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Abstract

This paper considers the propagation of waves on non-uniform multiconductor fransmission lines
{(NMTLs). Extending the results of previous papers, general NMTLs are considered as cascaded sections
of shorter transmission lines, both uniform and non-uniform. The individual sections are considered in two
forms, based on the diagonalization of the propagation matrix, or in the case of equal modal speeds
based on the diagonalization of a normalized impedance matrix. Canonical forms of the variation of the
appropriate eigenvalues are considered, giving closed-form expressions for the matrices (renormalized
matrizants) describing the individual sections.
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I. Introduction

In considering the propagation of signals along muiticonductor transmission lines (MTL), the

equations reduce to convenient forms if the MTL is uniform, i.e. has the impedance-per-unit-length matrix
(Z;,,m(x,s)) and admittance-per-unit-length matrix (f;‘m(x,s)) (as in fig. 1.1) independent of the spatial

coordinate z (one-dimensional transmission-line approximation) [ 1 ]. In this case a certain linear

combination of the voltage and current vectors and sources as
(Va(z:9))a = (Vn(2.5))+ o[, ,, () (Fu(z.5))

(7, z9))a=(Vs, (2.9)+d(Z, , (5))- (s, (2.5))

nm=12,--- N
g=1=*1

= (70",,,, (S))_l (Zr'z,m(s)) (1.1)

1
(7.'%,»: (s)) = [(2;,,m(s)) . (f’,’l, m(s))]E (positive real (p.r.) square root)

where +1 corresponds to right-going (+2) waves and -1 to left-going (-z) waves gives a (relatively) simple

form to the solution, due to the resulting first-order differential equation
d Ey 7 >74
[(ln,m)-‘;; +a(7e,, (s))]-(vn(z,s))q =(V;, (2.5))q (1.2)

Note that reciprocity is assumed here so that the matrices in (1.1) are symmetric (equal to their

transpose).

In more recent papers [ 4,5 ] special results are obtained by assuming that the per-unit-length
matrices and their derivatives with respect to z all commute. This extends to nonuniform multiconductor

transmission lines (NMTLs) for the case that the matrices are circulant, and the resulting second-order
differential equation scalarizes in terms of the eigenvalues of the propagation matrix (5’/% " (z,s)). if one

specializes to a high-frequency approximation [ 3 ] there are other simplifications which occur leading to a
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Fig. 1.1. Per-Unit-Length Equivalent Circuit of Multiconductor Transmission Line




generalized WKB approximation (for N-component vector waves) which can be solved in closed formin
. various special cases.

Consider now the general form of an NMTL, first from the telegrapher equations, for N conductors

(plus reference), as

%(Vn(z,s))= —(Z,’l,m(z,s))-(fn(z,s))+(‘7,(zs) (z,s)]

gz-(fn(z,s)) = —(?;,m(z,s)) . (ﬁn(z,s)) + {iés) (z,s)J

These can be combined to give a single first-order differential equation of dimension 2N (vector
components). Consider some NxN matrix which may be a function of frequency, but is not a function of

the coordinate, and has dimension of impedance, which we use as

a[( (Va(z.9) ))H( (Onm) (z;,,,,,@,s)).(f,,,m(s))]_[( (Vagz.0) ]

3\ (Zym(5)) - (Tn(z:5 Zym(®))- (Tam(z:9)) (Onm) Zpm(5))- (Tn(2.5))

+ 7
(Zn,mw)-(fés) (z,s)]
(1.4)

~ ~ -1
(Zn’m(s)) = (Yn,m(s)) = normalizing impedance matrix
(Yn,m(s)) = normalizing admittance matrix

Since we are dealing with symmetric matrices (reciprocity), the normalizing impedance and admittance
matrices will be similarly constrained. Note the significance of the position independence of the
normalizing matrix so that it passes through the spatial derivative. This first order equation is still
inhomogeneous due to the presence of the sources. For our considerations here the sources will be set
to zero to give a homogeneous equation. Of course, sources can still be inserted at discrete values of zin

the form of boundary conditions.




