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ABSTRACT

Coupling by short pulses is studied in this report. The relationship between the
real part of the forward scattering amplitude at the optical limit and the integral of the
total cross section over all frequencies is re-derived with a new approach to confirm the
relationship previously established. The case of transmission through a circular aperture
is investigated in detail with a hope to gain some insight into how to exploit the
relationship for studying short-pulse coupling.
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INTRODUCTION

The report is a follow-up investigation of a previous effort on the bounds of RF
coupling by short and long waveforms [1]. While the investigation into step-function
excitations has reached a definitive conclusion, the problem of bounding the coupling by
impulses still remains a challenge.

In the next section we will formulate the problem from a fresh starting point
without invoking the optical theorem and Hilbert transform. It is then shown that the new
formulation is equivalent to the old one. In so doing additional insights into the problem
are gained.

In the third section coupling through a circular hole is worked out in detail. The
numerical results of Andrejewski supplemented by the Seshadri-Wu asymptotic formula
[2] for electrically large hole are utilized to construct the transmission cross section for
the entire frequency range. Then a plane wave of rectangular shape with various pulse
widths is assumed to be normally incident on the hole. The problem is studied for short
as well as for long pulses.

Two important appendices are included. One is on an evaluation of the real part
of the forward scattering amplitude through a circular hole based on Millar's work [3].
The other is on the relationship of the real part of the forward scattering amplitude and
the integral of the total cross section over frequency for a sphere based on published work
in the literature [4]. The latter appendix on the sphere also serves the purpose of

correcting a mistake in Reference [1].



FORMULATION

Figure 1 depicts a plane wave impinging on an object with an electric field given

Einc(t.z)=% Ey(t—1z/c) 1)

The total energy per hertz (\i'[), or power in the harmonic case, spent by the incident

fields to create the induced current J on the object is given by

W, =Re[J-Eip aV'

e (2)
=Re (Eg [T, e ™ av)
where E, ¢'X7 is the Fourier transform of (1)
The far-zone scattered field can be written as
E,.=A — 3
sC 4TCr ( )
with
A =—iop Fx (f X fj e'ﬂ&'r'dV‘) 4)

Taking the x-component of A and settting T =% (the forward scattering direction) one

has from (4)

A, =i J' 7, e gy (5)

Substitution of (5) in (2) gives

W, =Re (1'3;'; Ax/imp) (6)




E, (zt)=XE(t-2z/c)

Figure 1. Plane wave impinging on a system populated with electronics.



Let S be the forward scattering amplitude for incident electric field of unit amplitude

defined as
- 1 ~ .-
S = E Ax/EQ (7)
Then, (6) becomes
~ 2 -~ 2
E - |E
\7\/[ = l OI ReS = | 0| O (8)
Z, Z,

where the total extinction cross section G equal to Re S is the same as would have been

obtained by the optical theorem.

By virtue of the Parseval theorem the total energy W, scattered and absorbed by

the object is given by
- 1 =
W, = — _|' W do=—— Re =~ J’ [Eo| S de )

In the case of an impulse incident wave, }:ZO =1 and (9) becomes

R
W, = ! Re L [ §dw, forR = e (10)
2n

Zy ®

To evaluate the integral we will make use of the analyticity of § in the upper
o-plane. Since Ax is analytic in the upper w-plane (according to the causality principle)
and behaves as »? near the ori gin of the complex w-plane, S as defined by (7) is free of

singularities along the real axis and in the upper @-plane. We then have

R
J §dco+J.§d(o=0 (11)
-R c




4

(see Fig. 2). On C the leading term of S is a constant ., the total cross section at the

optical limit. Thus

f §dco=j cwdm+cj -A—"dm

o A io
C
R (12)
= - j Coo dco+c1t(7\x)m_>m
-R

where the second step followed from the fact that § C..dw =0 for any closed contour.

