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Abstract

This paper considers the use of window and wavelet transforms for the analysis of transient/
broad-band electromagnetic scattering data. By appropriate choice of window position and width target
substructures can be isolated under favorable conditions. The resulting target features and their
associated scattering signatures can be used in target identification, both from the properties of the
individual signatures and their relative time of arrival at the observer for a scattering-center analysis. An
important concept is that of partial symmetries associated with individual features. This leads to a set of

convenient decompositions of the target-feature signatures which aid in identification of a particular

target in its various aspects (orientations) with respect to the observer.
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L Introduction

A proposed approach to target identification is based on what are known as scattering centers
110, 18]. As illustrated in fig. 1.1 the target or scatterer is viewed in an approximate way as being
describable by some finite number (say N) of scattering centers which one can label Py forn=1,2,--+,N.
These can be considered as being located at spatial coordinates 7 , but one should recognize that these
centers are not in general points but have some non-zero spatial extent. On a highly conducting surface
(such as the skin of an aircraft) these can be local structures such as apertures, small antennas, engine
inlets, etc., as well as abrupt changes such as edges and corners. For certain angles of incidence and
scattering, curved surfaces can provide specular points, which, however, move as the angles of incidence

and scattering change.

As one rotates the target over all angles the relative distances between the Pp, (i.e. the | Frn=TFmi)
remain invariant (assuming the Pp are true points). By rotating each target in some set (library) of targets
one can try to match a particular target to the observed relative delay times of the signals from the Pn as
an identification procedure. If one can successfully do this then one also has some estimate of the
orientation of the target, i.e. the angles found in rotating the target to match the relative delay times. One
partial limitation concerns line-of-sight for incident and scattered fields. Asan example, in fig. 1.1 center

Ps5 is shadowed, so waves have to propagate around the target, changing both the time to reach the .

observer and perhaps significantly decreasing the magnitude of the scattered signal. Under such

conditions, at a minimum such points can be removed from consideration for unfavorable angles.

The incident field is taken as a plane wave of the form
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Fig. 1.1. Scattering Centers
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Y= % = propagation constant
1
¢ = [y €] 2 = speed of light

Z, = [L"&]z = wave impedance of free space
(1.1)
Ep = amplitude factor (V/m)

Laplace-transform (two sided)

®n
]

Q+ijo = Laplace;transform variable or complex frequency

where 7 = 0 is some reference position on or near the target. The far-scattered electric field is given by
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1, = direction to observer at large r

1m = direction of measurement of scattered electric field

(1.2)
A(1o,14;s) = dyadic (2 x 2) scattering length (convolution operator in time domain)

o = convolution with respect to time

Looking at the form of the scattered fields, note the presence of polarization (vector) information.
In its scalar form (such as for sonar) such information is lacking. An implementation of scattering-center
concepts without polarization information may be unnecessarily limited. Considering the special (but
common) case of backscattering for which
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then the relative time of arrival from the various Py is invariant to a rotation of the target about an axis
-

parallel to 1,. This can be viewed asa benefit when trying to identify the target due to the fewer

rotations required for matching to the target library. Then again, the inclusion of polarization

information can separately identify this last rotation angle.

Polarization can halp find the target orientation with respect to the observer as discussed in [1, 2,

3, 20]. The pole terms in the singularity expansion method (SEM) have dyadic residues which for

backscattering take the simple form T Ca (for the typical case of non-degenerate natural modes) with

time scattering from structures with dilation symmetry (cones, wedges, half spaces) there isareal 2x 2
dyadic coefficient [6, 7]. For backscattering this can be diagonalized to find principal axes related to
target orientation. To obtain this information one needs both polarizations (usual h, v radar
polarizations) from which one can obtain both in-line and cross-polarization information. Perhaps the

above concepts (and others) can be incorporated into the modelling of the scattering centers to improve

the target identification procedures.




