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Abstract

This paper considers the impact of reciprocity and gecometrical symmetry of a target on the associ-
ated scattering dyadic. By orienting various ratation axes and reflection planes of the target in special
ways with respect to both incidence and scattering directions, various symmetry-associated simplifica-
tions in the scattering dyadic can be made to occur. For special cases of back and forward scattering the
various point symmetry groups are considered with preferred axes and planes now aligned according to
the common axis defined by incidence and scattering directions, giving a rich structure to the scattering
dyadic. For low frequencies (clectrically small target) further simplifications occur, leading to further
symmetries (including invariance to reversal of incidence and scattering directions) in the scattering
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L Introduction

In electromagnetic scattering one takes an incident plane wave
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i = direction of incidence
1, = polarization, 1;- 1, = 0
and scatters it from a target (scatterer) contained in some volume V (here taken of finite lincar

dimensions) surrounded by a closed surface S as indicated in fig. 1.1. For convenience the coordinate

center 7 =0 is appropriately centered near or inside the target. The scattered field (superscript sc) is

given in the far-field limit (subscript ) by

drr
Ef(7.1)= i;X(To,i’;t)ﬁ(""c)(ﬁ,t—Ej

7\.(_];,_1.,';5) = scattering dyadic (1.2)

X(To ,—]',-;t)o = scattering dyadic operator

o = convolution with respect to time

It is the propertics of the scattering dyadic (usually written in frequency domain, but sometimes taken as

a temporal opcrator) that are of interest. This gives us all our information concerning the target (by

hypothesis) if one is using this scattering to identify the target (as a type of aircraft, etc.).
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Figure 1.1. Scattering of Incident Planc Wave



Note that E (7€) and Ef are perpendicular to _l., and TO respectively, and thereby have only two

components each with which to be concerned. However, except in the special cases of forward and back .
scattering these components are referred to different coordinates (being contained in different planes). As

such there are four important components of the scattering dyadic due to the constraints

~

(T Tis) T2, T, &[T Tois)= 0 a3)

>

In pairs, however, these four components are referred to two different planes. So it is useful to think of

~

A asa 3x3 dyadic subject to the above constraints. In another form this can be stated as

~
-—

A(To, Ts) = T K[, Tss) T

.fo =T1- TOTO = transverse identity with respect to -fo (1.4)

=1

=1- T,—l‘, = transverse identity with respect to 1;

1= —fx_]*x + TyTy + Tsz = dentity (three dimensional)

For backscattering one often uses the radar coordinates _fh (horizontal, usually parallel to the local

carth horizon) and —]'v (vertical, except not strictly so for targets above the horizon) with the relations .
Tox =17, TixTy=Tp, Iy x 1= 1, (1.5)

Note that (Th,i.v,—?,') form a right-handed system. In backscattering

(1.6)
and Th and 1, can be used for both transmitted and received (scattered) waves. In forward scattering

_].oz-l’i

(1.7

and Th and Tv can still be used for both waves.
For 1, not so simply related to —f,', one can establish coordinates using what are called the scatter-

ing planc Ps and bisectrix planc Py [19]. As indicated in fig. 1.2, the scattering planc Ps is parallel to both

T,- and TO. The bisectrix unit vector (direction) Tb lies between —Ti and To with equal angles v, with

—_—

Tb‘_fo:_lb'h , TbXTo:_l‘bX_]‘,' (1.8)
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A. Scattering and bisectrix planes perpendicular to page

B. Scattering planc parallel to page and biscctrix planc perpendicular to page

Figure 1.2. Coordinates for Scattering



The bisectrix plane Py is parallel to Tb and perpendicular to Ps . For convenience construct unit vectors

perpendicular to the two planes as

1,L1P, , iR

- (1.9)
IyxIg=1,, Igx1g=1, I3x I = 13
Note the relations
1-1,=0=1,-1;
li-1lg=15-1p
With these definitions one could choose two different “horizontal” unit vectors —].h(i) and _];I(D) as parallel
to s , and “vertical” unit vectors _1;,(1) and —];,(0) as perpendicular to Ps (and parallel to Py ) with
TOwTO _ T, , T, x 1O =T, - T T, = T
— — —() - = — —() —
Ty =-T, T, T Ty =-T, x 1, (1.10)

— —(1)
]'U(O) =1
where the i-superscript vectors are as in (1.5). Note the minus sign used with To in (1.10) to make Th(o)

—(i) . .
the same as ]h in backscattcring, the usual radar convention.

In the casc of backscattering

T,=-1;=1,, PsLD, (1.1

but there are an infinite number of possible pairs of Ps and Ps  given by rotation about their common

axis parallel to 1; . In forward scattering
,=1;,1,"1;=0, PP, (1.12)

and while P} is oriented perpendicular to —].,, Ps can be arbitrarily rotated about an axis parallel to _1.,

These two special cases will reappear with special symmetries.




1. Reciprocity

matrices), then scattering reciprocity gives

(T, Fi) = A7(-TeToss)

>

. Assuming that the target is comprised of reciprocal media (symmetric constitutive-parameter

2.1

This expresses the fact that if one interchanges the role of transmit and receive antennas in the scattering

experiment one gets the same result. Note that the transpose expresses the interchange of the coordinates

for transmission and reception.

