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This paper considers the general problem of the response of perfectly conducting targetsin a
lossy dielectric characterized by frequency-independent permittivity and conductivity, and free-space
permeability. There are scaling relationships involving the propagation constant and wave impedance of
the medium (as compared to free space) which can be used to relate the various parameters to the free-

. space case. Based on this one can use free-space parameters to find the singularity-expansion-method
(SEM) representation of the target response in the lossy medium, including natural frequencies, natural
modes, and coupling coefficients. There is also a branch-cut term introduced which is most significant for

low frequencies (or late times).
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A
I. Introduction

An important problem in remote sensing is the detection, location, and identification of various
objects buried in a lossy dielectric such as soil (or water, etc.) [27]. As indicated in fig. 1.1 let there be
some finite-size scatterer (target) enclosed in a minimum circumstribing sphere of radius a. Let the

medium surrounding the target be a uniform isotropic dielectric with constitutive parameters

H, = permeability (free space)

€ = €, €, = permittivity 1.1
€, =relative permittivity

o = conductivity

This gives
1
#(s) = [stto(o +5€)]2 = propagation constant

1
~ 2
Z(s) = [&} = wave impedance

C+S€

s = Q+jo = complex frequency (two-sided-Laplace-transform variable)

3
]

Laplace transform (two sided)
#(s) Z(s) = st

(s)
()

(1.2)

2

= O0+S5€E

Nt

For the present paper the constitutive parameters in (1.1) are taken as constant (frequency independent)
which will simplify the problem somewhat. In the high-frequency limit we have

. )

Z, + O(s‘l) as s—eo




@ 55,759 = Ts(R) - 3, 759) - 1)

= sl, iS(?S) . {[—2€—3 —2{'2]e"¢iR -I-R + [€—3 +C—2 +§—1]€—§[i— iR TR]}

R=[-7, Ig = l;::% for % # 7
(1.5)
y 1y + 1, 1, (identity dyad)

e
]

¥(s)R

Here the form is the same as in free space with €, — €+ ¢ /s. This is well defined in the right half s

plane and is extended into the left half s plane by analytic continuation, noting the branch cuton s = Q
for-o/e £ Q < 0.

Having the surface current density one can now find the scattered far electric field

- B SEPVRY -
Ef(F,s) == — <1,e7(5)1"’5;]s(Fs,s)>

- A - cr NT =s
—Eof(s) -s-‘-l“l’—gm— <1r67(s)1’ s 27N, Ts) R e 7O ’S) (1.6)

The far scattered magnetic field is just

Hy(F,s) =27(s) 1, xE(7,5) az

The far scattering is characterized by a dyadic scattering operator [12, 13]




= =Y = . < s
Ef(F,s)=£;r-A(lr,11;5)-E('"°)(0,s)
1:\(1,11;5) = —5ﬂo<ire’~'(sﬁ";‘; Z7YE 7s)s 518"7(5)11';‘)

(L8)
= XT(—TI,—T, ;s) (reciprocity)

dyadic scattering operator

For comparison to our lossy-medium scattering problem consider the same target in free space,

for which case we use a superscript 0 to distinguish the appropriate parameters. For this we have

7O (s)= _i_ .70 (s)=2, ' (1.9)
The comparison problem is related to the lossy-medium problem by the substitution

70676 29 Z) 110y

With this in mind the solution of the two problems is the same, with due care of the branch cut in the

lossy-medium problem. Note that the impedance kernel in (1.5) can be written as
Z(7,,%55) = Z(s)7(s) 1s(7,) {[-zg-3 - zc-z} et g1y + [;-3 +¢72 +g-1] et [1-1x iR]} (1.11)

which shows not only the scaling by #(s) (with ¢ =#(s) R), but also a coefficient in front as Z(s). So

surface current density, magnetic field, and admittances have this additional scaling factor of Z'l(s) after

connecting the two problems via the propagation constant.




