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Abstract

There are various possible incident-field temporél waveforms to which an electronic system may be
exposed. Each of these will have its own degree of effectiveness for producing large signals deep within
the system. Thié paper compares the response to damped sinusoidal waveforms, both far from a system
resonance and matched to a system resonance, to that due to a decaying exponential waveform (a

unipolar transient). The comparison is done on the basis of norms, both for the e=-norm (peak) and

2-norm.
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Abstract

There are various possible incident-field temporal waveforms to which an electronic system may be
exposed. Each of these will have its own degree of effectiveness for producing large signals deep within
the system. This paper compares the response to damped sinusoidal waveforms, both far from a system
resonance and matched to a system resonance, to that due to a decaying exponential waveform (a
unipolar transient). The comparison is done on the basis of norms, both for the ee-norm (peak) and

2-norm.



1. Introduction

In maximizing the interaction of incident electromagnetic waves with electronic systemns one is
faced with a problem of great complexity. While it is extremely difficult to calculate the response from
first principles, one can use electromagnetic theory to characterize the form that the response takes and
rely on measurements to evaluate the parameters in the appropriate models, As discussed in [1,5] the
appropriate model is the singularity expansion method (SEM) which explicitly exhibits the various
resonances as poles in the complex-frequency plane. Particularly for signals which reach deep into the
system to the circuit level there are, in general, many resonances associated not only with the exterior
envelope of the system, but also with the transfer functions through cables, cavities, etc. to the interior.
As discussed in [1,8] an incident plane wave has a typical or canonical response which rolls off below
some frequency related to the largest dimensions of the system. Above some frequency (of the order of a
GHz) related to the resonant dimensions of apertures, small antennas, and certain internal equipment, the

response also rolls off for “backdoor” or unintended interaction paths.

It should be intuitively obvious that the maximum system response is usually achieved by selecting
the incoming waveform as an approximate sinusoid of enough cycles to “ring up” the resonant response.
This can be demonstrated by calculations as in [3,4). A question of interest concerns what happens if one
illuminates a system with a pulsed sinusoid which is not so tuned to a resonance. Perhaps one did not
know what was the optimal choice of frequency and guessed incorrectly. In such an event is such a
choice of waveform still appropriate, or does another temporal shape give stronger intcraction with the
system? So here let us consider a more impulsive-like waveform and compare the response to this wave-

form to that due to the pulsed sinusoidal waveform.

For comparing these responses, the various excitation and response waveforms arc evaluated in
norm sense [3,6] in order to assign simple positive scalars which can be readily compared. There are
various possible norms that one might use. For present purposes we choose two cases of the usual
p-norm. The ee-norm corresponds to the peak of the waveform and is appropriate for failure due to volt-
age breakdown or upset due to the level comparable to or exceeding the normal operating signal level.
The 2-norm is proportional to the square root of the energy in the waveform, appropriate for burnout,
cxcept in cases where the energy in the system (associated with power-supply voltage) is triggered by the

response waveform to deposit energy into various electronic devices.

For simplicity the incident wave is represented by a voltage waveform going into a filter. Of
course, the incident wave is an clectric field with some direction of incidencc and polarization [3], but for
present purposes we consider these two parameters as fixed. (These can be separately optimized as in

[5D). Then volts/meter is changed to volts by multiplication by some characteristic length to make the



excitation and response units consistent. Then the output wave is related to the input wave via the filter

as

v (=T Vi, VD) = T(s)V Ms)
~= Laplace transform (two - sided) over time
s=Q+ jo = Laplace- transform variable or complex frequency

o= convolution with respect to time

1.1
v (4) = excitation or input voltage
v (4) = response or output voltage
T(s)= filter transfer function (representing system)
T(t) o = filter transfer temporal operator
The p-norm of a temporal waveform is given by [6]
1
o0 P
[vent, = J VPaty  , 1<p<o (1.2)
with the special case of the e-norm as
V|, = sup [V (1.3)

—eoL <o
which is simply regarded as a peak magnitude (least upper bound). The important 2-norm can be calcu-
lated using both temporal and complex-frequency representations via [6]

1 1

- Ty 2
[V, E{L"v%)m} = {55 BrV(s)V(—s)ds} (1.4)

with V(t) real and where the Bromwich (Br) contour is parallel to the jw axis in the common strip of

convergence of X7(5) andV(—s).