IL Waveform Transforms

A. Laplace/Fourier Transform

A commonly used transform is the two-sided Laplace transform (LT)

Fo = [ s e ar = 1a(s00)
0 = 5 | Fo) e s
2 Jpy
(2.1
Br = Bromwich contour along Re[s] = Qpr
from Qp;y - joo to QBy + jeo in strip of convergence
The kernel of this transform is ¢! with the ¢ variable integrated out. This can also be thought of as a
Fourier transform since
flio) = | At /@ at
(2.2)

) = 5 [ Flio) e ®

which is, however, not quite as general unless one also allows the inverse transform to be moved away

from the Q = 0 axis. Also note the conjugate symmetry
)7(5*) = F(s) (2.3)

when dealing with real-valued time functions (as here). This transform also applies to vector and dyadic

functions of time.

For later use we have the generalized Parseval theorem (8]

J:fx(f)fz(f) = 5= | FoRea

(2.4)




. Note the use of frequency reversal (-s or -jw) which keeps the analytic properties of the functons in the

complex frequency plane. Also we have
LT{f(-)] = F(-s) (2.5)
which with (2.4) gives an alternate form as
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There are also the convolution formulas
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B. Triwave Transform

Consider the kernel

1 g{t—to) g5t , t >0 , t, real (2.8)
t1 £

which has three parameters (hence triwave)

[9)
]

complex frequency
time shift 2.9

foE

t1

time dilation (width of window or wavelet)




The time f is integrated out in the transforms. Here we have

%— g(i—}&’-) = window or wavelet (2.10)
1 1

1

which can be normalized in various ways. The factor f{ 1 preceeding g is often replaced by fl_ 2, but we

find the present also-used form more convenient. For present purposes g is also taken as real. Italso

goes to zero as ¢t — * oo so that it weights At) strongly near f = fo.

The window or wavelet has a Laplace transform as
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Note that the frequency spectrum of g is also dilated by f1, while the time shift is evidenced by the usual

shifting theorem of the Laplace transform.

Using all three parameters the triwave transform (TT) is given by

t

F(s,tort1) = J:f(t)%g[ﬁ‘—fl) et dt = TT[f(¥)] (2.12)

Utilizing the convolution theorem this has the alternate form
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. So this transform can be regarded as an integral over time or frequency.
With these preliminaries let us consider two special cases of "biwave transforms”, the window
Laplace/Fourier transform and the wavelet transform, each of which uses two of the above three

parameters. There is much literature concerning these, as for example [11-15, 17, 191.

C. Window Laplace/Fourier Transform

The window Laplace transform (WLT) is given by

Flata) = [0 be-to)e at = WT[f(o]

—0

1 [t—-¢
h(f_ to) -f— g( P Oj
1 1 ty constant

where a t5, @ plane is often referred to as phase space. In this transform the £; parameter is not used, but

(2.14)

i

I without loss of generality one can retain the triwave form and note that
Fls,to) = Fls,to ) @.15)

Choosing different values of t; gives different windows, and one can regard this as giving additional

flexibility. For various applications some widths of the window may be more appropriate than others.

An important aspect of the WLT is that it can be inverted as an integral over y and @ (or s) which

is often referred to as phase space. For this purpose first define

(2.16)
LT fult to, 01)] = fuls to, 1)

Then we have
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which can also be written in frequency domain giving a Parseval-like formula as

P
H
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As a special case choose

Ay = f8) . alE) = 8-t
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Then we have the inversion of the WLT as

[ E—to | st
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(2.17)

(2.18)

(2.19)

(2.20)




Note for #1 > 0 there is an admissability condition for this inversion formula as
0 < J' g% (1) dr < oo 2.21)

This integral is often taken as unity by some authors, thereby giving a normalization condition for g(7).

