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Abstract

In understanding the response of a complex electronic system to externally incident
clectromagnetic waves, the system natural frequencies (complex resonances) are typically of dominant
importance. These poles have residues given by a coupling vector which is a function of the angle of
incidence. These terms describe the effective height for internal ports (failure ports), showing how large
the signals there can be over the various exposure possibilities. These terms can be measured cither in
reception, or by reciprocity in transmission. For cases where there is an approximate shield around the
system, the coupling vectors for the external surface current density can be conveniently applied to the

internal ports at these external natural frequencies.
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system, the coupling vectors for the external surface current density can be conveniently applied to the

internal ports at these external natural frequencies.



1. Introduction

The interaction of an incident plane electromagnetic wave with a complex electronic system is
quite complicated in its details. However, some general characteristics of the system response can be
used to summarize the form of the response in a way which lends itself to efficient parameterization for
both theoretical and experimental purposes. As discussed in 3, 7, 12, 16] the response is dominated by
poles (complex resonances) as described by the singularity expansion method (SEM). In time domain
these correspond to damped sinusoids. In frequency domain they correspond to peaks on the jo axis of

the s (= 2 + jw) plane or complex-frequency plane.

As discussed in [3, 12, 16] the range of these natural frequencies extends from some low

frequency fz, based on the external dimensions of the system and lengths of interior cables (perhaps
modified by loading impedances), to some high frequency f (typically of the general order of a GHz),
based on the small resonant dimensions of concern. Below f,the coupling is typically propertional to f
(time derivative for electrically small objects), and above fy it is proportional to f_l (time integral for
coupling to the wires) and can fall off even more rapidly due to propagation losses on the cables. It is this
band of frequencies with emphasis on resonances near f; (due to increasing antenna gain for microwave
illuminators) that are of importance for understanding the system response and design of appropriate

protection (hardening).




IL Response at Internal Port

Consider a system as in fig. 2.1. Illustrated is some nth (n =1, 2, ..., N ) internal ports which can
also be referred to as failure ports [6, 7]. Each of these is a terminal pair at which there is a voltage V,,(f)
which is closely related to a potential failure (upset or permanent damage) of the system. This can be at

the pins leading into an equipment box or across some transistor inside.

Besides the voltage at the port there is an impedance Z, determined by driving the port by a
current source 1™ and measuring the resulting voltage V,Si") to give Z, as the ratio. Note the
convention of positive current into the port (+ convention terminal). Now there may be some device
directly connected across the terminals of impedance Z{Y with some effective source impedance AR

representing the rest of the system. These combine to give

V"Sin)
i

Z(s) = [fo)_](s) ; Zf}ﬂ(s)]_l - (2.1)

as the important impedance for our analysis. Note that time invariance and linearity, or more precisely

linearity to failure in the sense of [6], have been assumed. At the port the voltage V, is an open-circuit

voltage in this convention. The associated short-circuit current is

1F(s) = = Z7(s) Vauls) (2.2)

where the minus sign accounts for our above-stated current convention. Note that open-circuit

conditions correspond to the system conditions of interest for its response to an incoming plane wave.

An alternate way to view the system response is to redefine the port by breaking the branch (via
onc of the leads) containing 7!V, and inserting the terminal pair at this break. Then onc can use the
short-circuit current at this port to define I,. This is a dual procedure to the one we are discussing, and it

carries through in a similar manner.

Assume an incident wave as a plane wave of the form
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Fig.2.1  System with Approximate Perfectly Conducting Enclosing
Surface, Penetrations, and Internal Ports.
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Laplace transform (2 -sided) over time
s = Q + jo = Laplace - transform variable or complex frequency

In reception the voltage is best expressed in terms of the traditional effective height as

~ - S5 5 - ~
Va(s) = VOs) = Ky, (Ti,s) * 1pE, f(s) (2.4)
There are other forms this can take for current and wave variables [4]. Note that this effective height
retains phase information and is a linear parameter, unlike the quadratic absorption cross section. Note
that the effective height can be defined with the constraint
iy - - _
hv, (1i,8) - 1i =0 (2.5)

n

>
since the incident clectric field is always perpendicular to 1.