In forward scattering we have

—~ ~

(2.2)

which expresses the fact that Xb is a complex symmetric dyadic and that Xb o is a real symmetric dyadic

opcrator. Inboth forward and backscattering one can regard the dyadic as of size 2 X2, being transverse

to 1,. In this form there are only four clements to consider. For backscattering this reduces to three

clements since the off-diagonal elements arc equal.



II.  Symmetry Groups for Target

Let the target symmetry be expressed by a group G under which the target is invariant, given by

G={(G)le=1,2,...6,}

(),

£, = group order (number of elements) (3.1)

group element

(G);] € G, (1)= identity €G

(G)Z] (G)Z2 € G for all ordered pair of elements

Let there be a set of 3 x3 dyadics which form a representation of the group with
G), =G, ()T (3.2)

and group multiplication becoming the usual dot multiplication. For the point symmetry groups
(rotations and reflections) with real coordinate transformations thesc dyadics are real and orthogonal
with

1

=-1_ =T
G, =G,

q t(E ) +1= proper rotation (3.3)
et{ Gy =
97112 improper rotation (includes a reflection)

An even number of reflections gives a proper rotation.

The order of a group element, or its dyadic representation, is ny, the smallest integer (2 1) such that

—=n,

- [0
C,l=1,%

= positive integer (3.4)
ng

The eigenvalues have the property

;,Zf(@)=1,5=1,2,3 3.5)

Combining with (3.3) gives

dct(az) =-1=n, = even (3.6)

so improper rotations all have even periods. The group (cyclic) of order n,




{(G)?|n=1,2,...,n[}

subgroup of G of smallest order containing (G)Z

(3.7)

is called the period of (G),.

A special case of interest for a group is one of order 2, called an involution [13,16]. If (G), isan

element of order 2 then its period is an involution as

period of (G), ={(1),(G),} (3.8)

In terms of the 3x 3 dyadic representation then such a dyadic has the property
-— —_1 =T
Gp=G, =G (3.9

i.c., it is not only real and orthogonal, but also symmetric. Now any real, symmetric dyadic can be writ-

ten as [4]
3
Ce=2, 8ep1ep1ep
B=1
. 8¢,p = real cigenvalues
_1’31[3 = recal eigenvectors (3.10)

= rcal unit vectors giving spatial directions

Tt',ﬁ; '_].[,ﬁz =1p,,p, (orthonormal)

Furthermore, we have

B=1 (3.11)

Rotate the Cartesian coordinates (x, y, z) to coincide with the _l.ﬁ (all orthogonal, as required for such a

correspondence). Then this involution dyadic gives combinations of reflections through the three coordi-

nate planes (x =0, y = 0, and z = 0) as the only possibilities. These can be categorized as



all gy g =1= identity T giving group order 1 (not an involution)

one gg g =-1=> reflection R with respect to any plane (reflection symmetry R, improper rotation)

two g g =—1= 2-fold rotation axis _1./3 corresponding to theone gy g =1 (3.12)

(rotation symmetry Cp, proper rotation)

all gg p=—-1= inversion - T (inversion symmetry I, improper rotation)

Note that combinations of the above operations give groups with more than two elements.

10




Iv.

Target Symmetry

By a symmetric target is meant one that is invariant under a coordinate transformation via the

group elements discussed in Section IIl. For each group element we have

T=xl,+ y_fy +21,

(4.1
?(2) — Gl . _r’(l)
Whatever of the targetis at 7 isalso 7(?, applying for all the elements of the symmetry-group
representation. Asin [10] transform the fields as
FOGFD nG,-EOFD p
(4.2)

AOGD oG, - HDFO g

with + for proper rotations and - for improper rotations when dealing with magnetic parameters. This

applies to all the fields and sources in the Maxiwell equations and constitutive relations.
Applying this to the permittivity of the target gives
BO(7®,5)-G BO[FD, ) =G, F(70,6)-GT &, FVGD, 9
-, g(?(l)ls).g}" FOFD 4.3)
= %(7(2),5)‘§(2)(7(2),5)
implying
F(7?,5)=C, EF 9G] @.4)
This applies similarly to the conductivity and permeability. So in a more general form we have

ﬁ(c’;} F,s)=Go (7,0 GF

?(EZ '7,5)=Eg AT, GF (4.5)
5(6[ *7,5)=Cy 5 (7,9)C;

as the symmetry conditions of the target, noting that the above applies for all the Eg in the representation

of the group G.

11



Applying (4.2) to the incident electric field gives

@) = =) =) = = :
1,5, =6, (4.6)

Similarly application to the far scattered field gives

~Q@) = =)
T, =Gg 1, 4.7)

0

Then transforming the scattering equation gives

= - Xy . Ve gy =y N e me TS oy
Ef(z)(_r'(Z),s)=Gg‘Ef(l)(r(l),s)= 84m GZ'A(]O(])r 11-(1’;5)-6}-6[-Ef(’"c'”(o,s)

Gy A(TW0,T05s)- 8T - EeT. 5 @8

I £y — = —
_e A(lo(z), 1.(2);5).E(mc,2>(0’5)
47y !

implying
X(TO(Z)"];(Z);SJ _GC,- X(To(l),—fi(1>;5).5} (4.9)

So in a more general form we have

-_— e~

AGe To,Ge Tiis)=Gr - Ao, Tis) BT (110)

as the symmetry conditions for the scattering dyadic.




|4

V.  Symmetry in General Bistatic Scattering

As discussed in [19] there are various transformations of the target which give a scattering dyadic

simply related to that for the original target. These are:

a. rotation of the target by & about the bisectrix —1.1,
b. reflection of the target with respect to the scattering plane Pg
c reflection of the target with respect to the bisectrix plane Pj

The target need not have any of these symmetries; they still appear in the scattering dyadic.