II. Scaling Complex Frequencies: Free Space to Simple Lossy Medium

As discussed in [7, 25] there is a not-too-complicated scaling of frequencies from free space to our

simple lossy medium by equating the two propagation constants as
©) L
7O (s(o)) =2 = [suo(a +s e)]z = #(s) (2.1)
¢
In particular, for natural frequencies s,, defined by

(Z(Fs,?;;sa); isaa's)) -9 @2)

these are related to the free-space natural frequencies by

2.3)

Noting in (2.1) that s in the right half plane corresponds to s© in the right half plane, then the plus signin
(2.3) is the proper choice giving

1
2 2 |2
o = _f_{[i] REO J 24

&

-g— < arg ils‘(,? )<z (second quadrant)
¢ )
1,0
T < arg —sy |< 2z (third and fourth quadrants)
r /




2 2
< arg[[—zge—} + ei sg) ) ) <2z (third and fourth quadrants)

2
-725 < arg {[_2_:' +is‘(,? )2} <z (second quadrant) (2.5)

1
2 2 {2
E < arg(sy)=arg __9_'_.;.[[ 2de] +is‘(,?) } <m  (second quadrant)

Similarly for s( ) in the third quadrant s, lies in the third quadrant, for which it is most convenient to
consider the arg function as negative angles. For the origin in the s plane (s( ) =0 being appropriate to

certain input admittances) we have

sg?) =0
(2.6)
sg)) =0, - g
these two points being branch points. For the negative real axis we have
0= < g
2.7
2 ‘ .
o o 1 (0)2 T
= Q B — ——
Sa « 2¢e [[26] e €, } €

with positive square root, thereby placing the s, to the left of the branch cut. Note also that (2.2) implies

To (%) = 7O 2.8)

(with the arbitrary scalar coefficient taken as unity) i.e., that the natural modes are unchanged in the

scaling, noting the shift of the corresponding natural frequencies.

For targets with natural frequencies much larger in magnitude than ¢/ € (the relaxation

frequency of the medium) we have




1
o (0)l 29
s l>> ls >> €
. l“ e ' I'® " e

1

1 275

o -5 (0 o2l o 1|2

S = '52*6’255"){“6’52‘) [TH

2¢e

1 - 2 -3
= —20'—€+e,2 s0) [l+-§2’—s¢(,?) z[i} + O(sg?) )} (2.9)

1
= ¢, 250 —-%+ O(sg)) 1) as s e

1

This is a rather simple transformation consisting of a dilation [er 2] and a translation (-0 /(2 €)) in the

complex plane. For high natural frequencies the pattern is then approximately the same in s© and s
planes. This may help in recognizing the pole pattern of a target in the lossy medium, given the pole
pattern in free space. As an added benefit one can obtain an estimate of €, (and hence €) and ¢ (from
-0 /(2 €)), at least as effective parameters appropriate to the frequency region of the natural frequencies

. of interest. Note that while the foregoing discussion is in terms of natural frequencies it applies to all s

(not on the branch cut) and their relation to s(o) .




III. Branch Cut

In the SEM representation one class of terms of interest is branch cuts [8, 30, 32]. The present
problem has one such cut. Consider this branch cut in more detail. Asin fig. 3.14, there is a positive
(counterclockwise) contour Cp, surrounding the branch cut in the s plane. This corresponds (maps one to

one) with the contour Cg in the s(0) plane. Note the four points s through s4 on the branch cut where sp

is taken just above (second quadrant) and s4 just below (third quadrant) the branch cut. These
correspond to S§0) through S£0)' respectively, with sgo) just to the right and ng) just to the left of the

origin in the s plane.