In (1.4) we have a supervector/supermatrix form [ 1 ] of dimension 2N. An aliernate form that is
also useful is the second-order differential equations of order N (without sources) for voltage as

2 - - ~
L (Fn(ar5)) | 2 (Fm(ar5) | (Brm(s)) 2 (7219) = (e, 528 (Fers) = (00)
{1.5)
(%ey  (29))" = (Zm(28))- (Prm(z.9)
and for current as
2 - " o
2 (1na )~ 2 (Frum(2:9) | (Frm )] e {Tal215) = (o, 5 (T8} = (0)
(1.6)

(Fepm (2:5). = (P 2:9) (Zam(2.5)) = [(yc,,’,,, (z,s))zf

As discussed in | 4 ] an interesting case has the various matrices and their derivatives appearing
here all commuting pairwise, since the equations reduce to scalar ones involving eigenvalues. |n that
paper the important case of bicirculant {symmetric circulant) matrices is treated, for which the eigenmodes
can be determined analytically.




Il. First-Order Differential Equation: Solution in Terms of Solutions for Each Segment of NMTL
Consider the first-order differential matrix equation (2Nx2N)

i(ﬁn,m(z,s)) = (&n,m(z’ S)) ) (ﬁn,m(z’ S))

dz
(2.1)
(ﬁn,m (O,s)) = (ln,m)
Each of these matrices can be partitioned into four NxN matrices in dimatrix form [ 2 } as
(ﬂn,m(z,s)) = ((an,m(z’s))v,‘/ )
(&n,m (Z’S)) = ((&n,m(z’s))v’v,) (2.2)

v,v=12

Columns of (am m(x,s)) give a set of 2N linearly independent vectors for expressing the 2N-component

combined voltage vectors as in (1.4), in the general form

(ﬁn(z,s)) _ (V,,(o,s))
. . = m(z, O - .
[(zn,m@))-(fn(z,s)) (Ennte ) | 7,0} rt0.) e
© = generalized dot product (for supermatrices and supervectors)

Thereby including the boundary condition at z=0 (a special case). In this case we also have

= (On,m) ’(Zr'l,m (Z’S)) : (?n,m(s ))
((an,m(zas))v,v') - {_(Zn,m(s)) . (f’r;,m(Z,S)) (On,m) J

(2.4)
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The solution of (2.1) is called a matrizant [ 10,11,14 ]. By analogy with cascaded two-port
networks (taken as differential lengths of the MTL) this is also thought of as a chain matrix [ 8 ].
Specifying both voltage and current vectors as boundary conditions at one end, one has the solution of




(2.1) with (2.3) giving the current vectors everywhere. The problem is that of solving (2.1). Some
sufficient conditions can be found under which the matrizant can be written in closed form[3] as

?(‘-’n,m (z',s))dz’

(ﬁn,m (x,s)) =e (2.5)

provided (&n,m) can be written as a sum of constant matrices times scalar functions of z with all these

matrices pairwise commuting. The matrizant can also be written as an infinite series of repeated integrals

{nth order for nth term) for the general case.
Noting that (&n,m) has all zeros on the diagonal we have the general results

2N

V((an,m(zss))) = Z&n,n(zvs) =0

n=1

(2.6)

2N
= ZXB((&n,m(ZsS)))
8=1
Xs = eigenvalue of matrix for § =1,2,---,2N

f @pm(2',5)))d2’
det((ﬁn,m(z,s)))=e‘{”(( u ))) =1

2N
= IT X5l z,8
5a1 6(( n,m( )))
This constraint on the eigenvalues of (&n,m) effectively reduces by one the number to be calculated.