Now if we remove the incident field and drive the port with a current, the system can be thought

of as a transmitting antenna with a far field as

it

- e T
r,s) =

~ - e
f F1,(1,,9 1)

—~1

r = direction to observer (in far field) (2.6)

B -
Fr,(1;,s) * 1, = 0 (transverse far field)



Assuming that our system is constructed of reciprocal media (symmetric constitutive-parameter matrices)
and reciprocal devices (symmetrical impedance/admittance matrices) then the reciprocity theorem (4]

can be invoked to give

-~

~ = _ o 3 Y
an(lr,S) = _SE hVn(— 17,5) . 2.7)

50 one can make measurements (or calculations) in reception or transmission and have the result for both
cases via this equation. Note that while the patterns (in frequency domain) are the same (except for a
reversal of direction) in reception and transmission, in time domain there is a time derivative (or integral)

relating the two cases.

Now write the response in SEM form as

- - - - 1 _Je— ,
Ts) = B F8) S T3, Ty [s- s 1 5 08)
[04

As discussed in [10] there is no need for an entire function if the turn-on-time ¢; is chosen appropriately.

While this result is based on the surface-current density on a perfectly conducting scatterer, the derivation
is not essentially changed if resistive materials are included. However, it is known that losses can be
included in scatterers/antennas in such a way as to produce second- or even higher-order poles [5]. For
present purposes we assume that only first-order poles are present for the system under consideration.
The natural-frequency index « is common for all the ports of the system, although particular resonances
can be strong in some ports and weak in other ports (with special cascs, e.g. due to symmetry, of zero

contribution in some ports).
Suppressing the turn-on time by appropriate choice of t = 0, then (2.4) gives

fart - - - = _
Ry, (1i,5) - 1p = g™ (1, 1p)[s-sa]” 2.9)

n

- - - -
Choosing two orthogonal choices for 1p as 12 and 13 (both perpendicularto 1) we have

S50 - W) 1
hv, (1i,s) = Ca (1i)[s-s4]
(04
(Vn)
- - - - — - -
Ca = 120" (15, 12) + 1305 (13, 13)
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— 1; 1i = 1; = identity dyad tranverse to 1; (2.10)

Applying reciprocity we also have

(Vi)
- —-\Wn) o
-1
1r,9) = —si2 §a Ca (1i)[s-s4] @.11)

giving the response in transmission to a current source into the port. Note the commonality of the natural

frequencies in transmission and reception.

V)
->\Vn! o
Now we can see that the vectors Co (1§) are a convenient way to describe the response at the

poles which in turn approximate the peaks in frequency domain (along the jw axis). Since the spatial

distribution of a natural mode is independent of the incident field, then the relative response of each of

- -
the N internal ports must be independentof 1; and 1p, giving

S W)

Ca (1) =@, Co (1i)

n’ = conveniently choses port with non-zero response to ath mode (2.12)

So one can display the dependence of the ath response as a vector pattern common to all the ports time

scaling constants for each port.

As discussed in [8, 11, 13, 15] there are cases for which there can be more than one natural mode
for a given natural frequency. This is the case of modal degeneracy, typically associated with certain
symmetries in the system (normal degeneracy). In such a case any linear combination of such natural
modes is also a natural mode. The number of such linearly independent modes is the degree of the
degeneracy, and the scaling in (2.12) needs to be applied to an appropriate set of such linearly

independent modes.



III. Division into External and Internal Resonances

In a topological decomposition of a system there is a good-shielding approximation in which the
penetration of signals through a closed boundary surface (shield) is sufficiently small that one can
separately consider the volumes on each side of this boundary and treat the coupling through the
boundary as a perturbation [9]. For present purposes, let us consider the outer system surface S in fig.

2.1 as such a shield.

Approximating S as a perfectly conducting surface we have an SEM representation of the surface

current density [10] as

- 5 o

= ~ -1
TS (—;)s, S) = EO f(S) Z 77((1];)(11, 1P) Isaa (?s)[S—Saa}

aLr
s
~ - o A S A - -1
=E, f(s) 1p * Y, Ca,(1i, 1p) ]Saa(rs)[s—sau] (3.1)
aﬂ
-
rs € S

Qex = index for external natural frequencies, modes, etc.

There are various ways to compute the natural frequencies, modes, coupling vectors (or cocfficients), etc.
which are considered elsewhere and are not repeated here. It is the form of the result that is important

here. The various terms may even be found by experiment.