Let Q’ be a parameter with

Q' <90 3.1

m[Q

giving the position along the branch cut. For positions above the branch (second quadrant) one can use
Q!,, and similarly Q. for those below. In the s plane points on the branch are mapped into points

given by
SO = O
(3.2)
o = —od < 0@ < o

Note that ©® also corresponds to two points in general to the right and left of the jco(o) axis. From (2.1)

consider the mapping of Q as

.2
0@ = -q) [—;’— + €, Q;j} 3.3)

(2]

The maximum @ (.. wgo)) is found by setting the derivative with respect to Q. to zero, giving

1
- o (0)_'20
Q, = , 057 =€
2 2e 2 r

RUSTE

3.4)

c
= € —
2¢, 2e

Considering the symmetry we then have the four points around the contour as

10
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A. Branch cutin s plane
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\ jIm[s(o)]

Re[s(9)]

B. Corresponding contour in s(0) plane

Fig. 3.1. Branch Contribution
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1
0 . 9 O c
IREL S IO R
3.5
O = o , 5 =-2 @3.5)
0 l0' o
W) =-i g w5

noting that these points are approached from the directions indicated previously.

Suppose that we have F(s), a function of s with this branch cut. Let this be conjugate symmetric,

ie.
Es*) = F*(5) 3.6)

corresponding to the Laplace transform of a real-valued time function. This leads to a discontinuity
across the branch cut. As discussed in [32] the branch cut then gives a contribution

Eey - Ld EE)
3.7)

R(f) = 5’5 () e ult) as
b

Utilizing the conjugate symmetry we have
Re[F(Q4)] = Re[F(Q2)]
(3.8)
tm{F(Q;)] = - m[F(Q2)]

so that only the imaginary part contributes giving

12




-2 Im[F(Q})]

- 1 ,
Ey(s) = ), Tsoop M
3.9
g
B = = | mF(s)] e u(e)
T Jo

Note that the inclusion of u(t) in (3.7) and (3.9) is somewhat arbitrary, due to the left-right decomposition
in the s plane as discussed in [32]. By a time shift this unit step can be turned on at various times as

convenient.

Now let us transform these integrals from the s to the s plane. From (2.1) we have

O = 5| L]

S

250 450 - [i+ 2e, s} ds

=)

1

2
s= -9 . [i] L L2}
2e |L2e] e (3.10)

1
ds = [[1]2 +LS(O)ZJ 259 0

2¢ €, =
with the square root as discussed previously. Next assume that f‘(s) transforms in the “electric” sense as

E(s) = 15(0)(5(0))
3.11)
- 7 = 7O

Then (3.7) can be written as

13




)l l2 _% ()’2 %
2.0y 1 O irep O o A FO(5©) ) z50)
(s) = e e [z—e] + = Sto== [-é—e] + - F (s )ds
|
o Irel O 2 (3.12)
, a7l =% v

O O - R T O (o)

() = o5 e [i—e-} + < F (s- )e u(t) ds

In the s@ plane F © may be analytic inside and on Co. However, there is a branch cut described by (3.2)

associated with the other terms coming from the transformation.

Using variables on the branch cut

|

2

»© o

—Q; [E—‘}'Er Q.’,_

(o]

2&)(0) da)(o) = —[i +2 €, Q;_il dQ.,*.
eO
1
c cP 1 (o)'2 g
2 —_— —— for -—<Q/
Ze+ [2&} e,w or 2e 2 =0
Qf =+ 1
- o 1 (0),2 2 - p
—_— ] - for ~— < Qf € ——
2e [2 e:] €, @ or € * 2e
[ -1
- 2172 () .
-2 _im(o) d 10O for —1591 <0
L2e] €, €, 2e
dQl=4 = Ty
o2 272,00
Lo -1 »© ®  i0® for — % < Q< -
_2 E_ Er er €

the integrals in (3.9) take the form

14

(o4

2¢

(3.13)




(0) 2
119 O 6P 0O
Pb(f) __;EJ‘O e, [E—E—:{ - <,
1
2 o0 F
g lod a
ezl -5
+ e > Im[ﬁ(O)(jw(O)' H u(f) dw(O)' (3.14)
J

Note the two terms corresponding to integration both up and down the jw(o) axis given by the range of
Q’.. So the branch contribution can be expressed in both frequency and time domains by integrals over

the branch cut in either s or s(0) planes, whichever is more convenient.