Instead of transforming the target the above operations can be interpreted as transforming the

coordinates, in particular 1; and 1,. Define dyadics for the three operations above as:

Ez(b) E—Tb +_].b—].b =-1 +2]b1b
= rotation by 7 (2 - fold axis) about _fb

two - dimensional inversion transverse to 1,

1l

=
i

= 1-2751,
5 5°s (S])
reflection through Pg

bl

il

reflection through 1,

fachof these forms with the identity 1 aninvolution group. Noting that

ES'E“E \5'1?5:.{—2_]‘52—1.5—21515

b)

then the three dyads in (5.1) with the identity 1 forma representation of the Cga group ( szb) two-fold

rotation axis _l.b, plus two axial symmetry planes Pg and Pp), a commutative group given by
b b
e ={0).(R:) (Ro) (5] } - Ry @ Ry 53

formed from the two involution groups

13



Rg = {(1)' (Rs )}
Ry ={(1),(Ry)}

Apply these symmetry operations to the scattering dyadic. For a. we have

(5.5)

where the reciprocity relation (2.1) has shown that this rotation of the coordinates has not reproduced the
scattering dyadic but rather its transpose. Clearly a second application of this rotation gives back the

original scattering dyadic (identity operation). For b. we have

(5.6

3.7

with the same form as (5.5). Note that these are not the same results in general as in (4.10) for gcometncal

~vmmutries in the target since they come from the reciprocity symmetry.

Going a step further let each of these symmetry dyadics individually be symmetry dyadics Gy for
the target. Then use (4.10) in combination with the above results for cach of these three involution

Jdvadics. Fora. we have
(C(b) G T ) ci- A(l, s ) Cip = (TO,T,-,-S) 5.8)

For b. we have

—~ ~
— e

X(ﬁs ‘1, R, -'1’1-,-5) - R, X(To,i};s)-ﬁs = X(TO,T,-;S) (5.9)

For c. we have

14




~ -~
—

X(ﬁB 'TO,EB ’ li;s) = EB : X(—l.o,—l.,';s)' I.EB = F(To,Ti;s) (5.10)

This last case of a bisectrix symumetry plane (c.) is treated in some detail in [1, 17] in terms of symmetric
and antisymmetric parts of the fields and associated natural modes. So, as the above results indicate, the
particular geometrical symmetries combine with reciprocity to give more symmetry in the scattering

dyadic.

Use of the h, v coordinates discussed in Section I is a natural choice for simplifying the representa-

tion of the scattering dyadic. In particular for b. (target symmetric with respect to the scattering plane)

—(@
the incident field is a symmetric field when polarized parallel to ]hl) giving a far scattered field parallel

- — (1)
to 1,1(0). When the incident field is polarized parallel to 1, * the far scattered field is polarized parallel to

Tzfo) = _].v("). This can be regarded as some kind of generalized diagonal form.



VI. Symmetry in Backscattering

Specializing to the important case of backscattering, recall from (2.3)

(6.1)

The scattering dyadic can be regarded as a symmetric 2x2 dyadic or matrix by considering only coordi-
nates (h, v) transverse to T,-. Also, as discussed in Section 1, the scattering and bisectrix planes are not

uniquely specified, but are any pair of orthogonal planes with T,- parallel to their common axis of

intersection.

Consider an orthogonal (real) dyadic (matrix) of the form

Tnh Tho O 3 T
(Th m) =|Ty,n Top 0OF, (Tn,m) = (Tn,m) 6.2)
0 0 1

where the coordinates are arranged in a right-handed (h, v, 0) coordinate system. Note that when operat-

ing on longitudinal vectors, no change is induced; i.e.,

- - - (6.3)
l,=1,=~1;
Then for backscattering (4.10) becomes
Xb(Ti,s)z (Tn,m)'xl,(—]},s)'(Tn/m)T (6.4)

provided (Tn/m) isa symmetry of the target for the 1; of interest. Note that in the Cartesian coordinates

appropriate to (6.2) the z coordinate has been chosen as a symmetry axis or parallel to a symmetry plane

of the target.

Now apply the general symmetries noted in Section V. Since the bisectrix 1p, = TO =-1;, then for

item a. we have a two-fold rotation axisas 1, or - 1;. In two-dimensional form

16



G = {(1), (CZ )1}

1H->T=T1 : 6.5)

ot 4y G

sin(r) cos(r)

In three-dimensional form rotations about - 1;- are generalized as

cos(¢) —sin(¢) 0)
(Cn,m(9))=|sin(¢) cos(g) 0|=C(9) (6.6)
0 0 1

but for present purposes the two-dimensional form is adequate. Applying this to the scattering dyadic
gives

6.7)

so the backscattering dyadic has Cp symmetry, regardless of any such symmetry in the target with respect

to the _fi axis.