There are various possible choices for g(7), e.g. a gate or pulse function as

g(r) = u(z) - u(r-1)

(2.22)
oo 1 oo
J. gz(f)d7.'="’dl'=1 , J‘ g(rydr =1
—c0 o -—0
If we let f7 — 0+ we have
lg[t—to] _ £ for 0 < t—t, < &
t1 t 0 otherwise
(2.23)
= §(t-t,) as t; =0+
noting the unit time integral. Then (2.12) gives
Hm_ F(s,to, ) = f(s,£,0) J. f(£)8(t—t,) e at
t1 -0 . . —0
= e~ f(t,) (2.24)

g*to f(s, t,,0)

f(to)

which is a way of interpreting a narrow window as sampling the waveform at the window. Another

delta-function like window is {11]
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While this second window function has a unit integral (like the first one) and thereby (2.24) applies, it has

a different normalization factor (integral of the square) for the inversion as in (2.20),
D. Wavelet Transform

The wavelet transform (WT) is given by

- Taa 1 [t-t
o = [ o g[S = wrlre)
(2.26)
= F(0.1o.4)
This has a frequency-domain form by setting s =0in(2.13) as
z _ i TN Y S'fo ’
fltost) = = Brf(5>8( s't)e’ o ds
(2.27)

T (%2 e s\ joty o
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where the signs can also be reversed on s’, @”. So, even though the transform in (2.26) has frequency
nowhere exhibited, it can still be regarded as a transform over the frequency spectrum as in (2.27). One

can also relate the WT to the WLT by observing

wrf(5)e™] = WLT[f(5)] = f(s.to.t1) - Q28)

Asin (2.16) form
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J. Fult by ) dt = Fultortr) (2.29)

Then for an inversion of the transform we have

_ 0 moo N df
= = J- J. I(torfl) fZ(fOItl) dto"f‘l—
0 o—e . 1
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Integrate over fy noting that
-;—-J. el%lo dt, = §(w,) , w, = 0 -0” (2.31)
ﬂ —0

is an inverse Fourier transform with frequency and time roles interchanged. Then we have

— 1 = = °°~ 3 ’ z . VANod . ’ -~ . ” 4 2 ’ Ildt
z = EJ -" J. fljo’) h{-jo”) g (-jot) g (jo t) 8w -w") do’” do —f;l—
o —0 W o0
(2.32)
1 T AN AN oot NS ldtl
= o [ A0 R g am) & (o) dor 2
0 o= 1
Now integrate over {7 giving
i Nxt sy dE v~y e dE
J g2 (joty) & (-jo't) f—ll = _f 2 (j€) & (-4é) —55 (2.33)
0 o

Then using the Parseval relation
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The inversion of the WT is then

J:l(t’) Rt} = “:‘ sl %é}—l
{Ji zdi} j L tort1) = [-—t—)dt dt;

Note there is an admissability condition for this inversion formula as

[t

T2 d
0 < J |3()] Lcw
o S
For integrability near 0 we have

Ig(]é) [2 £l = O(§_I+v) , v>0a &0

v
O[g’zJ as £€—0
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)




and near - we have

268 ¢t =0(e™) . w>o0
as £€—0 (2.39)

v

3(j8) = O[g‘ 2} as ¢—-0
There are various possible choices of g which meet this admissability condition, e.g. |
1
2(c) = u(t) - zu[f . 5] « ulr=1)

1'for0<1<% (2.40)
1

=<-1for =<7 <1
2

0 otherwise

K

This is a doublet or differentiating kind of wavelet. The zero time integral implied by (2.38) excludes the

unipolar functions discussed in the previous subsection in connection with the WLT.
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L Symmetry Basis for Transforms

Now let us look at the waveform transforms from the point of view of symmetry [9]. As

indicated in Section II B there are three parameters in the transforms of the waveform: s, o, and f1.