There are also magnetic parameters proportional to

15




1

2 Ko = |22 Hy

Suo (3.15)
L 50(0)
- L2 Fo - "‘"‘“‘s(s<<>()) u} FO ()

with s(s(o)) determined as discussed previously. This type of scaling can be substituted for It"(s) scaling
in (3.11) in the above results ((3.12) and (3.14)).

16




3

Iv. Scaling of Eigenmode Parameters

Extending on the formulation in Section I, one can diagonalize the symmetric kernel of the
integral equation via

~

(Bl Rl op25) = 2509 T )

zt rsrrsr Zzﬁ(s ]sﬁ rsrs) ]Sp(rS' )
<]'sﬁl (7.5): Tsg, (’sr5)> = 1p,,8, (orthonormal) “.1)
1= kernel

v = {0=»identity
1= inverse kemel

This is the eigenmode expansion method (EEM) for representing the scattering [8, 10, 11, 13, 14, 32, 35).

The far scattering in (1.6) takes the form

—‘y(s)r -

Es(7,s) = A(l,, Tiss) - E69)(0,9)

AL i) = o (1,707, 271G, 75s) Ty 7O

- si, 2251(3) é,ﬁ (T,,s) C:,‘ﬁ(il,s) =—Z(s) #(s) ZZEI (s) (::rﬁ (T,,s) (:fﬂ(il,s)
B B

4.2)

érﬁ (L , s)

<1 ey r ']Sp (r515)>
éﬁ(il,S) = Crﬂ (—ilr ) <1le 711 rs']Sp(rS’ )>

where for backscattering this simplifies to

17




.:-l
|

= = 11
4.3)
1:\(.1'1,5) = f\(—il, 1 ;s) =~ Z(s) #(s) 2251 (s) é ﬁ(il,s) Cg (Tl,s)
B

which exhibits the symmetry (reciprocity) in the backscatting dyadic.

As discussed previously, there is a scaling of parameters from the free-space parameters
(superscript zero). Frequencies scale as

4.3)
1

[T
Noting that the free-space impedance kernel scales as
25" 200, 759 = 276) 247 759) @9
we have from the EEM representation

50 (?s,'fs'i s(o)) = 2 zg))(s(o));”-s(g)(;s ’ 5(0))}?5(2)(?5', s(o)) 5)
B

the scaling relationships

Jog (ors) = ;“-5(?(;5,5(0))

4.6)

for the basic EEM parameters.

Carrying on the development the far scattering parameters scale as

18




éﬁ(il,s) = él(so)(il,s(o))

- ~ “4.7)
Cra(Trs) = Csﬁ)(l"s( ))
AL Tys) = AO(3,,1;;50)
The natural frequencies s, are just the zeros of 2,3 for which
S = sﬁ,ﬁ'
4.8)

Zﬁ(sﬁlﬁ') = 0 (B'th root of fth eigenimpedance)

These roots of course scale from the roots of the free-space eigenimpedancces Zl(go)(s(o)) via (4.3) and (4.6).

For the branch cut as in Section III, one can evaluate the integrals in either s or s(0) plane, where the
various integrands are now represented as sums over 3. Note that the branch cut in the s plane applies to
various eigenterms (eigenmodes, eigenimpedances, etc.) unless certain terms are frequency independent

(e.g. the eigenmodes of the sphere [13]), in which case they are frequency independent in both planes.

19




V. Propagation of Incident and Scattered Fields

As indicated in fig. 5.1 our complete scattering or radar problem consists of the production of an '
incident wave from some transmitting antenna, propagation of some distance dijnc to the target, and

scattering to some receiving antenna a distance dgc away. This involves the propagation of the wave a

distance
d = dy, + dg (5.1)

from the transmitter, via the target, to the receiver. One can regard d as some minimum propagation

distance, or some average distance such as via the coordinate origin in fig. 1.1.