Concerning items b. and c. dealing with reflection through Ps and Pp, these become any axial planes

(containing Ti). Let Ea represent any such reflection. Noting that the h, v coordinates can be arbitrarily
rotated so that this reflection reverses only the h coordinate we have

LR A
v,ol s

0 1

Xh,h(Tifs) "Xh,v(Tirs) (6.8)
_Xv,h(Tirs) X'u,'u(_l.ils) |

]

Xh,v (Ti,S) = Kv,h (T,-, s) (reciprocity)

which is a rather simple form for the transformation of the dyadic, but not an invariance. If the target has

an axial symmetry plane and Ea is oriented to reflect through this plane, then we have

~ -~

Ao(Tir5) = R R Tr8) B = (Fa) Ro(Toos) () (©9)

as symmetries of the backscattering operator. To sce the significance of this choose the (h, v) coordinates

asin (6.8) to give

17



- -1 0
Ry = ( lj = reflection of h coordinate
(6.10)

- 1 0 -
R, (O J = —Ry, = reflection of v coordinate

S50 one axial symmetry plane in the target (I‘Ea reflection) gives two symmetry planes (ﬁa reflection and

-I.ia reflection) in the backscattering dyadic. Viewed another way, the C7 symmetry in Xb plus an axial

symmetry plane (R; symmetry) in the target give (24 symmetry in Xb, a two-fold rotation axis with two

axial symmetry planes. With this kind of symmetry (6.8) implies that with the orientation of one of the

~

radar coordinates (either 4 or v} along this symmetry plane then Xb is a diagonal dyadic (matrix), making

this a convenient choice of coordinate axes.

For 1; asa higher-order (N-fold) rotation axis we have CN symmetry
Cn = {(CN)nln = 1,2,...,N}
. 27n . o
(Cn),, = rotation by = (positive ¢ direction)

(CNn)=(Cn )T -(CN)y =(D)

ol ) 8

N . (27171
sin| =—
N

6.11)

(C.\')N - (Cn,m(zﬂ))z (Cn,m(o)) = ((l) OJ= Inlp+ 1p 1y

This gives as a special case of (6.4)

= -~ 2nn = = 2mn T
Ab(],-,s):(Cn,m[—N—D'Ab(li,s)'(Cn,m(TD (6.12)

This is the same equation as derived from a different procedure in [2, 11, 17], where it is shown that with

reciprocity as in (6.1) the only solution for N 2 3 is

Ao(To5) = K T25) T (613)

18




This form of scattering dyadic, proportional to the transverse identity, is invariant to all transverse
rotations and reflections. Such a scattering dyadic then has Coq; symmetry which is also labeled as O2.
These point-symmetry results are summarized in table 6.1.

Table 6.1. Point Symmetry Groups (Rotation and Reflection) for Back-Scattering Dyadic for Reciprocal
Target

Symmetry in Target Form of Ap Symmetry in Ap,
(transverse to 1;)

ct - c2
(no symmetry) b= % (two-fold axis 1;)
Co = = Co
LT Ap = Ay LT
(two-fold axis 1; (two-fold axis 1;)
B Rq = C2a

Ab diagonal when referred to

(single axial symmetry plane) .
axial symmetry plane or

(two-fold axis _1.,' with two axial

perpendicular axial plane symmetry planes)
CNforN=z=3 b Cog =0
Ap i

(N-fold axis _1.,-) (continuous rotation axis 1; with

all axial planes as symmetry
planes)

There are other kinds of target symmetries one can consider [9, 12]. Onc of interest here is
continuous dilation symmetry (generalized conical symmetry [6, 7, 20], including cones, wedges, and half
spaces. For a limited amount of time (the time of validity giving a partial symmetry) based on truncation
of the target (to give a finite size) and arrival of multiple scattering at the observer (between tips for finite-
length wedges, and tips and edges for finite-dimensioned half spaces) the scattering dyadic operator
takes the form of one, two, or three kinds of terms. Each term contains a real symmetric 2x2 dyadic

—

K”(_].,-) times some order of temporal integration I]' (or power of 1/s in frequency domain). Each term

can begin at different times, depending on the relative distances of tips and edges from the observer. Asa
real symmetric dyadic each of these K coefficient dyadics can always be diagonalized with real eigen-
values and real eigenvectors giving real and orthogonal spatial directions. The two eigenvectors specify

two symmetry planes (except in the special case of equal eigenvalues). This is summarized in table 6.2.

19



Table 6.2. Generalized Conical Symmetry for Target and Back-Scattering Dyadic .

Symmetry in Target Form of ;1-\}, o | Symmetryin ff-\;b °

Co, for each term

-

continuous dilation (partial K7
. n —_
symmetry due to truncations) (two-fold axis 1; with two axial
¥ %l
Kp = Ky (real) symmetry planes)
(number of values of n:
simple cone: 1

finite-length wedge: 2
finite-dimensioned half space: 3) o

So here is a case of no point symmetry in the target, yet still giving additional point symmetry in the

dyadic scattering operator, here expressed in time domain recognizing the limited time of validity (partial

symmetry).




VII. Symmetry in Forward Scattering

For forward scattering we have
To=To, Ay{Tos) = A7 (-T.s) 7.0

but even with reciprocity in the target the scattering dyadic is not necessarily symmetric. Now the
bisectrix plane Py is perpendicular to _1',', but the scattering plane Pg is any plane parallel to 1;.