The norm of the transfer operator is defined by

oy I
O o )



where the type of norm is yet to be specified and where V{n)(y) is not identically zero, at least “almost

everywhere” or measure sense depending on the type of norm. This definition as a least upper bound of

course insures the inequality

|

which gives a bound on the norm of the response. A general result for the co-norm of a convolution

MWWWsmeWWWﬂ (1.6)

operation [6] is
IUW%M=WWMELJNMﬂ 1.7)

so that this norm can be evaluated in terms of the temporal function T(t) (as distinguished from the
convolution operator). For the 2-norm we have {6]
ey = sup [Fjo)=[TGol,,,
—eo (D<o (1 8)

= lT(ja)max )I




Filter Model of the System

As discussed in {3] one can represent our filter by

T(s)=1;,+27‘ﬁ[s~sﬁ]'1 @1
B

If our voltage is interpreted as a wave (combining voltage and current) with a common reference

impedance (resistance, say 50 ) for both input and output, then passivity requires

|¥< jw)l <1 forall o (real) 2.2)

implying

-1<T.. <1 (T, real)
)Tﬁ[[— Re[sl;”_l <1 forall (2.3)

Re[Sﬁ] <0 forall B

where, of course, the poles come in complex-conjugate pairs so that T(t) is real valued. Also we have

(causality)
T(H)=0 fort<0 (2.4)

For present purposes let us take as our canonical filter a single pole pair plus a constant term as

T(s)=T.. +Tf[s—s/-] ! +T):[s~s}]—l

(2.5)
sf EQf+j(0/f /Qf <O,a)}r >0
Furthermore let us let the filter be highly resonant (high Q) given by
—Qf << oy (2.6)

Here Tee can model the regions of  for which T (s) is small (like the valleys between the peaks

(resonances)). There are usually many resonances in a real system. Here we take one at s = s5¢ to study the

effect of tuning (or lack of tuning) to a resonance.

Along the jo axis of the s plane the transfer function has a peak given by



@ = Wmax ZOf

*

~ . Tf Tf ,
T(jof)=Te+ oy + 20 - (2.7)
T
:Too +-—f
_Qf
-Let us assume that
T
f >> [T (2.8)
_Qf

so that we have a significant resonance peak. So let us define

T
Pz—l M>>1 (2.9)
—Q [T|
giving
[Fijop) ,
~ +1:P (210)
7]

For present purposes we have the ee-norm (for response peak) and 2-norm (proportional to square

root of response energy). The eo-norm is [3]

[To., =T,

:le|+im (2.11)
T _Qf
using the approximation in (2.6). Note that the 1-norm of the time-domain function
T(H)=T.o()+ [Tfesft + T;es;t ]u(t)
=T..0(t)+ 2le[‘Tftcos(ant + arg(Tf))u(f) (2.12)

[T, = jom T () dt

isused. The 2-norm is [3,6]



rod, =Foo)| =Fiomx)

:If(jwf)l:%=ﬁmlp

(2.13)



Excitation 1: Damped Sinusoid

The first excitation waveform is taken as a damped sinusoid of the form

vim( = [ VieStt 4+ vy o5t ]u(t)

Vl(in)(5)= i + Vi

*
5=S1 s5-5

$1 EQl+jCl)l ,Ql 50,0)1 >0
Here we are concerned with the case
|Q1] << w1 (highly resonant)

for which the norms under consideration are [3]

[ @] <2l

| =

”V1(in)(z‘)”2 ={- Re{—‘ﬁiJ + MZ—

s1 | —

2 1
=il -] 2

The eo-norm is seen easily from (3.1). The 2-norm is found from (1.4) combined with contour deformation
in the s plane to find the appropriate residues of ¥ (5770 (_s).



