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ABSTRACT -

In the interaction of electromagnetic fields with complex electronic systems there are often low-
loss resonances associated with conductors (transmission-line modes) and cavities. These resonances can
allow the effective transmission of undesirable signals through the systems at the resonance frequencies.
This paper discusses techniques for suppressing (damping) such resonances. These involve various

spatial distributions of resistors (in some cases with inductors (chokes)).




I Introduction

The interaction of electromagnetic (EM) fields with complex electronic systems is a very complex
process, typically involving many poles (or complex resonances) in the complex frequency (ors = Q +
jo) plane. These include exterior resonances (say on an airframe) as well as interior resonances involving
various equipment, cabling, and cavities. This complicated interaction problem is considered in detail in
[12].

As discussed in [5, 9] the phenomenon of resonances is quite important in the interaction process.
If the incident external electromagnetic environment is approximately CW in nature with some dominant
frequency fs, then tuning f; to one of these resonances greatly increases the system response, say by an
order of magnitude or so. Here, the system response is considered as the voltage V; (or current) at some
interior “failure port” of interest (e.g. a pin in a connector into some equipment box). This increased
system respohse applies also to a pulsed CW signal as long as the pulse width is large enough to “ring
up” the response signal. Basically this pulse width should be at least as large as the decay time
—1/Rels,] of the complex resonance s, of interest. Then the resulting transiént signal will have a
maximized peak value (eo-norm), as well as a large 2-norm which can be further increased by additional

increase of the incident pulse width.

In designing a system with electromagnetic protection, the concept of electromagnetic topology is
quite important [11]. By dividing the system into layers/sublayers (volumes) separated by
shields/subshields (surfaces), one can use these boundary surfaces to control the penetration of
electromagnetic signals into the system. Looking at some individual volume in the system let us consider
it as some generalized cavity problem. This cavity can often be considered as having perfectly
conducting walls which form closed boundary surfaces, except for some penetrations: apertures and
conductors (passing through apertures). The conductive penetrations can be closed to varying degrees by
electrical connection to the cavity walls, and for conductors carrying electrical si gnals by use of filters and
limiters [8, 10]. The apertures can be made smaller or covered (e.g. as hatches) in some cases. In any

event these techniques are not in general perfect and some electromagnetic fields enter the cavity.

Inside the cavity there is in general an assortment of conducting cables (shielded or unshielded
wires) connecting to (or through) the walls and perhaps terminating at electronic boxes inside the cavity.
The electromagnetic fields inside such a complex structure are quite difficult to describe with any
precision. A simplified view has a set of natural modes divided into two kinds. There are transmission-
line modes (quasi-TEM) associated with the cables, and cavity modes appropriate more to the empty

volume away from the cables. The transmission-line modes tend to be more important at lower




frequencies, while the cavity modes tend to be more important at higher frequencies. This approximate

division is useful for considering techniques for suppressing (damping) these resonances.

One can obtain an approximate solution to the BLT equation (describing signal propagation on
the EM topology) known as the good-shielding approximation [6, 7, 11]. Here the supermatrix equation
is reduced to a form in which the various blocks of the interaction supermatrix appear in a product
corresponding to the successive propagation of signals through shields and layers (surfaces and
volumes). The volume matrices are inverted, so it is important that these matrices are not nearly singular.
The resonances in the volumes need to be damped to make these matrices less singular, and thereby
make the good-shielding approximation more valid. Thinking of this another way, undamped
resonances allow unattenuated signal propagation through the volume (from one penetration to another)

at the associated frequencies.




IL Conductors Passing Through Cavities

Our first canonical damping problem concerns the transmission-line (quasi-TEM) propagation on
conductors inside the cavity. As in fig. 2.1 let there be some conductor (a cable shield, fluid pipe, etc.)
passing through the cavity, or at least connected to the cavity walls at two (end) positions. For simplicity
let the conductor be parallel to some of the walls so that we can characterize propagation of voltages and
currents on this conductor by a characteristic impedance Z, with respect to the appropriate walls. As
indicated in fig. 2.1A this conductor is electrically bonded to cavity walls as it passes through the cavity
walls to stop (or severely impede)} EM waves from passing through this penetration (say from one cavity
to the next). The resulting conductor of length £ then has resonances at frequencies such that £is an
integer number of half wavelengths. These are excited by fields penetrating at some other penetration
(conductive or aperture) into the cavity. At resonance the currents on this conductor can be very large

and some kind of loading can be used to significantly reduce these currents.

