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Abstract

This paper considers the use of filter and wavelet transforms on the frequency spectrum of
transient/broad-band electromagnetic scattering. The muitiresolution in frequency thereby attainable
can be used to analyze frequency-like target signatures. This applies to global and substructure target
features. An interesting special case concerns a linear array of scatterers which can be approximately
considered as giving a set of poles on the jw axis of the complex frequency plane. The associated

frequencies are aspect dependent.
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I Introduction

A recent paper [2] considers the use of window Laplace/Fourier transforms (WLT) and wavelet .
transforms (WT) for processirig time-domain waveforms f(t) that one may encounter in the scattered
signals from targets. There the concern was in resolving target substructures such as might be used ina
scattering center representation of a target for identification purposes. The symmetry properties of these
substructures (partial symmetries) were found to be carried over into the symmetry properties of the 2 x 2

dyadic scattering operator corresponding to the particular substructures.

In summary form we have the Laplace/Fourier transform

fis) = j f(tye *'dt = LT[f(t)] = 2-sided Laplace (or Fourier) transform
) = 5= | Fe)etds
2”] Br
Br = Bromwich contour along Re[s|= Qp, from
g, - joo to Qp, + foo in strip of convergence
(L.L
s = Q+ jeo = complex frequency
f(t) = Z_ln:J‘ f(jw)e’® dw (for ja axis in strip of convergence)
with the Parseval-like relation
= 1 (%, 1 (P, 2, .
j ) folt)dt = — J fils) fal-s)ds = — j filjo) fal-jw)do (12)
—o0 Tq Br 71.7 —e0
and the convolution formulas
1 7 ’ 7 ’ Id 1 m-' 3 ’ 7 5 : ’ ’
LT{A(t) f()] = 5= J. A(s) f(s-s)ds’ = -—— | A(jo’) hljo-jo’)de
T JBr U o
(1.3)

LT“:fx(f') falt-t) dt'} = fils) als)

By multiresolution [7] is meant the analysis of a signal on various different scales of resolution.

For temporal multiresolution we have




. 1 g(.t_'_tO.J et = triwave kernel
t °l K

1 g(t_t") = window or wavelet (14)

t> 0, t, real

Here t] is a scaling time which adjusts the width of the window in time, this width being of the order of

t1 , depending on the specific window function g chosen. Noting the frequency form of this window as

1 Pt )| _ sty _ sty =
LT[-ZI— g[T):l = e~ LT [g(7)] = e 3(2) (1.5

Tz

we have the triwave transform as

It Flo o) = [ f0E o1 |

- h
—st
=£ s? f(s) g(sty—s't) e o at, (1.6)
. 275 Jpr
e—jaxo

o | Fiw) stjon - jo) eteda’

So in its temporal form one multiplies by a window function which emphasizes times near fp witha
resolution {7 . Furthermore the transform has an alternate representation as a convolution in frequency

domain.

This triwave transform has special cases as the window Laplace/Fourier transform

-~

flsito) = Flsitost1) = WLT[£(t)] (17)
where the variation of t7 is suppressed, and the wavelet transform
flto t1) = F(0,1,11) = WLT[£(t)] (1.8)

where complex frequency s is removed, except that it can still be expressed as an integral over s’, @ as

in (1.6). The concept of phase space for the WLT where one plots lf (jo, to){ with @ as the vertical axis

. and £, as the horizontal axis, can be extended to the WT by regarding 1/t1 as an equivalent frequency




for the vertical axis as indicated in fig. 1.1A. With f(#) and g(#) taken as real valued (for real # ) we can
note that (t,, #) is real valued. Asindicated in fig. 1.1A, temporal multiresolution concerns some set of

values t,, which for decreasing t7 (increasing 1/t1 ) have interesting events which are analyzed on

multiple 7 scales. Frequency multiresolution as indicated in fig. 1.1B concerns the frequency form of the

wavelet transfom{ to be discussed later.

An important distinction between the WLT and WT s in the inversion of the two transforms. The

window Laplace/Fourier transform has

I F-ty ) s
&) = {J‘_eo } 2717J' fs fo,t1) ( i )e‘dsdt
) “mg% } 27:.’. f’w t"'tl)g[tt:ojejm Ao dio

with an admissibility condition on g concerning its square integrability. The wavelet transform has

“ ek 45} [ ] feomt [———)dfo ity 110

with an admissibility condition on g concerning the integrability of |§12 /&.