In the same form as discussed in [1, 2] let us consider that there are a set of M penctrations
through S. Each penetration is labelled according to a particular component of the surface current density
(or surface magnetic field) or surface charge density (normal electric field). So 75"1 refers to the location
of a particular penetration and associated fiéld component. More than one value of m may be associated

~ -
with the same position on S. Let there be a transfer function T, ,,(s) from cach such rs_ to the port

voltage 17,1 (s). For penetration proportional to the surface current density we have

~ —
n(s) = Tn,m(s) 1m - 75 (?}sm,S)

—_
1

m

unit vector tangential to S specifying a particular
component of the surface current density (3.2)

m

and for penetration proportional to the surface charge density we can write




(3.3)

- -
Trs =7s
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Vu(s) = Tu,m(s) Ps (_")Smls) = Tn,m(s)l:_'l'vs ) _])s(rS'S)]

m

Consider now some external natural frequency sy, and let the T, ,,, have no poles near sq, .

Then V, has a pole at Sa,, and sampling the surface current density as in (3.2) and (3.3) is the same as

- ~
sampling the natural mode js in (3.1). The dependence of V,, on the direction of incidence and
Qex

aJs
— —\s
polarization is then described by 1p * Cq,, . Interpreted in terms of the effective height as in (2.10) the

angular dependence is the same as for the exterior modes and (2.12) can be written as

Vs -Us)

Ca,, (11) = v9%) Cq_ (1) (3.4)

~ >
this result applying to all the V,, or hvy,. So by measuring the coupling vectors for the surface current

density modes we have, to a constant scaling factor, the coupling vectors for this set of resonances in all

the internal responses.

Now the transfer functions fn,m(s) may also have poles with labels a;,. The various transfer
functions may in general have different Sa;, » but some may be common to various of the 7:,1,,,1, say due
to a common resonant structure (e.g., a cavity) through which the signal passcs to more than one port,

and/_())r from more than one penetration. The Sa;, being, by hypothesis, scparate fromthe sp ., then

2
Js(rs, sq, ) is well behaved.

>
Note that ] ¢ can be derived from an integral equation of the form [10]

(inc)

(?)5,5) (3.5)

tral e
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Zi(rs, r’s;8); ] g(rg,s)) =

with the subscript t referring to tangential components. Here a symmetric kernel appropriate to the

impedance (or E-field) integral equation is used for convenience. The formal solution is
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Js(rs,s) = ( Z¢ (7s,7’s:5); E (,s)
1 (3.6)
- > o7 — 73
=E, f(s) 1p * ( Z¢ (Fs, rs3s), eV T
If we have a transfer function with an SEM expansion as
~ . -1
Tom(s) = 3 Ti%n) [s - sa, | 3.7)
Gy
then we can write for the port voltage or effective height
(V) -1 - -
o\ nl - - _ -
Cayy (11) = TG T+ { Zy (s, s 15, ), ¢ 7o 1177 (3.8)

for surface-current-density penetrations as in (3.2). For surface-charge-density penetrations as in (3.3) we

have

4% ) - -1 - -

—\Vnl . 1 s O -
a rd - M
Ca,-,,(li)=T,§,,;,") ——— Vs (Zt (rs, 175554, )5 vl (3.9)
iy — -
r's = 7Ts,
_)

From an experimental point of view for a given 1; one can choose two orthogonal polarizations

- -
as 12 and 13 (usedin (2.10)) and measure the surface current density with both incident polarizations

to form
——)(vn)—> (o) 1 - =2 5 5 -
Cain(li)=Tn,,;1" 'E;T)’ 12(1i)]5(r5m/5ain/]2)
S
° ) (3.10)
- 5 5 5 - -
+ 13(1§) Js(rs,,, appy 3) 1m

for surface-current density penetrations. Similarly for surface-charge-density penetrations we have

10
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Ca;, (1i) = T " —= 1201)Vs * Js(rs,sq, . 12)
Eof(s) sain "

3 3.11)
- - - - -
+ 13(1i)Vs'15(Ts,Sa,-n,13)}

By measurements of the surface current and charge densities at sy, and the pole residue for the

Vi)
—\Vnl >
appropriate transfer function then one has Cq;, (1i). However, unless this angular dependence from a

4 ~
given rs_ applies to more than one V,,, it may be more convenient to measure this density at the mth

port as discussed in Section II.