The choice of the normalizing impedance matrix (27’,1,,,,(‘9)) is, in one sense, arbitrary. For

convenience, however, let us consider the characteristic impedance matrix [ 1 ]




(ch’m (Z’S)) = (Ycu,m (Z,S))_l = (70,,’," (Z’S)) ' (f,;m(z,s))—l

= ('7cn‘m (z,s))--1 -(Z,',’m(z,s)) 3 ‘ @.7)

1

(70,‘ A s)) = [(Z,'lm(z s)) ( Yrm(zs s))] (p.r. square root)

where this is a local definition, i.e. a function of position z. On a local basis this can be used to separate
waves into +z and -z propagation directions, as in (1.1). This, however, conflicts with the construct in (1.4)

which requires the normalizing impedance matrix to be independent of position. So an interesting choice
is to choose the (matrix) value at some particular value of z, say z;. Then at and near this particular

position one might expect the waves to similarly separate in an approximate sense.

At this particular z = z, the characteristic impedance matrix is

(29 9)= (19 @) =(2, ,(29)
(72 () (Y'“’@)
-(7,0) - (249)

(Z’(é)(s)) = (Z,’z,m(zbs))
(#26) = (Frmlaz.9) =
(74, 0)={Feun(es)
The coefficient supermatrix then takes the form
o J* (Onm) (Ghm(e.9)-(2800) (79 ) |
[( #), (72 @) (300 (Fimtz) (Onsm) .



indicating the symmetry induced in the expression due to the choice of the normalizing impedance matrix.

Carrying this a step further, apply this on a piecewise basis, i.e. consider a section of
transmission line defined by

zpSz<z44 (2.10)

Here in effect z, is the zero coordinate reference to which the foregoing results can be applied. Denote

parameters for this section of the MTL by a superscript £. Then we have

%((ﬂ,(f,)n(z,s))v,v']= ((agfg(z,s))v,w) o {(ﬂ,(fi)m(z,s))v’v,)

(2.11)
(#69),, - (s )
which applies to the 2N-component combined voltage vectors as
(Vn(z’s)) -(2) (vn(zl’s))
(Zgi)m (s)) . (fn(z, s)) = ((un,m (Z,S))V’V,] o (Z‘E:,)m (S)) (Tn (z;,s)) (2.12)

Now the matrizant is for the £th section of the line, i.e. from z, to z,.,;. Atthe end of this section one can

write the combined voltage as

[ A ]((lmm) (0r,m) ) [ V(2241.) ]

(2520 Hintnn) |\ (on) (22200 (22,0)7 | © (B0} teen)

(O N R
K(():m) (Zg,-:‘l)(s)),(zgfm (s))—l J 0] ((ugfz)n(zHI,s))v’v,)

(2.13)

(‘7,, (ze, S))
© (Zgl) (s)) : (fn(q,s))

n,m

10
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So let us define
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(2.14)

U}

o) (0n) .
(Onrm) ( (z+1)( )) ( 59 (s)) © ((ur(z,zn(ztﬂ’s))v'v,)

This supermatrix relates the signals at z;,; as normalized there to those at z; with normalization at z; .

Extending this we can evaluate

(ot )-8, ) o (20), o - o (),

(2.15)
i él((ﬁg;;l_m (S))v,v']
. with the result
Un(22:5) . /n(0,5)
[(Z(t) Z))z( In(2g, ))}= ((U"’m (=2 ’S))v,v’) © [(Zgg)m‘(i))o (Sf,,(o,s))J (2.18)

This can be used to extend the solution through any number of MTL sections, provided we have the
solution for the matrizant of each section as in (2.12), renormalized as in (2.14).
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lIl. Piecewise-Constant Approximation

The foregoing formulae can be readily applied to the case that the NMTL is approximated by a
cascaded series of MTLs [ 9 ]. In this case one begins with the general (sourceless) equations as in (1.3)
where the coefticient matrices are functions of position. Tc form a position-independent characteristic
impedance matrix as in (1.4) or (2.10), let us take some particular z and use (2.7). The next consideration
is which z to use. Consider the section of line defined by z; <z<z,,;. One can take the matrix value at

z4 or at some intermediate position which we can still take as (Zgl) (s)) in section Il.
n,m