Using (12) in (10) we finally arrive at

R

W, = — J' 2= dw + ——— (~ReA,) (132)

27 Z, 2Z, W—roo
-R
. which is identical to the result obtained previously with the help of Hilbert transform [1],
namely,
nic -
| (0-0.)do= = (-ReAy), (13b)

Equation (13) can be stated in physical terms for an impulse-like incident wave:

Energy Scattered + Energy absorbed
= Fluence x Cross Section at Optical Limit (14)

x Real Part of FSA at Optical Limit

27,

where FSA = Forward Scattering Amplitude and fluence is defined as the time-integral of

the incident Poynting vector. In the next section the problem of transmission through a



w-plane

S analytic for Im @ > 0

— - .
v Y

- R +R

R
Figure 2. Contour for evaluating the integral j S do.
-R




circular aperture will be worked out numerically to see how well the first term on the

right-hand side of (14) approximates the left-hand side.



A RECTANGULAR PULSE THROUGH A CIRCULAR HOLE

Consider a rectangular pulse of width T and unit amplitude for Eip¢ incident

normally on a circular hole of radius a in an infinite ground plane. The phasor Eo is

then given by

fio = 2 sin (_m_T) l0T/2

w 2
and (15)
5 sin?(wT/2)

.2 4
]on =57sm2(0)T/2)=T T/ 27

The transmitted energy Wy through the hole is

W, = Zio J |EO|20 dw
° (16)

oo R 2
= 4a3 €o J‘ t(x) sin” (tx) dx

(o]

X

where 6= transmission cross section, t = 6/(na2), T = ¢T/(2a), and x = ka. For x £ 10, the
Andrejewski’s curve [2] for t was digitized and used to compute the integral (16). For

x > 10 the following Seshadri-Wu formula [5] for t was used for numerical integration:
t(x)=1- 7% ;3—1/—2-sin(2x —ﬂ
+-;12— [%+~2Lnsin{2(2x—§-)}] an
- % ;51/—2 [% cos(?.x - g—) + IIT-t—sin{3(2x --})}J
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Figure 3 shows the constructed transmission coefficient t (= 6/ra2) all the way up to

ka = 20. Figure 4 gives the normalized transmitted energy versus normalized pulse width
(recall that the electric field of the pulse is unity). Figure 5 is for short pulses, the part of
Figure 4 that rises rapidly.

Let us first examine Figure 4 for T>>1 or T >> 2 a/c, i.e., the case of long pulses
compared to the transit time across the diameter of the hole. The numerical results say

that

W — % a3t-:o, fort>>1 (18)

Recall that for a unit step-function electric field the theory predicts that Wy, should be

given by [1]
Wi =oHg 0y - Hy— e Eq -0 - Eq (19)

4 .
. - 3 € a3 for a circular hole
and normal incidence

(20)
W for a long pulse gives twice the transmitted energy for a step function because the
energy spectrum for the long pulse is 4 sin? (wT/2) times the energy spectrum for the step
function, as is evident from (15). When T >> 2 a/c, the integral involving sin2 (wT/2) over
all o gives 1/2. Therefore the result in (18) should be twice the result in (20) and the
theoretical result (19) is thus verified by means of a numerical example.

We now examine Figure 5 fort <1 or T < 2 a/c. Clearly we have, for t< 0.3,

nazT

(o]

Wu.é%tx4a3eo=

(21)
= ma® - [ o Hodt
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Figure 3. Transmission coefficient through a circular hole.
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Figure 4. Normalized transmitted energy by a rectangular pulse whose clectric field has
unit amplitude.
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Figure 5. Normalized transmitted energy by a short pulse
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The last step followed from the assumption that Ej = u(t) - u(t-T), where u is the unit

step function. The integral J EyH,dt is called the fluence with dimension of joules per
square meter. Thus, one may conclude that if the pulse is short enough compared to the
transit time across the hole, the transmitted energy is well approximated by the incident
fluence times the transmission cross section at the optical limit, which is wa? for the
circular hole.

If Eq were a delta function, the fluence would be unbounded and Wy would be
infinite. Thus if one starts with the incident electric field as a delta function and if the
optical cross section has a finite value, then the energy transmitted or scattered will be
infinite. On the other hand, if one assumes the incident fluence to be finite, W will also
be finite even though E, and Hy, can be infinite provided that the product is integrable.
Figure 6 is a plot of Wy normalized with the fluence of the incident wave. The figure
indicates that for a given fluence, the maximum transmission is for pulses as short as
possible,

In Appendix A, we will demonstrate that the second (or correction) term in the
right-hand side of (14) is zero for a circular hole. In appendix B, it is shown that this

term for the sphere is small in comparison to the first term.
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Figure 6. Transmitted energy normalized with respect to incident fluence of a
rectangular pulse.

