. In [2] the
concept of a resonanse annihilation filter (RAF) was introduced and its design based on
an FIR system was discussed. Two RAF examples were considered: differential operators
to cancel individual natural frequencies being the construction basis for the first one,
and their digital counterpart, namely the appropriate difference equations — for the
second. Thus, the principal difference between the two approaches is the way the filter
is constructed. Besides this, it is noteworthy that the RAF is intended just to cancel a
chosen set of natural modes. This leads to the only decision scheme where one decides
to which target the response observed corresponds on the basis of the minimal energy
contained in the filter response during the late-time period. It would be interesting to
point out that the idea of rejecting a signal which is the solution of a suitable differential
equation is pretty old; these rejection filters were proposed by Plotkin and named Function
Elimination Filters (FEF); their theory and applications can be found, for instance, in
[7].

Differing from the RAF approach, our filter enables the rejection of a given set of
natural frequencies as well as letting them pass without distortion. So, if the case of the

identification of any target of K possible is considered, the problem is to construct K
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filters, each of which is designed to identify (to pass without distortion) all the natural
frequencies of one given target and to reject both the frequency components of all other
ta.rgets.and the interference. Then it is possible to decide which target is observed when
comparing the responses of all the filters to the backscattered response coming from the
target. As a simple and obvious means of comparing, and subsequently identifying the
target, one can use for instance, the energetic characteristics of the processed response,
which was used also in [2]. In fact, let {a1)},...,{a®},...,{a{)}, for m =1,..., M,
be the measured instantaneous values of the target response processed by the first, the
second, and so on till the K-th filters, respectively. Then the decision is made depending

on the value of

(g )

where k = 1,..., K as stated above is the number of the filter or, which is the same, the

number of the corresponding target.

Conclusions

In the paper the design theory of an FIR filter which can be used for radar target
identification and discrimination is presented. Here we would like to point out what, in
our opinion, are the advantages of using this approach for the goal mentioned over other
methods described in the literature:

1) The filter’s invariance to amplitudes and initial phases of the mixture’s frequency
components, which principally allows the reconstruction of a useful signal with high ac-
curacy, avoiding the necessity of taking these parameters into consideration.

2) The possibility of eliminating a narrowband interference, removing it from the
natural frequency components of the backscattered response.

3) The possibility of making a decision without using the whole set of the natural
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frequencies of a given target; the possibility of choosing the number of considered natural

frequencies depending on circumstances.
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