One would also like to have a propagation matrix independent of z, so from (2.7) one can
constrain both by choosing the per-unit-length impedance and admittance matrices as constant in the

interval, and use
(7 0)=|(%) (Y"‘)cs))]
(#0.0)-(4.0) (1820) o0

(72 o) (590)

With this choice based on some average choice for the per-unit-length matrices, the problem considerably

simplifies as

(( 9.6), V,)= ((On,m) (7 )

D @) (Onm)

]= ((a,(f,)n( ))v v,] O] ((&Sf,)n(z, s))v’v') (3.2)

dz ((u,(:,)n(z S))v v’

[}

(), -

which has the solution (since ("ﬁf},l(s)) is independent of z}

12




i) -
o [(ﬁﬁf%z(z,s))viv,'}e (el ) 3)

This can be used with (2.14) as

((a,(fl, (s))v,v'][llﬂ -2)

{(ﬁr(f#)(s))v,v,}[((;::)) (Z(Hl)(;())f,(;)(l) (S))‘l © e (34)

Cu,m Cnm

to carry the solution to the beginning of the £+ 1st zone.

Noting the form of the matrix in (3.4) the exponential in (3.3) can be readily written in an alternate

form as
((&,‘,‘L (s))v y }[zm =7
, :
® - S H(d009), | lrva-aar
_p=0P! n.m vy 441724
24[(f2.0)  (onm) ’
_p=°p![ (Onm) (?gi?m(.?)) o

= & L [( (O"’m) (’;’gi)m (S))J © [(?((:i)m (S)) (On,m) ]p_I[ZHI B ZZ]p

_p=IE 7‘(31):1: (S)) (On,m) (On,m) (7£?m (S))

_ [cosh([zlﬂ - Zz](7£i)m (S)D (0rm) J

(0nm) COSh([’Hl - Zz](?gi)m (S)))

_[(o,,,m) (1n,m)] o sint{ 2241 - 2](7, 9 (On)
: (Onrm) sinh([z el — 22 ](7&3’” (s)))

13




‘Cosh([z“_l - zz](‘?gi)m (S)D —Sinh{:[zl_,_l - zl]('f’g:)m (S)))
—sinh([zl_,,l = (s))) cosh([zm -7 (S)D

Cn,

This gives analytic form to the blocks of size NxN.

Going a step further one can diagonalize the propagation matrixasf 1]

(19 0)- 33806 (196) (W0),

=1

(%),

. (?C(f) (s)) =158, (biorthonormal) (3.6)
1 ﬁZ

(00), = (20} (£00), = (200, (20.0)
noting reciprocity. This also gives

~ N - -
(22, <s>)=/32=1(v£ﬁ’<s)) (),

M=

(f’gi)m (s)) = (2" c(:) (s))/3 (fc(:)(s))ﬁ

e (106),(40)

1

™
I

M=

(2;52(8)) = 5 (3.7)

™
]

M=

(#420)- $ o (800200,

1

™
L

These are here applied to the case that the parameters are independent of the coordinate z. One could
let these be functions of z but this would complicate things via the derivatives with respect to z, particularly

14




with respect to the (right and left) eigenvectors of the propagation matrix. For present purposes this and

the matrices in (3.7) are all constant.