(1.9
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IL Waveform Spectra Transforms
A. Frequency Triwave transform

Consider the kernel

N Y el PU ;>0 B @.1)
2m @

where 5y is often taken as jay (ap real). This has three parameters

t = time (real)
so = frequency shift (2.2)
®; = frequency dilation (width of filter

or wavelet)

with the complex frequency s integrated out in the transforms. The filter or wavelet can also be

expressed in time domain via

-l_é $—35,
w1 w1

filter or wavelet

(2.3)

0

LT]e%o'Gla )]

Note that if the filter is chosen as real for 55 = jo - jay , then in time domain it is not necessarily real.
One may wish to take this into account when selecting G to perhaps correspond to some realizable filter

(in a circuit-theory sense).

Using all three parameters the frequency triwave transform FIT is

- 1 -
FT1 [f(s)] = F(t,sp,01) = = BF(s,sa,wl)e“ds
¥
=5 _wl?(jw,jwo,wl)ef“”dw (2.4)

~ -~ 1 ~ -
F(s,s,,01) = f(s) . G(Swfo)

Utilizing the convolution theorem we have the alternate form




r

. F(t,soa)1) = eSotJ' f(tl) G(w](t"tl)) e—lsof'dtl
B

(2.5)

e/t f f(t') Glan(t-t)) e71@t at’

as an integral over time.

Comparing to the previous paper [2] there is a mathematically dual form between the triwave
transform (TT) and the frequency triwave transform (FTT) due to the formal similarity of the

Laplace/Fourier transform and the inverse transform. In the time-domain form (TT) one multiplies f(#)
t-1,
t

by a window function 1 g [ j This window multiplication can also be expressed as a convolution

t

in frequency. In the frequency-domain form (FTT) one multiplies f(s) by a filter function -(;— @(s ;s" ]
1 1
This filter multiplication can also be expressed as a convolution in time. However, linear time-invariant
systems (such as electromagnetic scatterers) are not expressed the same way in both domains. There is
convolution in time, but multiplication in frequency. Due to time translation invariance t = 0 is an
arbitrary definition (whereas s = 0 is not arbitrary). In the present FTT we do not have the flexibility of

moving t = 0 as we do by use of ¢, in the TT. However, the two approaches are somewhat

. complementary, the first for resolving local features via temporal events, and the second for resolving
global features via frequency identification. Multiresolution in time concerns various scales of resolution
t1 around selected times ¢, . Multiresolution in frequency concerns various scales of resolution @

around selected frequencies @,. This comparison is illustrated in fig. 1.1.
B." Filter Inverse-Laplace/Fourier Transform

The filter inverse-Laplace/Fourier transform (FILT) is given by

F(t,s,) = FILTF(s)] = FTT{f(s)] = F(t50,1) e
with dependence on t1 suppressed in the triwave form (giving a "biwave transform"). Defining

ﬁn(sfsorwl) = fn(s)wilé(f;—f(l) @7)

and following the procedure in {2] with time and frequency interchanged gives a Parseval-like relation as




- j j E(s’,s,,01) By(~s',- 50,00 ) s, S’
BrvBr

= le_z—f:-’:ﬁl(jw" 0o, @1) B(-j@,~jw,, o) do, da’

s L) e

- i [ @Dzt {5k [ VR
21y Jgy 21 Jg;

= -"l—j J' E(t,s0,01) B(t',—s,,01)dt ds, (2.8)
272’7 Bre —co

i

B El;_‘- R(t,ja,, o) Bt —jo, o) dt do,

As a special case choose

f(s) = () . fl=s) = B(-je) = &'~ o) (2.9) .
giving
’ - =.;1— i 'L~jw+]w0 )‘(Dl’ ’
_ L_l_é(fwﬂwo)e;m' (2.10)
2r an (1] -

[ F0) Rjo o’ = o)

and the inversion formula

- -] —1 o0 [--] . «
(s RY-T T = jO+]0 ) jwt .,
= f(jo)= {j G(]Z)G(-]Z)dl} J- J- F(t .on,w1)G[l—a-Jf—-ﬂ)e1“" dt’ dw,
..] o
- J'é(z)é(-z)dz J' j F(t’,so,cul)fi(is—‘ijes"dt’dso
Br Bro —co o

(2.11)
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There is an admissibility condition

0< —J. (jx) G(=jx)dx = J. G2(r)dr < oo

where we have assumed that G(ji) has been chosen such that

Gl-jz) = G"(jz)
giving real G(z). If one chooses G such that

lim La(&-ﬂ_o] - So-a)
w10 @y (04}

then (2.4) gives
lim F(t,jo, o) = F(t,jw,,0) = e/ f(je,)
0)1-—)

thereby recovering the original f(s).