Excitation 2: Decaying Exponential

The second excitation waveform is taken as a decaying exponential of the form
v§m () = Vpe2tut), v, real
?z)(in)(S)= Vz[s_Qz]_l 4.1)

S92 =809 <0

This can model a narrow pulse (|Q] large) or even a step input (for Q5 —> 0. The norms under consid-

eration are simply evaluated to give

[vim | =<Ival

||V2(z'n)(t)||2 =|Vo[[-20,] 2



5. Response 1

As developed in [3] using the residue theorem, the response to the first excitation is

Vl(out)(t) - [T(sl Jpest + T(S;)eslt:]u(t) (excitation term)
) +[Vl(i") (s f )Tfesf ty ?1("") (s; )T; e3f }u(t) (filter term)
(5.1)
Gl(out)(s) _ T(Sl)vl[s'_ 51]‘1 + T(s;)V;[s - 51]”1 (excitation term)

(s 1y s s+ ()7 [s=5] T Ceter term)

where the terms are separated according to the poles of the excitation and those of the filter. Note that
the above form assumes sy # Sf; otherwise second-order poles appear which can also be readily handled

(el.
5.1  eo-morm

Now let w; be far from @y (i.e., excitation completely detuned from filter) with

o1 - o] >> 1) o] (5.2)
Then we have

e de]_ =26 )||V1[+ 2T [ ) (5.3)

Additionally constraining

]Tm] >> ﬂ
for -] (5.4)
Ui
’(01 - wf‘>> i = ’QflP
(which is more severe than (5.2) since P >> 1) then we have
llvl(out)(t)” ~ 2T+ 2—'1]1/1[
- jor - | (5.5)

=~ 2|T.[|A]
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As one should expect, if the excitation frequency is far from the filter resonance, then only the constant

term describing the filter away from the resonance is relevant.
Comparing the response to the excitation in c-norm sense we have

s N

Rig = ‘

W:ITMI for [y - | sufficiently large (5.6)

The subscript 0 is used to designate this detuned case.
Now consider the case that the excitation is closely matched to the filter so that
w = Of (5.7)

with still some flexibility concerning the damping constants. In this case we have the close approach of
two poles discussed in [6]. Keeping only the dominant terms in (5.1), and beginning with the s-plane

form, we have

vlous) = [¥2%! [5 - Sf]_] [s-s1] '+ T;Vf[s - 5}]_] [s - SI]_l

seb_ st st syt

J -
vl | T £ e 20 (5.8)
517 5f 51 - Sf
Qi Ot , . .
_e e TrVael O+ Tp vy e 191 u(h)
Ql_Qf

This last form consists of an envelope function times a rapidly varying oscillatory function, giving an

=-norm (peak) as

[ w| = sup 2|l 5.9)

0<t<eo 2 _Qf

Syt eﬂlr‘

The peak of this envelope function is discussed in [2,7]. Considering the filter parameters as fixed this

pcak is maximized as
Q=0

(out) 2 (3.10)
o] =g
f
Comparing the matched response to the excitation in eo-norm sense gives

11



- | Vl(out) (t)"w 'Tfl

im = "Vl(i")(t)" :_Qf =[T.|P foro;=wf, Q=0 (5.11)

The subscript m is used to designate this matched case, where matched is defined as above. Comparing
this result to the ee-norm of the transfer operator in (2.11), one can note that for large P the result in (5.11)
is lower by a factor of r/4. The difference is accounted for by the use of a sine-wave instead of square-

wave excitation [4].