The antennas have various frequency- and angular-dependent characteristics as does the target,
complicating the analysis considerably. For present purposes consider a plane wave propagating a
distance d in the conducting dielectric to estimate the effect of the lossy medium on the pulse
propagation. For simplicity let this propagate in the z direction as

E(F,s) = 1, E, 3(s) e 76
(5.2

E,
P Zs)

AF,s) =1, x 1 3(s) 70

where Z(s) characterizes the waveform of the electric field on the z = 0 plane. For convenience let us take

this exciting waveform as a delta function, i.e.
3s) =1, g(t) = &(t) (5.3)
Then define our normalized fields as

&(F,s) = e 702
(5.4)

P (7)) = 21(s) 707 = T) 70
ho(Frs) = 27(e) € St ¢

Note that one can just as easily normalize to the magnetic-field waveformat z =0.

Using (1.3) the normalized fields can be approxirated for high frequencies as

20




possible interface to another medium (e.g., air)

transmitting receiving
antenna antenna
X
dinc dsc

‘ Ho, € ©

Fig. 5.1. Propagation in Lossy Medium




Bo(f.s) = ¢ v g 2 [1+O(s'1)] as S—>o0
s OZ oo,
ho(F,s) = 221 ev e 2 [1+O(s‘1)} as s —> 00 (5.5)

For low frequencies these take a different form as

Sty

85(F,5) = e V% Z [140(s)] as s—0
1
ho(7,5) = [ g ]2 e VI EI1 4+ O(s)] as s—0 (5.6)

As one can readily see the high- and low-frequency behaviours are quite different.

In time domain the normalized fields can be used for convolution with g(s), some assumed
exciting waveform. The time-domain form of (5.4) is a long-studied problem [1, 2, 3, 5, 6, 15-19, 23, 24].

Define some appropriate parameters as

== =1z € ,H = 2¢ Z, = 2
o v Ho s 1= c ' oZ..
6.7)
o2z
t Zy
Noting that z > 0 we have the well-known result for the electric field
- ¢ i 1
eo(F.t) = e 1{8(t—t,) + t_o[tz_tg] 2 I{t{l[(fz—tg]Z]u(t—fo)
1
-z -t 1 1
=e % §(t—t,)+e N %— [tz_tg] 2 zl[f;l[ﬂ-fg]i] ult—t,)
1 (5.8)
-z il 1 1
2 — _ 2
=¢ % S(t—to)+ge b [tz—t},’] 2 I{tﬂ[ﬁz-tg]zj u(t—t,)

The magnetic field has a more complicated expression which is found in [6] and is given by




| ‘

ho(F.t) = ZZl3e Tl—é‘(t—to) + [t;l + £ t{z]e_?l— u(t—t,)

-

t ——
+u(t—t0)t{2.[ e f1]-

I [tfl[t'z - fg]i]
2

to

I [t{l 2 - tg]%)

_1_(f_o
1
p [t' 2 tg]_z. 4\ 4

- 3

1

3
g2 - 2]

z

= ZHe %

[6(t

dt’

—t,) + tf1[1+—z—] u(t—to)}

Zp

Il[tfl 2 - t;,’-]%]

: L
+ u(t—to)tl'z-" e f1]-
t

where we have made use of a recurrence relation for the modified Bessel functions [29]. One can also

L1z
t;l[t’z—t},’]% 4\ z,

, b [tfl [¢2 - tg]%]

N tﬂ

- 3

ar

(5.9)

start with the magnetic field specified at z = 0, giving (5.7) for the magnetic field and a somewhat simpler

expression (than (7.9)) for the electric field. However, the above will do for present purposes.

An interesting time regime is for retarded time t - ty << t1. The normalized electric field behaves

like

23




z -t =212 (2
-2 -2 1+ Ot -,
e(Ft) = e Z48(t—t,)+—e " ( Zt[ o]) wt - to)
1

Zo

(5.10)

z

¢ %0 {6(t — )+ Z

Zo

= u(t—to)+0(t—to)} as t—f, >0
2

Convolving with the excitation function gives (assuming g(t) = 0 for t < 0}

E(F.8) = T, E, 8(t) « eofF 1)

z

= 1 E e zo{g(t fo) + -—'——jg(t'-‘f dfl 7 (5.11)

j jg(f"—t )yat” dt’} as t—t, >0
t, 9t,

Comparing the second to the first term one can estimate conditions for which the first term is an adequate

approximation. In particular if for some t of interest we define

8 = sup g(¥-t,) (5.12)

ty<t'<t

then we have a relative error as

1z 1 z t-t
L~ er—-t)arl < = o (5.13)
‘g Zo 24 :f( o) Z 2h
If this is to be small compared to unity we have
ZO
t— to << 2[’1 ? (5.14)

which includes both the relaxation time t1 and depth in rumber of e-folds. This can be used to bound

what might be termed early time, at least for plane-wave propagation.