Now, if more than one Ty ,, for a given n has the same s, , then (3.8) through (3.11) are readily
’ in
generalized by a linear combination, summing over the applicable m . This requires measurement for the
-
various positions and modes of penetration designated by rs_ . Again it may be more convenient to

measure the coupling vector at the nth port in reception or transmission.

11



Iv. Concluding Remarks

An efficient way to display the important interaction of incoming plane waves with complex
electronic systems is then to display the coupling vectors (two components perpendicular to Ti) asa
function of _fi (in general over 4z steradians, or 0 £ @ < mw and 0 £ ¢ £ 2z in the usual spherical
coordinates). For cases that allow an approximate division of the modes into exterior and interior ones,
measurement (or calculation) of the coupling vectors for the external surface current density can be used

to within a scaling constant. For the interior modes the situation is in general not as simple.

The response is conveniently considered in terms of an effective height which dot multiplies the
incident field. One can measure this by exposure to an incident field, or using reciprocity [14], one can
drive internal ports of interest with a known current source and measure the far ficld (or measure the
near field and process it to obtain the far field). The coupling vectors for the natural frequencies apply

equally well to both descriptions.

12




References

1.

10.

11.

12.

13.

14.

15.

16.

C. E. Baum, Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in
Terms of EMP Criteria, Sensor and Simulation Note 222, March 1977.

C. E. Baum, EMP Simulation and Its Impact on EMP Testing, Sensor and Simulation Note 246,
December 1978, and Proc. EMC Symposium, Rotterdam, May 1979, pp. 189-194.

C. E. Baum, Maximization of Electromagnetic Response at a Distance, Sensor and Simulation Note
312, October 1988, and IEEE Trans. EMC, 1992, pp. 148-153.

C. E. Baum, General Properties of Antennas, Sensor and Simulation Note 330, July 1991.

C. E. Baum, Emerging Technology for Transient and Broad-Band Analysis and Synthesis of
Antennas and Scatterers, Interaction Note 300, November 1976, and Proc. IEEE, 1976, pp. 1598-1616.

C. E. Baum, Black Box Bounds, Interaction Note 429, May 1983, and Proc. EMC Symposium, Zurich,
March 1985, pp. 381-386.

C. E. Baum, Transfer of Norms Through Black Boxes, Interaction Note 462, October 1987, and Proc.
EMC Symposium, Zurich, March 1989, pp. 157-162.

C. E. Baum, SEM Backscattering, Interaction Note 476, July 1989.

C. E. Baum, The Theory of Electromagnetic Interference Control, Interaction Note 478, December
1989, and pp. 87-101, in ]J. Bach Andersen (ed.), Modern Radio Science 1990, Oxford U. Press.

C. E. Baum, Representation of Surface Current Density andd Far Scattering in EEM and SEM With
Entirc Functions, Interaction Note 486, February 1992.

C. E. Baum, The Magnetic Polarizability Dyadic and Point Symmetry, Interaction Note 502, May
1994.

C. E. Baum, From the Electromagnetic Pulse to High-Power Electromagnetics, System Design and
Assessment Note 32, June 1992, and Proc. 1EEE, 1992, pp. 789-817.

C. E. Baum, E. J. Rothwell, K.-M. Chen, and D. P. Nyquist, The Singularity Expansion Mcthod and
[ts Application to Target Identification, Proc. IEEE, 1991, pp. 1481-1492.

Ph. Garreau, G. Cottard, F. Lucas, and J. Ch. Bolomey, Spherical Near-Ficld Facility for Microwave
Coupling Assessments in the 100 MHz - 6 GHz Frequency Range, Book of Abstracts,
EUROEM/NEM/HPEM 1994, Bordeaux, France, May/June 1994.

C. E. Baum, SEM and EEM Scattering Matrices and Time-Domain Scatterer Polarization in the
Scattering Residue Matrix, pp. 427-486, in W.-M. Boerner et al (eds.), Direct and Inverse Methods in
Radar Polarimetry, Kluwer Academic Publishers, 1992.

C. D. Taylor and D. V. Giri, High-Power Microwave Systems and Effects, Taylor and Francis, 1994.

13