So for the e-norm the response for excitation matched to the filter is considerably greater than that

for the response far from resonance by the factor

]

, (=2)
s, =jw R 1 T
1=] 0y 1,0 |f| _p (5.12)

SRS

i

oo

sy far from s¢
This is as one would expect.
52 2-norm

As discussed in [3] the square of the 2-norm of the response is

2 ~ ~ S
v (pl” = 2 Rel T (s VT (—s1)V{ ™ (=s1)|  (excitation term)
A 5 1 1

(5.13)
+2Re[Vl(’”)(spTﬁ(—sf>V1<’”)<—5f)] (filter term)
with the terms again separated according to the poles of the excitation and those of the filter.
For wq far from wy in the sense of (5.2) and (5.4), we have for the excitation term
(in) V;
V. g Yt
1 (-s1)= 220, )
(5.14)

T(s1)=T (=51)=Tew

The filter term meanwhile has factors

12



V™ (sf)= ]{ cof‘il o1 a)fV: = }: A )

(5.15)
~ T
T(_Sf):_L
_2Qf
giving
2 2
2 12 T ¥
”Vl(out)(t)" =y B | v - | (5.16)
2 —Ql —Qflcuf—a)l (J)f+CL)1|
Letting Q1] be of the order of IQf| or smaller, then (5.4) gives
1
[ ef, = irali-21) 2wl 517)
Again only the constant term describing the filter away from the resonance is relevant.
Comparing the response to the excitation in 2-norm sense gives
e
gzg = TZZITNI for Ia)f - (01| sufficiently large (5.18)
4™
2
just like the ee-norm case in (5.6).
Next let the excitation be closely matched to the filter as in (5.7). As worked out in [3] with
o1, @5 >>[Q4,|Q)] (3.19)
we have
1
- T ?
Hvl(out)(t)H _ ] fl 1,1 i (5.20)
27 Q-0 =01 O

Comparing the matched response to the excitation in 2-norm sense gives

13



1
R - ||Y1(°”t)(*)!|z - Iy | [1 L5 T

1/ - 3 - — —_—
"), el
T,
- % =|T.|P asQq -0 ' (5.21)
for wp = wf

Again this result is just like the e-norm case in (5.11). It also is equal to the 2-norm of the transfer opera-

tor as given in (2.13).

Again, now in 2-norm sense, the response for excitation matched to the filter exceeds that for the

response far from resonance by the factor

(out)
W e 23
i) RY "0y L] 522
2

<lsy far from s;

This is the same result as in (5.12) so in the senses of both norms there is an enhancement of a factor P in

matching the excitation frequency ®; to the filter.

14




Response 2

Using the results of [3] the response to the second excitation is

Vz(out)(t) - T(Qz)vzeQZtu(t) (excitation term)
+[Vz("") (57 )Tpess* + V5™ s7 T e ]u(t) (filter term)
6.1)
Vz(out)(s) = T(.Qz)Vz[S - Qp_]*l (excitation term)
~( 'Tl) "1 ~(1Tl) * * —1 .
+V2’ (s):)Tf[s - s/:] +Vs (Sf)Tf [s - s):] (filter term)
Again the terms are separated according to the poles of the excitation and those of the filter.
6.1  co-norm
With the filter resonance as in (2.6), and (like (5.4)) the constraint
T
[Toa| >> M 6.2
of
we have
Vz(i")(t):TwVZEQZtu(t) (excitation term)
6.3)
: -1 Jot | €25t
+2Re Vz[}a)f - Qz] Tre?™0 e Tult) (responsc term)

Noting that the response term consists of an envelope function times a rapidly varying oscillatory func-

tion, the e-norm is

T
sz(out)(t)“ ~ sup ITMHVz]eQZt+2_I‘f’|VZIEQﬂ

O<t<oo ]Ct)f _QZ‘ 6.4)
=[T.||Va|
If (6.2) is relaxed then the relative sizes of Q92 and w1 need to be considered.