The first parameter, s, comes from the assumed time-translation symmetry and linearity of the
problem. Our scattering problem can be represented by (1.2). The target is then represented by the
dyadic scattering length which is a convolution operator in time domain, but which simply (dot)
multiplies in frequency domain. This effectively factors out the incident field, allowing one to use
different waveforms and polarizations to emphasize varicus features of the target as present in ?\) The
properties of the scattering dyadic ins plane are important sources of target features for target

identification. There is the SEM representation [1, 2,3, 5, 16, 20} (class 1 form) for backscattering

S - —{s=sg M — -
A(1i,8) = Z e 2 An2a1p)
S—54

o

+ entire function

aspect-independent natural frequencies

residue vector

a
R
o~
—
ho¥
n

scatterer polarization vector

One can also consider the low-frequency behavior (low-frequency method, LFM) [1] as

S5 - [ o ce - o -
Allo,11;8) = ¥°|-10-P-1; + 1oxMx1i|as s—0
> (g _ > €« Lod - =
1;=1-1i1; , 1lo=1-151
(3.2)
Lard
P = electric polarizability
N d
M = magnetic polarizability
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These polarizabilities (dimensions m3) are characteristic of the overall size of the target and give some
estimates of ratios of major dimensions (length to width, etc.). At high frequencies (high-frequency
method, HFM) [1] one can consider various asymptotic representations valid as s — = These have the

general form

F e N Bhi4

S o - e
A(lo, 1i;8) = Dp(lo,14)
P
r

as s> (3.3)

where the p index includes not only integers. The t, represent the times the observer sees various
discontinuities encountered by the incident wave. However, it is often found useful to include other
kinds of important terms such as creeping waves with exponential decay as they travel around curved
surfaces. Note that (3.3) is asymptotic, which can be distinguished from exact time-domain results valid
for some non-zero clear time [6, 7]. The point to remember is that all these results come from the behavior
in the complex frequency plane which in turn is a consequence of the time-translation symmetry and

linearity.

The second parameter, f,, shifts the window in time to times f near fo. The width of this window
(or wavelet) is given roughly by ¢; with details depending on the exact form of the function g that one
uses. Suppose that there is something of particular interest in the scattering information at around time
to, say corresponding to some scattering center. With ¢ appropriately chosen then the associated
waveform (or signature) can be isolated from those waveforms coming earlier or later in time.
Depending on target aspect there may be signatures from more than one target feature (e.g. scattering
centers) arriving in the same time window. If one is fortunate enough to have one significant signature in
the window, or can suppress other signatures by filtering or choice of polarization, then the problem
simplifies considerably. In this case it is the local target feature as embedded in its local surroundings
that is significant. Suppose that the local surroundings can be approximated as part of a simple infinite
structure (an infinite perfectly conducting plane, an infinite wedge, etc.). The fact that it is actually finite
is (to an approximation) ignored for purposes of analysis. The local target feature (window, small
antenna, etc.) is then considered as a perturbation on an ideal infinite structure. Such infinite structures
have translation symmetry, and translation in space is related to translation in time via the ¢, parameter.
Thus the window sometimes allows one to impose symmetries on the target that are not strictly present.
One might think of these as partial symmetries pertaining to portions of the target. These partial
symmetries are brought out by optimal choice of the window function. As compared to the clear-time
concept in [6, 7] based on causality, the window function accomplishes a similar effect by excluding

certain times from consideration. Note that windowing can be accompanied by filtering, such as a filter

17




with zeros at the substructure natural frequencies [16], both to help identify the substructure and to

shorten the time duration of the resonant signature and thereby allow a smaller window width £7 .

The third parameter, 1 , adjusts the width of the window or wavelet. This parameter represents
a dilation in Hme. Recall from [6, 7] that scattering from objects with dilation symmetry (generalized
cones, wedges, and half spaces) has a simple form (or parameterization). Furthermore, if one restricts the
observation time to exclude scattering from truncations of such structures, the special form involving
time integral, identity, etc. operating on the incident waveform is preserved for all smaller times. So as
one makes £; approximately less than the clear time, the behavior continues for all lesser £7 down to 0+
where the beginning of the wavelet is adjusted to the time of first signal from the dilation-symmetry

feature of interest. This is an invariance property (symmetry) with respect to 7 .
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Iv. Some Partial Geometric Symumetries

With the window function placed around some local target feature with appropriate time ¢y and
width #7, then under favorable circumstances one can think in terms of the scattering from the particular

target substructure or feature. Suppose that this substructure has geometric symmetries such as (91

1. Symmetry planes: reflection symmetry R (e.g. a rectangular window, certain blade

antennas, etc.)