A commonly used form of filter is a Gaussian function as

- 1 £
G(Jl)='5—;82
2

o1 2
G(Z)=-Ee
2

2
G(T)=E€

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In this case the filter function is readily extended into the complex frequency plane, and is real for s = ja

As one can verify for this case
9709 4o = [ clin)iy =
J._mah ( o ) ¢ ,L, liz)iz

as a good delta function should. The admissibility condition has

2.17)




[ 8 i g = e [
~[amema = 2 [ Fa

- [ e S S S I
..I G(.‘t)d‘t—47t2 .Lf d‘t—4“3/2

—0

Note that such a filter {or window in the case of the WLT) is often used because of its same form in both

’

time and frequency. Except for shifts (@,,t’, etc.) we have

@ ,
=@ -t 2.19)
x o T = (

showing the inverse relationship between localization in time and localization in frequency. This is

analogous to the uncertainty principle in quantum mechanics.
C. Frequency Wavelet Transform

The frequency wavelet transform (FWT) is given by

= ﬁ(sa,wl) = 2—;- i ?(s,so,ah)ds
r

T
r—i
—nl
o~~~
()
[Vt
[

o0

> _w?(jw, j@,,01) do (2.20)

= F(O,so,a)l) o

This has the time-domain form from (2.5) as

Flsooo) = | f(£)G(-an ¥')e 5t ar S @21
Noting that 7

A 1 { = 1 (T, .

Ey(s,.07) = T BrF,,(s,so,ml)ds = —Z-EJ._mPn(jw,]wo,wl)da) (2.22)

and following the procedure in [2] with time and frequency interchanged gives a Parseval-like relation as
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J‘ J‘ Pl So,a)l Fz -so,(ol)dso dwl
® : :

do
j J. ]worwl ]worwl)dwo —L
—o |

-4

=L U () G(—wlt')e‘so"dt'}{ f(t") G(—wlt”)eso"dt”} ds, —L da‘:’l

2”] o ¥Br 1

[ s aercean)cloe)se-v)ar ar 22

—o 0y

- [ [ ) ) G eoneyar 2

155}
- { [ e "7”} [ At aerar
2 )g}% J:ﬁ(iw’)fz(—iw’)dw' (2.23)

= {::GZ(T 71} j fi(s) (=)

As a special case choose

) = F6) . R(=s) = R(-jo) = 8o~ o)

o0

hljonn) = = [ o0 -0) 1 12200 Lo @29

—00

_ 1 é(]w ~]% )
2ray Wy

The inversion of the FWT is then

FWT{fa(jo)
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7s) = f(jo) = _[:1(;@') % (jo’) do’

0 T

The admissibility condition is now

O<J. Gz(r)dT—T<oo

[«

which restricts G(7) for 17— 0 and 7T - .

=1
* dt 1 (7 s 1~
= G3(t)— —J‘I F(s,,@ —G(
{-o ()T} 27‘7 o ¥Br (o I)ml

12

-1
Lo d 1 -] o - . l : .w_ ca)
= { Gz(f)—r} 2—7;‘[ J F(]Cl)o,a)-l)z);(_r[}——]——i] dﬂ)o dﬂ)1
o 0 ¥

o

s—s,
2 ldw, dan
!

(2.25)

(2.26)




1L Linear Array of Scatterers

With frequency wavelets one might ask what kind of target signatures are appropriate for

viewing this way. What target signatures are characterized by frequencies? Of course we have the

natural frequencies which are the poles in the singularity expansion method (SEM) [3]. Note, however,

that these are complex, lying in the left-half s-plane. If they are only lightly damped then on the jo axis

these appear as narrow peaks which might be resolved by an FWT. This is illustrated in [4, 5] where

waveguide dispersion curves (frequency versus time) are aiso brought out.

Let us consider another basically frequency phenomenon. As indicated in fig. 3.1 let there be a

linear array of N elements, periodically spaced a uniform distance £ apart. Without loss of generality let

-
the array be aligned along the z axis. The direction of incidence 1; then makes an angle 6; with respect

to this axis so that

0S75—9;<—-
2

- -
-1

i

z = cos(§;)  (negative)
In backscattering we have [2]
-

-
1o = — 1

and the additional delay for the successive signals to reach the observer is just

]

T, = 2T, cos(m—86;) = —2T, cos(6;)

£
T, -
tT e

Note that this is readily generalizable to bistatic scattering via

-t
(=]
—
N

|

= cos{f,)  (positive)

Sy
f

T, [cos(8,) - cos(6;)] > 0

-
with 1, as the direction to the far-field observer. Here T is still constrained to be positive.