Consider first two-dimensional rotations and reflections in the transverse (bisectrix) plane as was
done in Section VI for backscattering. Asin (6.7), C2 symmetry applies in forward scattering as well, due

to the fact that the rotation dyadic is just —T,'. For reflections, as in (6.8), let R, represent reflection
through some axial symmetry plane P, (a scattering plane). Orient the h, v coordinates so that this reflec-

tion reverses only the h coordinate. Then the incident electric field can be chosen as symmetric, i.e., paral-

lel to _l.h, producing a symmetric forward-scattered electric field also parallel to _fh (2,17, 18]. Similarly,
considering antisymmetric fields an electric field parallel to —l.v forward scatters with this same polariza-

tion. 5o for this choice of coordinates the forward-scattering dyadic is diagonal. Applying (4.10) for reflec-

tion symmetry gives

confirming the diagonal nature of the dyadic as well as showing that the dyadic has two symmetry
planes, the second one characterized by Ev which reflects the v coordinate. Now rotate the dyadic

through any angle ¢ (about 1;) asin (6.6) and take its transpose giving

(7.3)

21



since a diagonal dyadic is a special case of a symmetric dyadic. So we have in general for any choice of

the h, v coordinates
()= (7
if the target has an axial symmetry plane.

For —1., as a higher-order (N-fold) rotation axis given CN symmetry in (6.11) and (6.12), now apply

_~

in forward scattering. However, with reciprocity not implying a symmetric A, then for N 23 and

following the procedure in [2, 17] we have
= = 2mn\). = (= 2 \\!
Af( 11’,5) = (Cn’m(TJJ . Af( 1,',5) . (C"'m(_]\]—)j
(7.5)

Re(Ts)= KTl 3+ Raa () o)

which is a transverse-identity part plus a rotation (#n/2) part. It is important that N 2 3 since this assures

that there is at lcast one n fromn = 1, 2, 3,..,N such that sin(27m/N) = 0. This form of dyadic is invariant

to any two-dimensional rotation so that it is characterized by the group C.. or O5 . Note that it is not

invariant to axial reflections which can be seen by applying Ea to the above. It now the target has an
axial symmetry planc (with Cpy implying N such planes) then the target has C Ny symmetry and the

forward scattering dyadic has Ce,; or Oy symmetry with

—~

Xf(T,‘,S) = if(?,,s)((]) ?] (7.6)

Going on to symmetries that involve full 3x3 dyadics, let the target have inversion symmetry with

group structure (an involution)

1={).}. (1 =) (7.7)

-1 ,(I)>-1 (7.8)

22



Then (4.10) gives the general form

-~

A(To,5=Tii8) = A(To, Toss) | 7.9

In forward scattering we have

—

1o=_1.1'r

> 1

f(—li;s)=Af(1i,'S) (7.10)
Combining the above with reciprocity in (2.1) gives
Xf(_l.,';s)=;\d§(_l.,-;s) (7.11)

Thus inversion symumetry is sufficient to give a symmetric scattering dyadic for forward scattering for all

1;, a result which applies in backscattering in (2.3) for targets with no particular geometric symmetry.

In forward scattering one can regard the scattering dyadic as a 2x2 matrix since incidence and scat-
tering directions have the same axis. Since in (7.11) it is symmetric then only three of the four non-zero
clements need to be considered. Inversion symmetry is rather general since it does not imply any rotation
axes or symmetry planes in the target. There are many common shapes with inversion symmetry, c.g.,
rectangular parallelepipeds (bricks), finite-length straight wires, rectangular disks, circular loops, ctc.

Less common are strange shapes without symmetry planes and/or rotation axcs.

If the target has one or more symmetry planes, and we restrict 1; to be perpendicular to one of

these, then the result in (7.11) still holds for these particular forward-scattering directions. Describe this

~vmmetry by the reflection group (transverse reflection plane, an involution)
2
Re = {().(R)}, (Re)™ = (1) (7.12)

and a dyadic representation

(1)> 1,(R)= R =1-271;1;
_ (7.13)
= reflection through a transverse (to 1;) symmetry plane

this reflection is the same as Rp in (5.1) for the case of forward scattering, in which case P} is perpendicu-

larto 1;, Reflection through a transverse plane is to be distinguished from reflection Ea through an axial

plane.

Note that
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R To=—T0, B &y(Tos) B = Ag(09) an

since A now has no _1., components. Then (4.10) gives the same result as in (7.10), leading to the sym-

—_—

metric scattering dyadic as in (7.11), except that it applies only for particular 1;.

Having a symmetric forward-scattering dyadic the results of Section VI for the symmetric back-

scattering dyadic can now be directly applied. Adjoining the various symmetries transverse to —i., (two-

dimensional) to the inversion symmetry I and reflection symmetry Ry discussed in this section, the same
results are obtained as in table 6.1. The dilation symmetry in table 6.2 does not apply here since the scat-

tering to the observer does not arrive first from cone tips and/or wedge edges, but rather from the entire
scatterer (including truncations), all at the same time.
An additional point symmetry to be considered is rotation-reflection 5y. Keeping -1.,- as the

rotation-reflection axis we have

Sy ={(SN)Z|€=1,2,...,N}

(Sn); = (Cn ) (Re) = (ReXCN )
(7.15)

(Sn),=(Sn);

v

(SN);\ = (1) for N even

Note that N even is the only interesting case since N odd requires that (Cx); and (R;) be separate sym-

mietry elements giving Cny symmetry {14, 18]. Defining for N even

N
we have
= 2n -—(2r
N [C”""('ﬁ)) ) C(T)
- 2r —~(2r =9
C = p——— = —_ = 7
N (Cn m( )J C(N,) CN (7.17)

So Cn- isa subgroup of SN.
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Applying §N we have