2. Continuous two-dimensional rotation symmetry Ces (e.g. a circular window, certain

engine intakes, etc.)

3. Discrete two-dimensional rotation symmetry Cn (e.g. a propeller)

Then the scattering exhibits such symmetries. For the important case of backscattering [2, 3, 16, 20]
certain results have been shown. Symmetry planes decompose the substructure natural frequencies into
two sets: symmetric and antisymmetric. Coo symmetry plus R; (symmetry plane containing the
symmetry axis) makes the natural modes degenerate (two fold) and the scattering dyadic diagonalizable
with real eigenvectors (parallel and perpendicular to plane of incidence containing symmetry axis). Cn
symmetry for N 2 3 with direction of incidence along the symmetry axis makes the scattering dyadic a
scalar times the 2 x 2 identity. Perhaps other partial symmetries such as translation symmetry, can be

found for certain target substructures (e.g. certain array antennas).
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V. Partial Dilation Symmetry

As discussed in [7] dilation symmetry of a scatterer is given by invariance under a transformation
of the form

7

s

, =yt , s =— (5.1
x

which applies to a class of structures which might be termed generalized cones. These include perfectly

conducting and uniform dielectric cones, finite length wedges, and finite facial dimensioned half spaces,

and in general things with constitutive parameters scaling as

mIe

o= 20, BFe =00, 83,9 = 1508

5.2)

& S
Ys(7s,s) = Ys(r's,s’) (sheet admittances on surfaces described by only &, @)

While 7 = 0 is the apex of a cone, specialization of (5.2) by imposition of translation symmetry leads to

wedges and half spaces.

This kind of target feature is characterized in backscattering by a fairly simple signature which is

valid for a clear ime based on the time that a signal from a truncation or from multiple scattering (e.g.
- —
cone tip to cone tip on a finite wedge) can reach the observer. Letting r = 0 be a point on the

substructure from which the first signal backscatters (i.e. a cone tip, edge of a wedge, face of a half space)

the scattering assumes a simple form. Froma cone tip we have the factored form

-

1;-

(e 1 PN () N t+ Sine)

Ef (7, o K (1) - * E  (0,t") cdt”

(5.3)

-

'y
1; = — 1o (backscattering)

From a finite wedge with ends as cones we have two such cone terms, one delayed from the first by the
additional round-trip travel time to the second. If both cone-tip signals arrive at the same time this is

normal incidence on the edge giving two terms as

20




PRGN bt 1“5' L _Gno
+ — K (1) E (0,t) cat”

-

(5.4)

¢ = length of edge

From a finite-dimensioned half space truncated by planes which terminate the face in'edges and cone

tips, (5.3) and (5.4) apply depending on the arrival time at the observer from the various cone tips. If the

direction of incidence is normal to the face there are now three terms as

—

NG A PINGI NN 19 Slinay| 1:-7
Ef (7, = —K (1 -==E 0,f+—=
£ D drr (1o c df ¢
ol Snaf 0 T2
+ L BT F 0T
drr c
PINC-) RN t+1"5>?__9(inc) N
+ —K (1) - J E (0, ar”
47 e (5.5
A = area of face
{, = perimeter of face

Note that in all cases the number of such terms is finite (in general a small number) and the result is valid

up to some ty based on clear times discussed above.

Considering each of the scattering terms above note that each is the dot product of areal 2x 2

dyadic with a simple temporal operator on the incident field. One can write a general term as
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b L d _ 7
Ef<'r’,t)=—1—K (1) - IF2E |0, f+——
4rr c
I#7? = integral operator (over time) of orcler d-2

cone tip 3  (time integral) (5.6)

d=
edge : d=2  (identity

face : d=1  (time derivative)
Reciprocity implies
<-—>(d)T - old '
K (1n = K (1) (5.7)

As discussed in [4] a real symmetric matrix can be diagonalized with real eigenvalues and real

eigenvectors, i.e.