16



APPENDIX A

REAL PART OF FORWARD SCATTERING AMPLITUDE (FSA) OF A CIRCULAR
HOLE AT THE OPTICAL LIMIT

In this appendix we will show that the real part of the forward scattering or
transmission amplitude vanishes at the optical limit for the case of a circular aperture. To
do this we will make use of the formulas given in the appendices of Reference 3. Using
the same notations and time convention (eJ®%) as in [3] we have, for the transmitted field

in the forward on-axis direction and same polarization of the incident field,

E, = k%11, (A-])
where
oot e 2Va pra & e
. y 2k z ‘\/Ek 1 2_\/7{ k3/2 2
+0(z72) (A-2)
jkz [/ 3/2
I = - € I:a ‘\/E e—Jn/4+ JmZJ‘,'ﬂ(a/2 <
¥ A
d a2
142 — - —s [HP (A-3)
[ JdT] dnzj ) (ﬂ)}
e ™ [ima 4 d
I, = - — |2 ekalz g4 55 1D A-4
2 S |:4 € Jdﬂ o (ﬂ) ( )

The argument N in the Hankel function is to be set equal to ka/2 after all the

. differentiations have been carried out.
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We are seeking terms to the order of k-! for I; and k122 for I for large ka in

Egs. (A-3) and (A-4). Thus, we need the following asymptotic expressions for the Hankel

function and its derivatives:

ng) ~ i C_j (n-=/4) [1+_j__j|
\l ™ 8N

d (2 ’2 -j(n-n/4) | _; 3
—H& ~ [Z eI M —_—— A-5
an ) o € ] 8N ( )

We now evaluate Ij and I given in (A-3) and (A-4) with the help of (A-5) and find

-jkz  ,3/2 . . ;
€ a>'*rn [C—Jﬂ/4+jejn/4(l__§__L)]

I ~—
1 z 3 4ka (A-6)
12~—c S ;]ﬂ m/4
z Ak
Hence,
ja2 e k2
Hy ~—
2k z
and, finally,
—jkz
c (A7)

E, ~ [j2nka2 + o(k‘“)] —

where o > 0. Thus the forward scattering amplitude for a circular hole has no terms

independent of k and its real part is zero for k — eo.
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APPENDIX B
A SHORT PULSE SCATTERED AND ABSORBED BY A SPHERE

We will make use of the results given in [4] for the sphere to estimate the left and

right hand sides of (13b). The high-frequency results are, in the notation of this report,

Ot =1+0.0660(ka)~2/3+ O[(ka)~ 4/3] (B-1)
2ma
ReA, = ‘% Re[-S,(m)] = —0.7182a (ka)l/3 + Of(ka)~ V3] (B-2)

where a is the radius of the sphere, and ¢, = 2na2. From (B - 1) one sees that the

integral of (13b) is asymtotically equal to

J' (0 — 0w )do ~ 1.2441ca (ka)!/3 (B- 3)

for large ka. The right hand side of (13b) is, for large ka,

%(—Re,&x) ~1.1282 ca (ka)l/3 (B- 4)

The difference in the coefficients of (B - 3) and (B - 4) is aboutr 10%, which is not bad in
view of the approximations involved leading to (B- 1) and (B- 2). Thus, one may
conclude that (13b) is validated by the sphere problem.

Let the incident electric field be a pulse of width T and amplitude T-1. The

corresponding energy density spectrum is

1 sin®(0T/2)
Zy, (wT/2)*

%o Eof (B-5)
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The limit T — O gives the spectrum of an impulse. It is easy to see that the energy W,

scattered and absorbed by the sphere from such an incident pulse is

2ma? 1 ca (23)1/3 1/3
W, = — +1.1282 — | — + O(T -6
YTZy T Zo \cT (™) ®-0)

0 0

Hence, for impulse-like incident waves W, is contributed mainly by the first term of (14)

and the correction term can be estimated by the real part of FSA at the optical limit.
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