Considering the magnetic field for early retarded times we have the normalized form .

24
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z

ho(7,8) = 22! e %o {6(t—to)+t{1[l+i:’ u(t - t,)

Zo

¢ ot 1 1(z)
t—t,) > Boleoe—| 2| +O(F -t,)|dt
rue-t)1 [ [2 (Z] vt J} o
_z
=zle® {6(t—f¢,)+tl’1[l+§:’u{t—t,,)+O(t—to)} as t—t, >0
0
and
o = = E = z |f*
H(F,t) = ,x1, E"-e %o {g(t—t0)+tf1[1+—}jg(t’—to)dt’
0 0 ivt,
(5.16)

t ot
+ O(j Ig(t”—to)dt"dt'} as t—t,—0
to to

This is similar to the previous result for the electric field. Now we have an estimate of the relative error as

t
1 z i1
—_—1+= —J. t'—t,)dr
go[ Zo:'tl tog( 0)

which when compared to (5.13) shows a slightly larger error for a given t - to.

< [H_z_} t—t (.17)

Zg f

Note that by judicious choice of g(t) these “errors” can be made less. Such is the case if gt - to) is
somewhat oscillatory, or is limited to times short compared to t - to, thereby reducing its time integral in
(5.13) and (5.17). One might even tailor g(t) in such a way as to partially compensate for the propagation
distortion at some z of interest.
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VL Scaling of Pole Parameters

As observed in Section II the natural frequencies scale from free space to the simple lossy
medium via the propagation constants of the two media. The natural modes (for currents on the perfectly
conducting scatterer) are unchanged in the transformation. This leaves the coupling coefficients to

consider.

As discussed in [10, 11, 13, 26, 35] the surface currents on a perfectly conducting scatterer in free

space are (assumning first-order poles)

;s(o)(;S ,5(0)) = E, 2 7(59)1153)(113,,) oo 7 ){:5(0) _sg))]-le_(s(m _sg?))t,-

+ singularities of f(s(o))

4

possible entire function

- 03 = =
1, .<e"7¢(z)1l"s s Jsg (;')>

na(illip) =
- d E(0)/= -,
<]Sa (rs);m zgo)(rs,rs;s)

ROMNC B 6.1)

i

coupling coefficient

t;

initial time or turn-—on time (chosen for convenience)

In our simple lossy medium this takes the form

26




To(fs) = Eo ) Flea)nafTi, Tp) RoB)fs - sa] Te o)

+ singularities of f(s)
+ branch contribution

+ possible entire function

6.2)
o ip.<e—ra11.?g, 7sa(?s’)>
Mo, 1) = 3
<]Sa (%) 2 (TS sy (?s')>
5=8g
To scale this note that
92, < 3| Z(s) 5(0)(= =
;z (TS,TS,S) = gi:ZLo) ZE (srrSIS(O)):l
(6.3)
= ZO(, 7,50 Zs) |, Zs) 2 30 2»..0)
( ) [ Z, + Z & Z; (rs,rs,s )
When operating on the natural mode the first term gives zero, so we have
= 42y O E . pe=s
<]sa (.); gz (7, 75:5) 7 Jsg ("S)>
S=8g
(6.4)

7 45 - =)/ -,
= (Zsa) ‘;S <]5a (T:S); ?0) Zgo)(rs ’ Ts;s)
o 5=25, S

Next we have
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asO g 4 L]
—— = c—76) = c—d;[suo(0'+se)]2

o€ -
~27(s) koo + 2ty €] 2700 (koo + 2511, €]