One approach to suppressing the resonances is indicated in fig. 2.1B by series terminating

impedances at the cavity walls. If we choose a resistance Ry with

L’ .
z. =&

RI =
L’ = inductance per unit length . 2.1
C’ = capacitance per unit length

then all transmission-line waves are terminated (no reflections) at the walls. In a transient sense currents
on the conductor are terminated (cease) in one transit or less of the conductor depending on the effective
source location on the conductor. In order to realize this termination one might have N parallel resistors,

each of resistance NR; in parallel with an inductance L1 with

L s> 4 transit time of conductor
R] c

c =62

i
"

speed of light (or speed of propagation (2.2}
in medium if other than free space) _

A limitation of this technique is then associated with the impedance of the choke (ideally sL1 ). Typical
values for Z; are around a hundred ohms, and it may be difficult to make chokes with impedances larger
than this in the hundred MHz to GHz range.
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Figure2.1 Loading Conductor in Cavity
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An alternate arrangement is to place the series loading of the conductor somewhere between the
two walls as indicated in fig. 2.1C. Assuming that the inductance Ly is sufficiently large, the N resistors
of resistance NR2 in parallel give a series resistance of R2 in the conductor. There are various ways to
choose Ry in some optimal sense. A simple view is to consider the conductor length £ as infinitely large
and have a transmission-line wave incident from one side. The resistance removes the maximum energy
when the sum of the squares of the transmission and reflection coefficients is minimized, or the product
of the current squared times Ry in the resistor is maximized. This is a similar calculation to that done for

uniform plane waves in [4]. So set

d (o[22 T|_,
ARy | | Rp+2Z.| |~

(2.3)
2% transmission coefficient
Ry+2Z,
from which we find
Rz = 2 ZC | (2-4)

as an optimal choice with transmission and reflection coefficients both 1/2. Half the incident power is
absorbed by Rj. Here we still have the problem of making the impedance sLy sufficiently large at the

frequencies of interest.

Including the distances to the walls £ and ¢ with
f] + fz = £ ' (2.5)

the choice of Rj is not so simple, and one needs to consider where to put it. With the wall connections as

current maxima then

£ = m% ,m=12,... (2.6}

corresponds to the line resonances. The location of Ry should not be at a current minimum for any
important resonance. Practically speaking £1/£ should not be a ratio of small integers so that the lowest

order modes all have some damping.
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Another technique with a shunt resistance R3 is indicated in fig. 2.1D. This has the advantage
. that a choke is not needed in parallel with the resistance. Now for an infinite transmission line with a

voltage wave incident from one side, the power absorbed by R3 is the voltage squared divided by R3. So

set -~
i L[l&_]z ~ o
dR3 Rj 2R3+ Z, 2.7)
2Ry

——=— = transmission coefficient
2 R3 + Zc

from which we find

Ry = 2 . (2.8)
2

as an optimal choice, again with transmission and reflection coefficients both 1/2. Half the incident
power is absorbed by R3. Concerning the location of R3 for the case of finite ¢, this should not be at a

voltage minimum for the modes in (2.6). Again this implies that £;/¢, should not be the ratio of small

. integers.

In the case of the series and parallel resistors in figs. 2. 1C and 2.1D, we need not be limited to one
load position. Various distributions of multiple loads are possible. Of course, one should not place these
resistors so that at some frequencies they are all at current or voltage minima respectively of the modes
given by (2.6). One might even space the loads with a random or log-periodic distribution so as to better
dampen all the modes of concern. One can even combine both kinds of loads (series and parallel). As the
number of loads becomes large it may be more useful to consider this as a case of continuous loading for

which the transmission-line mode is characterized by

Q
]

61+ Re)(sc'+ G, )2

propagation constant

sL’+R, |2
2. = |————=| = characteristic impedance
i Lcwc;,] P

(2.9

73
m

s = series resistance per unit length

parallel conductance per unit length
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With waves propagating as ¢ (with z as the coordinate along the transmission line) the problem is 3

then transformed to one of attenuating all frequencies of interest by a significant factor in one transit
along the transmission line (length £ ).




IML. Cavity Modes

Even with no conductors passing through the cavities there can be low-loss resonances which can
allow passage of electromagnetic energy through the cavity (from one penetration to another or to some
equipment in the cavity) at the resonance frequencies. These resonant modes are well understood in the
canonical separable géometries (sphere, circular cylinder with flat end caps (perpendicular to the axis),
and rectangular parallelepiped). Such modes also exist in arbitrarily shaped closed volumes with

(approximately) perfectly conducting boundaries.