Comparing the response to the excitation in co-norm sense we have

(out)
RS = “Vﬂ)uizm.] (6.5)

15



6.2 2-norm

Again using the results of [3] the square of the 2-norm of the response is

2 - s
”Vé"“”(t)“z = T W5 T (-0 ™ (-Qy) (excitation term)
(6.6)
+2 Re[VZ(’") (s f )Tff(—s f)\72"")(—s f )] (filter term)
With the restrictions the same as before we have for the excitation term
T (in) Va
V. -Q5)=
) (=Q2) wTow
(6.7)
T(Q27)=To =T (=22)
and for the filter term
= (in) Vo s
)Ty ()
. (6.8)
Tzt
~sf)z——
—ZQf
giving
2 _ 20 -2 -1
“vz‘o””(t>“2:T£[—292] Wi Jjos -0 [of] V2 (6.9)
Comparing the response to the excitation in 2-norm sense gives
(out)
I
2 - .
le(m)(t)“
1
2]3
21 -2 le l
=T {1+ 22 jop -0y T
f TS
1
5 (6.10)
Q5Q -
=|T.]{1+ 2 f ~P?
JoF = Qz'

—|T.| for Q3 =0 or Q= -~

16



which is like the eo-norm in (6.5). Note that for a fixed sfcharacterizing the filter there can be some

increase in this relative response by appropriate choice of Q2, giving

(6.11)

Whether or not this is significant depends on the relative size of the inequalities in (2.9) and (6.2).

17



7. Comparison of the Responses to the Two Excitation Waveforms

If the two excitation waveforms are taken to have the same norm, then one can compare the

responses in the same norm sense to see which waveform produces the larger response (i.e., is more

effective).

First, compare waveform 1 (damped sinusoid) for @y far from ay (i.e., detuned) to waveform 2. For

the s-norm (peak), (5.6) and (6.5) give

()
R

}—f)—_- 1 7.1)
Ry

so that both waveforms are equally effective here. For the 2-norm (5.18) and (6.10) give

TL0 1y E p2
R(Z) . 2 (7.2)
2 [](l)f - Qz|

—1 forQ2y; - 0o0rQy — —

If the width of the decaying exponential (waveform 2) is selected such that Q) ~wy, this latter wave-

form can be a little more effective than the damped sinusoid (detuned) depending on the size of

Pfo / @ compared to unity (as in (6.11)).

Now let waveform 1 be closely tuned (matched) to the filter (s; :ja)f). For the ee-norm (5.11) and
(6.5) give

(=)
R
LM _pssi (7.3)

()
R;

with the expected result that the oscillatory waveform is much more effective. For the 2-norm (5.21) and

(6.10) give
1
r{2 20,0 2
1m e=<f 2
(2) ~ . 2 (7.4)
R3 ']mf - Qzl

- P>1) forQy -0 or Q7 — —e

Note that if Q9 is optimally chosen as in (6.11), then since |Qf' << ¢ theratio in (7.4) is still large

compared to unity.
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Concluding Remarks

In the senses of the ee-norm (peak) and 2-norm (proportional to the square root of energy), thena
damped sinusoidal waveform in general produces a response which is much larger than that due to a
decaying exponential waveform, if the oscillatory waveform is tuned to a resonance peak of the system.
If the damped sinusoid is detuned from the resonance, then the responses are comparable. For maximiz-

ing the response then an oscillatory waveform is in general preferable.

The present choices of waveforms are, of course, not exhaustive. Another interesting kind of wave-
form is a chirp in which the frequency is sweeped (sufficiently slowly) through the resonance of interest,
thereby making the response less sensitive to accurate knowledge of the resonance frequency. The
present comparisons are on the basis of comparable peaks or energies in the two incident waves, but

there are other factors in the production of such waveforms which may also need to be considered.

The present discussion has been in the context of a simple kind of filter function which makes
comparison of tuned and detuned responses relatively casy. Multiple resonances in the filter function can

also be considered, but at a significant increase in complexity.
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