2
1 |o
= 2:(0) [Hoo + 2sp, €] = -—-?)-[— + 2¢, s]

6.5

Z(s) as©@ sy, 4@ s 20O
Z, ds  Zj(s) ds  c¥s) ds

s o+2s€
= =l + 2 = —
2¥(s) [ko sHo €] 20+2s€
_ 1+5f1
2+ stk

which is a meromorphic function of s. Using (6.4) then the coupling coefficients in the lossy medium

scale as

na(11.3,) = %%—Z;‘ (1,7, 66)

Note that if the conductivity goes to zero (giving a lossless and dispersionless) dielectric medium then

6.7)

’

which, along with unchanged natural modes, is rather simple.

For far scattering we have in class 1 form [13]
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Comparing to free space conditions

~ -(5(0) -SQ ) )fi
KO, T;;5) = Ze_ss_ wd E0(1,) eQ(1,)
TP

o

we have (using (6.4))

Ca(l) + Caflr) = ()

(@]
]
—
[y,
-t
o S
]

as the scaling relations for the pole parameters for far scattering.
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VII.  Dipole Scattering

Even with the target resonance’s all at high frequencies (i.e. [s,| >> ¢/ €) there is still a

scattering contribution near s = 0 due to the branch cut in Section I1l. In free spaces = 0isnota
singularity since the far scattering is proportional to s ard is characterized by induced electric and
magnetic dipoles. From {4, 9] we have

EO5,50) = £ s 1, [-Fs0)+ 1 T, x(s0) ] a5 40 0 .

where the dipole moments are related to the incident field by polarizability dyads as

5(5(0)) = e, b E("’C)( 5(0)) 0)7(5(0)) .1,

(7.2)
,;-1(5(0)) 1. i) (0 s 0)) _E f( (o)) M- [i %,
2]
These polarizabilities for perfectly conducting objects are frequency independent and are known for
various canonical shapes [33]. The scattering dyadic then becomes
A(1,T;5@) = 5O ((OV[-1, . 5.7, + T x M x (©)
AT, Ty ) = YO (sOV[-L, BT+ T, x M xTy] as 5@ >0 7.3)
In the conducting dielectric medium we have the scattering dyadic
AL, Tus) = 726 5, - BT+ T, x BTy as 50
(7.4)

= suo(0'+se)[-ir-13-11+1,xMxT;[] as s—0

this being consistent with the general scaling in (4.7). Note that due to being proportional to 72(s) there
is no branch cut in this expression. In fact, this is an entire function (singularity at ). In (3.9) the branch
contribution is zero since the frequency function in (7.4) is real for negative real s = Q. Also note,

however, that (7.1) only represents the leading term in dipole scattering. The second term is proportional
to #(s) r2 in the lossy medium; this near-field term does have a branch cut. The third term is

proportional to r3 and again has no branch cut.
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While (7.4) represents the low-freqtiency far scattering, this is still just the leading term. Odd
powers in the expansion around 7(s) = 0 contain a branch contribution. However, suppose that the

natural frequencies s, are all large in the sense that

Sq | >> 2 forall o (75)
|a| > 2

Then the form in (7.4) will approximate the far scattering over the range of s from0to —o / € in (3.9),
thereby giving a negligible branch contribution to the scattering dyadic. So for the case that the first
natural frequency is sufficiently large the SEM representation of the scattering dyadic is simplified.

As discussed in Section V there is a branch-cut contribution in the incident wave due to the term
e 702, 5o the low-frequency scattered field includes a branch contribution. If d as in (5.1) represents the
distance for propagation of both the incident and scattered field (from transmitter via target to receiver)

then one needs to consider the form of

= —7(s)d
Ef(7,s) = 2 ik

p AL, Tps) - T, B 3(s) (7.6)

where g(s) represents the incident waveform leaving the transmitter. Note (7.6) is written for plane-wave

incidence and is modified somewhat for real transmitting antennas.