-
~

#(T0s) 5%

. (7.18)
f(?,S)‘C{G

if(_fi,s) (reciprocity)

o~

where the ﬁt part reverses _1., but does not operate on A which has only transverse components. This

operation can be carried out an odd number of times as

Nl/

odd integer

N7 =

Ay(-Tos) =

|
|
—

|
=
>1
Py
=1l
Jn

(7.19)

Now N is even, so consider the case that

N = N’:%,N’zodd

Y =-7 (7.20)

Af(T9)

~

(5

giving a symmetric scattering dyadic, as with some cases previously discussed. Note that for N’ =1 we

have

Sy =1 (inversion)
(7.21)
which is the case considered initially and does not have any particular rotation axis (i.e., is not related to

_]',-). Other cases included in the above are Sg,510,..., i.e, N=2N’ with N’ odd.
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The case of N’ even (N a multiple of 4) is more complicated since, analogous to (7.13), we have

N”= even integer =2N"

S E=T,
Rp{Tae)= 50 Ry (o) (50
e Ry () (@)

BN R (T [EN)

but without the reversal of —]., to give the relation to the transpose scattering dyadic. This does exhibit,

however, Cly and Cp- as subgroups for the symmetry of the scattering dyadic. At this point let us note
that for N 2 4 (since N is even) the result in (7.5) with only two distinct elements for the forward-

scattering dyadic applies.

Extending this rotation-reflection symmetry let us adjoin axial symmetry planes. Let any one of
these be characterized by, say Eh as in (6.10), and align the & coordinate with this plane. Then letting the
incident wave be symmetric or antisymmetric with respect to this plane (k and v polarization, respec-
tively), the scattered ficlds including the forward-scattered fields will have the same symmetry proper-
ties. Hence, in this coordinate system the forward-scattering dyadic is diagonal (a special case of
symmetric). Rotation about 1; (to any other choice of the transverse coordinates) of a symmetric dyadic
gives another symmetric dyadic. Hence, adjunction of one or more axial symmetry planes makes

/\f(]i,s)zx')];(_].i,s) (7.23)
With a symmetric dyadic, then the result in (7.5) reduces to the transverse identity in (6.13) for back-

scattering as
Xf(Ti,S)=Xf(—].i,s)Ti for N >4 (7.24)

Note that adjunction of axial symmetry planes to Sy, giving SNg, has Cyyv, as a subgroup and there
are N’ such axial symmetry planes. While Sy has N elements, S, has 2N elements and Cpyv, has N

clements. These N’ axial symmetry planes introduce N’ secondary 2-fold rotation axes between these
planes {(diagonal) on the transverse rotation-reflection plane. This is dihedral symmetry Dy (N

clements) with diagonal symmetry planes given Dy symmetry (2N clements) [14, 18). So we have

Sna = Dna (7.25)
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as two equivalent labels for the same group, giving a symmetric dyadic as in (7.23) for which case the

various results for backscattering also apply for forward scattering.

These point-symmetry results are summarized in table 7.1. Note that due to the relevance of three-
dimensional rotation-reflections in the target symmetry the list is considerably longer than for back-

scattering in table 6.1.
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Table 7.1.
Reciprocal Target

Symmetry in Target
(_l.,- as reference axis)

~

Form of Xf

Point Symmetry Groups (Rotation and Reflection) for Forward-Scattering Dyadic for

-~

Symmetry in A f

C1 (no symmetry)

Cy (two-fold axis _1.,')

general 2x2

genera] 2x2

Rg (single axial symmetryglgéi)r

Xf = 7\’}‘ and diagonal when

referred to axial symmetry plane
or perpendicular axial plane

Cy (two-fold axis -1‘,-)

Cp (two-fold axis 1;)

Coa (two-fold axis T,- with two

axial symmetry planes)

28

CN forN =3 (N-fold axis 1;) ~ (1.0) ~ (0 1
Aalo 1) 22lq o
CNa for N >3 (N-fold axis 1 AfT;
with N axial symmetry planes)
I (inversion, no special axes or i _T
planes) f=0f
Rt (symmetry plane LT
& T ey
T
CNtforN =3 R Xfi". -
1
SN'
(rotation-reflection,
N (even) = 2N’y
N’ odd Ap=AY
odd N’ 23 AfT;
even N’'>2 X 1.0} ~ 0 1
Afy [0 1j+ Ao [_1 0
Sig =Dyq (dihedral with two | i _ i’r
diagonal (axial) symmetry f=0f
planes) .
Dy for N'23 T

Coo = O; (continuous rotation

axis 1;)

Coop = 62 (continuous rotation
axis T,' with all axial planes as
_symmetry planes)

Cy (two-fold axis Ti)

C2 (two-fold axis 1;)

Ceq = O, (continuous rotation

axis 1; with all axial planes as

svmmetry planes)

Co -

(two-fold axis _1.,')

Ceoq = O (continuous rotation
axis 1; with all axial planes as

Coo = O; (continuous rotation
axis —]';)

C2q (two-fold axis 1;)

Ceoq = O (continuous rotation
axis 1; with all axial planes as

symmetry planes)




VII. Symmetry in Low-Frequency Scattering

At low-frequencies for which the target is electrically small (X >> target dimensions), the scattering
is dominated by the induced electric and magnetic dipole moments. The scattering dyadic then takes the
form 5, 8]

>4!