13
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With incident field and scattered far field as

(inc) - _(inc) 7

2 7. T Fine) sy -y 1T > T glinc) 1,7
E (79 =E 1pf")e , E (T,D=E1pf f-— -
3, !S> = =, tine)
Ef(¥,s) = —A| 1o, 1i;s |- E  (0,s)
dnr
1 of> - :)(mc) - —1’0._;, (3.5
Ef(7,t) = — A} 10,155t} 9 E 0,t—
4nr ¢
0 = convolution with respect to time
then for backscattering we have
S o S 5 >
Ap(lizs) = A(-1i,1i;9) (3.6)

L
It is the properties of A, the 2 x 2 dyadic scattering operator, that are of interest. Here lie the target

signatures.

- - .
For convenience consider » = 0 as somewhere on the first scatterer to send a signal back to the

observer. Then neglecting multiple scattering among the N scatterers we can write
g SO S
A(l;, 1:8) = z A (15, 155t=-(n=-DT,)
n=1

= (0)

- A
1

i;5)= A (1o, 1i;8) W(s)

N N-

W(S) - 2 e—(n—l)sTo - e—nsTo

n=1 n=0

[axs

-1 _ e_NSTO

= 1l . 37

N-1
Z 8(t-nT,)

n=0

W(t)
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Here W is like an antenna array factor [6], except for the factor of two (in backscattering) accounting for

both incoming and outgoing waves. One can call this a scattering array factor.

Viewed in time domain, as the returns come from the successive elements of the scattering array
the observer has not yet "seen” the Nth (last) scatterer, and for such times might regard N as 0. In this

case we have

lim W(s) = [l—e‘ST" ]-l for Refs] > 0 (3.8

N=oo

where the limit is taken in the right half plane, and then extended to the left half plane by analytic

continuation. This has polesat s =s,, = j®,, where
SmTo = [ 2xm

m=0,%1,£2,. (3.9)
0T, = 2mm

Note that these poles are on the jo axis, but are only true poles in the limit of N — o as defined above.
For finite N these quasi poles are bounded. Consider s near sy as
S= 8y +As , eNmT, =1

~NT,as

~ 1-¢ )
W(S) '-lTe:To'AT (310)

it

W(sm) = N

which shows how, for large N, the function is approximating the poles in (3.8). An alternate form for W

is

~ ~——sT,
W(s) = e T %
smh(-z— sTo)
(3.11)
. [N
N L7 As smh(? ToAs)
= ¢ 1

For frequencies on the jo axis this is

16




(3.12)

(3.13)

This can be thought of as defining a spectral line width which > 0as N = es.

Since this set of quasi poles lies on the jo axis one might use the transforms in Section I to
analyze them with a filter which can emphasize a narrow band of frequencies on the jo axis (e.g. (2.15).
By varying @; then multiresolution is attained as in fig. 1.1B. The width of the spectral line does not go

to zero, but to some width determined by N as oy 15 .

Looking back at (3.7) note that W(s) multiplies the scattering dyadic for a single scatterer. So one
RO _
might like to have one or more sy, at frequencies for which A (s) is large. Then W(s) raises the signal

amplitude near the sy, by a factor of N (or spectral energy density by a factor of N2). So this is potentially
a lal;ge enhancement of the scattering at these special frequencies. Note that these are not natural
frequencies since they are aspect dependent as indicated by (3.3) and (3.4). Furthermore, natural
frequencies (except at s = 0) for the exterior scattering problem must lie to the left of the jo axis [1]. This

fact of aspect dependence can perhaps be exploited in target identification.
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Iv. Concluding Remarks

While formally similar, the time and frequency forms of these transforms seem to be suited for
analysis of different kinds of target signatures. The temporal version allows one to concentrate on some

localized portion of a target, such as a single one of the scatterers in fig. 3.1, and thereby analyze the
~(0)
©
properties of the associated scattering dyadic (e.g. A ). The frequency version allows one to concentrate

on various characteristic frequencies such as natural frequencies including global features of the target.
The natural frequencies are aspect independent, but those from arrays of scattering elements are on the j&
axis and are aspect dependent. So it would seem that in identifying some target out of a set of potential
targets one may want a variety of techniques for analyzing the different kinds of target signatures. As
discussed in [2] various symmetries and partial symmetries in the target features (including
substructures) can be used to define a target-feature/sighature zoo. Discrete spatial translation symmetry
(periodicity) can be added as one of the habitats, with the linear array in Section III as one of the beasts

therein.
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