So the low-frequency form of the scattering goes like

S o e_i(s)d 72 s _s - - - - - -
AL, 5y;s) = 4;) eV, BT+ T, x M x Ty 7.7)

in the far-field approximation. However, as s — 0 near fields begin to dominate, eventually proportional
to e 7e)4 473,

One can evaluate the time-domain form of (7.7), but at early retarded time this contains first and
second derivatives with respect to time of the delta function &(f — ;). (This comes from the entire-
function part.) Of course, at the corresponding high frequencies the target does not behave as a dipole,
making this early-time portion inappropriate. By taking the results for ¢~ 7} in (5.4) and in time domain
in (5.8) (with £, = £;) one has the result by twice differentiating with respect to d.
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The radiation from an elementary electric dipole in such a lossy medium has been treated in the
literature [20, 21, 22, 28, 31]. The results for a magnetic dipole are dual to those for the electric dipole and
thus have the same functional form. As indicated in (7.7} the two kinds of dipole fit together well. Here
the dipole moments are induced by the incident field, making but a simple change in the formulas to

allow for the propagation of incident as well as scattered fields.

Note that a dipole approximation for the scatterer is valid only for low frequencies, and that the
scattering is small (proportional to 72 (s)) in this region. Observe that the branch integral in (3.9) is from
0to -0/ €, and that for small conductivity the branch contribution is small. Furthermore for the case
that the resonant frequencies have | Se [ >> o / € there is a significant separation of the important
frequencies in the branch contribution away from the resonances. Under conditions where the target is
not too far away from the transmitting and receiving antennas in terms of e-folding distance
z, = 2/(6Z..}, the relative significance of the branch will be small. These considerations define what has
been termed a high-frequency window [34]. The lower frequencies can also be exploited, but using the
diffusion approximation for which the dipole near fields are important [22, 23, 31].
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VII. Concluding Remarks

As discussed in [13] the far-scattering problem also has an entire-function contribution which is
relevant for early times. Such early times being related to the transit time across the scatterer, then in the
high-frequency approximation as in (2.9) this entire-function part can also be scaled. Basically the time
for which this applies is scaled as ¢/v. A more general treatment would use the asymptotic treatment in
[13] together with the general definition of the different SEM terms in terms of contour integrals as in [32].
As in the free-space case, the currents on the perfectly conducting scatterer can be expressed without an
entire-function contribution. As discussed in Section V, however, the incident and scattered fields now

include a branch-cut term which can considerably distort the propagated waveform.

Now then, we have a general procedure for the SEM representation of scattering from perfectly
conducting objects in simple lossy media by a scaling from the free-space case. An important restriction
concerns the assumption of a perfectly conducting scatterer, so that the constitutive parameters of the
target do not enter into consideration. More general targets (dielectric, lossy, magnetic) need a more
general treatment allowing for the fields inside the target (as, for example, resonances inside a dielectric

target).

Another restriction concerns the lossy medium which has been assumed uniform and isotropic.
Real earth can have layers. If the medium in the immediate vicinity of the target is uniform and isotropic,
then the scaling of the natural frequencies as in Section IT using the local parameters is an appropriate
approximation. However, the propagation to and from the target (and hence the pole residues or
coupling coefficients) can be significantly perturbed by the transmission of the incident and scattered

waves through the various layers, including reflections at the interfaces.

While the present scaling results are quite general, the case of low medium conductivity is

particularly significant for detection, location, and identification of targets. Then the natural frequencies
have l 54 l >> 0o/ € and the scaling simplifies as in (2.9) which is a dilation and a shift in the complex

frequency plane. Furthermore, as in Section V, the incident and scattered fields propagate at such
0Z0n2

frequencies in an approximately dispersionless manner with an attenuation givenby e 2 which can

be tolerable for distances restricted such that GZZ"“Z

is of order one or less. This also reduces the

significance of the late-time distortion of the incident and scattered fields by the medium.
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By suitable selection of the waveform launched by the transmitting antenna, the late-time

distortion due to the medium can be compensated to some degree. This can also be allowed for in the
processing of the scattered fields in the target-identification algorithms [26].
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