X(Ti,To;s)= (—_1.0,—_1.,-;5) (reciprocity)

It
<N

2[—3.0 “P(s)' T +1, xA.Z(s)x_l}] ass—0
(8.1)

l

P(s)=PT(s)= electric- polarizability dyadic
A:/I( =T . o .
s)= M* (s) = magnctic - polarizability dyadic

These polarizabilities have dimensions of volume (m3) and, with the incident electric and magnetic fields,
give the induced electric and magnetic dipole moments. Reciprocity makes these dyadics symmetric. For

perfectly conducting targets they are also frequency independent.

For convenience express the cross-projects in dyadic/dot-product form [3]. Consider an arbitrary

real unit vector 1, and form

:i':z = _].a x 1= _.11 x ‘—a
o _ (8.2)
1, = 1 - 1,1, = identity transverse to 1,
This is the most general skew symmetric dyadic [15] with the relations
- = - - T —
Ix1y=-1,=7,= TaTr T = (8.3)

where the subseript -a refers to replacing _l.ﬂ by - Ta. This dyadic can be described as a rotation by n /2 of
the coordinates transverse to 1, around 1,ina right-handed sense. The longitudinal coordinate (in the
dircction of Ta) is multiplied by zcro. To illustrate the form of this dyadic consider the right-handed

coordinates based on _].h,_].v,——l.i satisfying (1.5). In this case

0

Ol=-1;= T; (84)
0

gives a positive sense of rotation in the k, v plane in the usual radar coordinates. This is equivalent to

(Cn,m(ﬂ/ 2)) if only transverse coordinates are used. However, in three dimensions this is not an



orthogonal dyadic, unless the (3,3) position is changed from 0 to 1 as in (6.6) for c (m/2). Similarly for .

1, we have

Ty=Tox To=-To=-T, (85)

Now rewrite (8.1) as

AT, Toss)= AT(To-To00)

- - (8.6)
=72[—T0 “P(s) 1, -7, M(S)EJ ass—0
Interchanging TO and T,' we have
(T T =775 By -7 % [ass o0
7\7(.1',,—‘0,5)= 293P -5 M (S)EJ ass—0
i (8.7)
=723, Bl T %l 5 fass 0
= ./-\.T(—T,',—_].O;S) ass—0
so that we have the additional invariance (symmetry)
X(Ti,To;s)z X(—_].l-,—-l‘o;s) ass— 0 (8.8)

Note that this result, using the leading term (dipoles) for low frequencics, has only been shown to be
valid in a low-frequency asymptotic sense, the error being thus far associated with the next higher-order

(quadrupole) terms.

Applying this result to back and forward scattering gives

A (T2,5) = Ap(Tivs) = Ap (T,
(8.9)

Xf(7i15)= i.f(—_l'i,s) = 5\’?(_‘1‘{,5) ass—0

For low frequencies the back- and forward-scattering dyadics are both symmetric and invariant to direc-

tion reversal. .
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With both Xb and Xf symmetric, then the results of Section VI for point symmetries as in table 6.1

apply to both. In addition, the fact that the target is electrically small means that the incident electric and
magnetic fields are uniform (quasistatic) in the vicinity of the target, so the front and back of the target are

seen “simultaneously.” This is also exhibited in (8.6) where only the dipole terms are retained.

o~

Writing, i,-(—l.,-,s) for both ib (T{,s) and Xf (—fi,s) we have, in the electrically small regime,
ii(i’ils)=ii(__firs)= iT(Ti,S) (8.10)

where we can take the dipole terms in (8.1) and (8.6) to define this case and give exact equality in (8.10).

From (8.6) we have

Ki(Ti,s)wZ[—i} Fo) T ’17'1\"4(5)'?,-]

(8.11)
{+ for backscattering
=

- for forward scattering

Now the scattering dyadic is in a form in which the results of [10] can be used. In that paper the symme-
tries of the magnetic polarizability dyadic are analyzed. These also apply to the electric polarizability

dyadic by appropriate interchange of electric and magnctic parameters. In accordance with (4.5) the same

~

symmetries are taken for both electric and magnetic parameters so that .I;(s) and A.:.I(S) have the same

symmetries.

Write D(s) asa general dipole polarizability dyadic, applying to both electric and magnetic polar-

izabilities. Then table 9.1 of [10] can be written as table 8.1 here. Note that the axes (z, ctc.) here are

aligned according to the target and are not in general 1; unless so sclected for a particular case.

Concerning rotations and axial reflections with respect to 1; as the symmetry axis (two-

dimensional transformations), table 6.1 is applicable. Including transverse reflections R; changes the

results from the previous results for back and forward scattering somewhat. Both inversion I and trans-

~ -~

verse reflection Ry symmetry do not add to the symmetries in Ag as they did for X[ in Section VII

—~

because Ay is already symmetric. The discussion can then jump ahead to rotation-reflection symmetry in

(7.15) through (7.17).
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Table 8.1. Decomposition of Polarizability Dyadic According to Target Point Symmetries.