2

PINCHRN (d)_> e ]
K (To= D KA 1510 150
B=1
— - - -
1,(11) - 1g,(1:) = 1p, p, (orthonormal) (5.8

@ — - -
kg'(1:) , 1p(14) real
As real eigenvectors transverse to the direction of incidence, these represent principal axes or directions

of the substructure in the usual h, v (horizontal vertical) radar coordinate system. Such dilation

substructures can then help in obtaining target orientation.

Since the three different dilation types give different orders of temporal integration one would
like to determine this order in the scattering data and thereby better identify the substructure. Note that
for simple forms of the incident field (step, ramp, etc.) the scattering becomes a non-negative power of ¢
times a unit step (or derivatives of this). This behavior is invariant out to some time of validity as
discussed previously. For window width t7 less than this the above behavior applies for this and all
smaller t7. This is the dilation feature of the wavelet. In some sense the target signature is invarianf to {1

because of the dilation symmetry of the target substructure. In a wavelet plane described by £, , 1 1
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(like phase space ¢y, @) as t{ 1 exceeds some value, for appropriate ¢, the pattern should illustrate this

. invariance and help in determining the dimension parameter d.
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VI. Concluding Remarks

By a target feature let us mean some geometrical shape including constitutive parameters of some
substructure or piece of the target. A special case of this is the target as a whole. Associated with
particular features there are target signatures by which we mean temporal waveforms, or more generally
properties of the scattering dyadic, including polarization. Various symmetries of the features (and target
as a whole) produce symmetries in the signatures which help parameterize (decompose) the signatures

and help in target identification.

Particle physicists have often referred to the elementary-particle zoo to describe the menagerie of
such "beasts”. Furthermore symmetry plays an important role in elementary-particle theory. By analogy
we can speak of a target-feature zoo or target-feature/signature zoo. As discussed in this paper
symmetry also plays an important role in this zoo. In a manner sirnilar to which elementary particles are

grouped by quantum symmetries, let us group our feature/signature pairs according to the symmetries

involved. So let us divide our target feature zoo into Nj, habitats as

Np,
z00 = U (habitat) 6.1)

np =1

Some of the habitats and their significances for target features and signatures are:

habitat consequences

time translation (¢) s plane representations

and linearity and filters

dilation (f1) exhibition of dilation symmetric
substructures

window location (fp) substructure viewed as though
orn infinite structure (space
translation)

. « 3
reciprocity symmetric A in backscatter,

principal axes for polarization

«
rotation/reflection symmetries in A, polarization
(point symmetry groups)

Specific features can involve more than one symmetry habitat (intersection of habitats).
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An important concept is the idea of partial symmetries associated with target substructures.

These are exhibited by the £, parameters of the triwave kernel, both in the form of the WLT and the WT.
This windowing isolates one region of time, and under favorable conditions a corresponding region of
space on the target for consideration. This windowing is a multiplication in time domain, and can be
compared to a filter which multiplies in frequency domain (and is equivalently a convolution in time
domain). One can combine the two. For example, one can isolate a substructure resonance which can
also be modified by a pulse with zeros at the natural frequencies [16] (either before or after windowing)
and thereby both identify the resonance and narrow the pulse for scattering-center analysis. Dispersion
curves, such as for waveguides have also been observed in the phase-space diagrams coming out of these
transforms [17]. If one has some information concerning these characteristics, then in principle filters can
be formed to modify this behavior in a manner analogous to poles in the complex frequency plane, again

helping with the identification.

Suppose that one has characterized some set of targets by the various entities in the target-feature
200. Note that various of the corresponding signatures factor with certain of the factors being aspect
independent (at least over some range of angles of incidence in backscattering). Then one can try to fit
such signature functions to the target scattering and thereby identify the target. Of course, in a realistic
radar application there is significant noise which complicates the problem. Various techniques such as
filtering, windowing, and averaging can be used to reduce the noise. Finally, probability techniques [18]

can be used to help bring the information out of the remaining noise.
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