One way to dampen these modes is to place discrete loads with appropriate coupling antennas
(electric and magnetic) at the cavity walls as discussed in [1]. This has the problem of inefficient coupling
to the cavity modes (and hence small damping) for electrically small loading antennas. For damping
many modes one also needs such loading antennas at many locations on the cavity walls to avoid null
locations of the various modes. One can extend this to an impedance loaded liner inside the cavity,
preferably in contact with the cavity walls, involving a lattice of resistors carrying currents parallel (two
directions) and perpendicular to the nearby wall [1, 3]. This has the advantage of leaving the central
portion of the cavity empty, but limits the damping attainable depending on how thick one is willing to
make the liner. This is discussed in detail in [1, 2] for the case of a spherical liner, and will not be

repeated here..

In the present paper let us consider the simpler case of a damping grid of resistors distributed
throughout the cavity. Ina manner similar to Section II consider the fields as plane waves (now uniform
as well as TEM). As discussed in [4] a single resistive sheet of sheet resistance R can be used to attenuate
(and reflect) an incident plane wave. With o as the angle between the direction of incidence and the

planar sheet, an E (or TM) wave has the optimal choice for Rg as

_ Z,sin(a)

R
RNg 2

(3.1)

in which case the sheet absorbs half the incident power (just like in Section II). For an H (or TE) wave the
optimal choice for Ry is

R, = —20

= m (3.2)

with again half the incident power absorbed. If we consider the special case of normal incidence we have




(33)
R, =

mlg\l SR

which directly corresponds to the case of shunt loading of the transmission line as in (2.8). Noting that a
general plane wave may have both polarization components and may be coming at any angle of

incidence, then the case in (3.3) may be considered a reasonable compromise.

In realizing such an impedance sheet one can use an array of resistors as in fig. 3.1A. Here a
square pattern is used so that currents are conducted in both directions on the sheet and each resistor has
avalue R equal to Rg. Other patterns such as those based on equilateral triangles or regular hexagons can

also be used to divide the planar surface on a periodic basis.

As in the transmission-line case one can have multiple sheets, which raises the issue of sheet
spacing relative to nulls in the electric field of a resonant mode (analogous to (2.6)). Again a random or
log-periodic spacing could be used. More importantly, since the wave can be considered as traveling in
any direction, it can be traveling parallel to the sheets with no attenuation if the electric field is
perpendicular to the sheets. So a more appropriate configuration is a three dimensional grid of resistors,
as shown in fig. 3.1B for a lattice based on the edges of a cube. Other unit-cell shapes are possible, based
on the symmetry groups such as used for crystal lattices. For exémple, instead of six resistors meeting at
a cube corner one might have other orders of junctions based on cube diagonals (eight joining in cube
center and eight joining at cube corners (vertices)). Other shapes involving tetrahedrons and octahedrons
can also be considered. Again, however, one may wish to break up the periodicity by non-uniform

spacings so as to avoid resonant modes with nulls at the resistors.

As the resistor lattice is made more dense (closer spacing) one can think of the damper as one

with a volume conductivity o, in which case the electromagnetic wave is characterized by

1
y = [spa(s A +0')]5 = propagation constant
(34)

sty |2 .
Z =] _|° = wave impedance
SE,+O

Here the conductivity takes the role of Gp in (2.9), but Rs is absent (unless y, is replaced by a magnetic
material with appropriate loss in fi(s)). The above parameters are now chosen so that there is sufficient

attenuation (say one or more e-folds) in transit in any direction across the cavity.
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Figure. 3.1 Resistor Array for Suppressing Cavity Modes

11




V. Concluding Remarks

As we have seen there are various possible types of canonical damping structures for removing
unwanted oscillations. Some techniques will be easier to implement than others depending on
application, cost, weight, size, etc. While transmission-line modes and cavity modes have been addressed
separately, one can see that the damping techniques are very similar. Furthermore, this division of mode
types is an idealization for conceptual simplification. One can integrate the techniques into what might
be called a hybrid damper. In this case a transmission-line conductor might replace a string of resistors
running through the lattice in fig. 3.1B. One could also include LR loading as in fig. 2.1C on this

conductor if desired.
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