Form of D(s) Symm?try Ty?e (Groupé) -
~ == = F Rz (single symmetry plane)
D(s)1z 1z + Dy(s) C, (2-fold rotation axis)
(B9 7.-7)
B, (s)T, T, + D) T Ty + By (5) T, T, C2a =Ry ®R,y
D5 (three 2-fold rotation axes)
B,(s)T,1, + Dy(s) 1. ' CN for N 2 3 (N-fold rotation axis)
z zz t z SN for N even and N 2 4 (N-fold rotation-reflection
- - - axis)
( z=1-1;1; = double degeneracy) D7y (three 2-fold rotation axes plus diagonal
i symmetry planes)
B(s)T O3 (generalized sphere)
T, O, Y (regular polyhedra)
(T = ftriple degeneracy)

For our symmetric dyadic we now have

(8.12)

The invariance to _].,- reversal avoids the effect of .S:\/ on _].i. The symmetry of the dyadic then makes

X,-(—].,-,s) = ‘/‘\’,'(—'_J.i,s).i.,' for N = 4 (N being even) (8.13)

which is C., or Oy symmetry. This result can also be found using table 8.1 noting that for Tz = _1‘,' the
transverse part of the polarizability dyadics have the form Bt (S)T{. So for low frequencies the results for

rotation-reflection symmetry are considerably simpler than thosc in Section VII for general forward

scattering.

Referring to table 8.1 we also have dihedral symmetry to consider. Here we see that D2 with three

2-fold rotation axes (one taken as - Ti and the other two perpendicular to -_l.i and each other) is sufficient




to give two axial symmetry planes in the polarizabilities. Note in (8.11) that 7; is a -n/2 rotation, merely

~

rotating the axial symumetry planes into each other. So D2 results in C7; symmetry in X,-. Going a step
further D4 symmetry makes the transverse part of the polarizabilities proportional to .1; so that (8.11)

takes the simple form

(8.14)

which is Ce.p or O symumetry.

Finally, there are the symmetry groups which give E)(s).l~ ,namely O3 (invariance to all rotations
and reflections), T (tetrahedral), O (octahedral), and Y (icosahedral) symmetries. This also gives C., or
O as in (8.14) with the additional invariance of being independent of 1;. One can think of this as O3
symmetry. Remember that T, O, and Y give this result for only low frequencies for which the induced

dipole moments dominate the scattering.

These point-symmetry results are summarized in table 8.2. These low-frequency results can be

compared to tables 6.1 and 7.1 for general frequencies.



Table 8.2. Point-Symmetry Groups (Rotation and Reflection) for Low-Frequency Back- and Forward-
Scattering Dyadics )
Symmetry in Target -
= F of A S etry in A;
( 1; asreference axis) orm ! ymmetryin A;
i R - %
(no symmetry) P (two-fold axis 1;)
Y = = T
2 - A= XT J—
(two-fold axis 1;) ! (two-fold axis 1;)
Rqy = ) . C2a

(single axial symmetry plane)

CNforN=23

SN forN=2>4 (rotation-reflection, |

N even)

D> (dihedral, threc rotation axes |

at right angles)

D24 (dihedral, two transverse
rotation axes and two axial
diagonal symmetry planes)

O3 (all rotations and reflections) |

T (tetrahedral)

O (octahedral)

Y (icosahedral)
(orientation of rotation axes

arbitrary with respect to 1)

X,- diagonal when referred to

axial symmetry plane or
| _perpendicular axial plane

AP

(two-fold axis _l‘, with two axial
symmetry planes)

C;,a = O)g (continuous rotation

axis T,- with all axial planes as

~ symmetry planes)

2

A; diagonal when referred to
transverse rotation axes

Ailg

Xi']:- independent of _]‘,-

34

Ceoq = 02 (continuous rotation
axis T,- with all axial planes as
symmetry planes)

Ca, (two-fold axis _l‘i with two

_ axial symmetry planes)
Ceoq = 02 (continuous rotation
axis 1; with all axial planes as

svmmetry planes) -
O3 (all rotations and reflections

of both polarization and T,')




IX.  Concluding Remarks

As shown by the various cases considered here, reciprocity is fundamental to the symmetry proper-
ties of the scattering dyadic, including both back and forward scattering. when combined with geometri-
cal symmetries in the target this gives yet higher order symmetries in the scattering dyadic as summa-
rized in the tables in Sections VI through VIII. There are also symmetries in general bistatic scattering if
the target has a symmetry plane aligned with the scattering plane or bisectrix plane as discussed in
Section V. For low-frequency scattering (electrically small target) there is also the general bistatic symme-

try in (8.8) of invariance to direction reversal for both incidence and scattering directions.

Another related topic concerns the impact of symmetry on the eigenmodes and natural modes. As

discussed in [1, 2, 11, 17] there is an interesting case of 2-fold degeneracy for a body of revolution with
axial symmetry planes ( C..,, = Oz symmetry). For backscattering, the rotation axis and the observer ( _l.i)

determine a symmetry plane. The symmetry plane makes the various residue vectors for the poles align
parallel (symmetric) or perpendicular (antisymmetric) to the plane, thereby determining the target orien-
tation. The 2-fold degeneracy for modes with Fourier-series terms cos(m ¢’) and sinim¢’) and m 21 (¢’
around rotation axis) give rise to two natural modes and residue vectors (one parallel and the other
perpendicular to the plane) for cach natural frequency s . Other types of symmetry (such as Cn for N 2
3) can also lead to such 2-fold modal degeneracy. Such degeneracy is treated in detail for the magnetic
polarizability dyadic (and by simple substitution the electric polarizability dyadic) in [10]. There various
point symmetries gave risc to 2- and 3-fold degeneracies. Noting that only dipole terms are treated there,
and that the scattering at higher frequencies (target not clectrically small) involves in general all
multipoles, then there can be various kinds of modal degeneracies associated with the various point

svmmetrics. These considerations are beyond the scope of the present paper.
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