In terms of these eigenvectors we have

(0r,m) ﬁ]“ l)(s (gf)(s))ﬂ(fc(f)(s))ﬁ

(#),, ) .
vV zy(f)(s) ( (f)(s)) ( (f)(S))ﬁ (On,m)

B=1

((aﬁl.)n (S)JV'V'J{HH -2¢]

e

S cot{frss - 700 $6) (16), -3 st - 1] e ) [16),

_| B =
_ésinh([zzﬂ - Zf]i’g)(ﬂ)(ﬁﬁn) )ﬂ( (j) )p écosh( 2401 - 207 g)( S))(;,gi)( s))ﬁ(fc(f)(s))ﬂ

(3.8)

These matrices then have dimension 2N eigenvectors as

15




1 (9 1 (+(&)
7o) " | TE)
Zoof| © () Tt
O N E COREN ()
| SECO N SO
(3.9)
%(lfc(:)(s))ﬁ ((E,(,f,),‘(s))u’vj[,m—u] *fg)(ﬂ[lm-ze] LZ(;"(: )(S))ﬁ
5 (i00),) °° B D)
The biorthornormality condition is
(1 (0 1 (+(2)
S000), ) (00
f%(ﬁgﬁ) (S)il ° i—li(f c(:)(s)jg; ) ~ ks
(3.10)
r%(sgf)(s))ﬂl ° %(E}f)(s)) L,
s 800), ) |00,

There are 2N of these eigenvalues for the N values of § and two choices of the x sign, and similarly for the
eigenvectors. In effect one can think of B running from 1 to N with the upper sign, and then from N+1 to
2N with the lower sign.

In terms of these eigenvectors one can construct matrices with these as rows (first index) or
columns (second index) respectively as

16




® 0 (i (s>)
( m )) = (vectors as rows)
( (1)( S))

(7’,59; (S))E((gg)(s))l e (ﬁg)(s))N) (vectors as columns) (3.11)

(z(‘) (s)) ( #4) (s))=( m)  (NxN identity)

In 2Nx2N form we have supermatrices of eigenvectors as

~ 1 [(ne) (£
((Zg‘?"( ) )= 1 {(za ) —(25;’2,1@))

| [(#0) (o)

((r,ﬁi?z(s)) ]E N2 {% ’5{21 (S)) (,}g}t (s))} (3.12)
[ zﬁf}n(s) J o [(r,gsz,@ ’]= )y

Applying this to the previous gives

#as) O
() (72,0} (#w)=] 1O
O #n(s)
= (77n(s)1n,m)

([#0),,) @ [([#0) ] o ((0),, ) {’(7('5?:5’”‘) (7,(2:52,),”) .13

17



((a,(f?” (s))v,v,J[zu-l-u]

© ((F’S’Qi (S))v v')

{(Eg‘)m(s)) v,v’) © é

~Fn(s)2e41-2¢]
(e . 1,,,,,1) (Omm)

(On,m) (e Fnls)ze41-24) Im,m)

So in terms of the eigenvalues and eigenvectors of the NxN representation, the full 2Nx2N supermatrices
and supervectors can also be conveniently calculated.
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V.

Second-Order-Differential-Equation Solution for Matrizant: Position-Independent Common
Eigenvectors for NxN Matrices

In[ 5 ]itis shown that the NMTL equations in NxN form can be diagonalized if appropriate
matrices and their derivatives with respect to z al commute. A special case considered there was that of

bicirculant (symmetric circulant) matrices which gave special forms to the eigenvectors and eigenvalues
Here let us consider the more general case with

N

( nm(z S )=ﬁz (2,5) xn(s (in(s))ﬁ

2

(Prm(z.9))= 2 3(2.5) (%4(9)5 (%a(s))g (4.1)

(i,z(s))ﬁ1 '(En(s))ﬁz =1 g,  (orthogonality)

so that the eigenvectors are constrained to be independent of position z. The matrices are symmetric by
reciprocity. Except for the normalization between the (G,,)ﬂ and (f,,) 5 in (3.5), they both reduce to the
(xn) ) used here where the commutation property makes the equations more symmetric. With this

constraint on the form of the eigenvectors we also have

: N
(Fop (29 = (Fep (2:5)) 2 (2.5) (En()p (2als)g

|

?Cﬁ(z,s)=[21’3(z,s) f’/g(z,s)]z {p.r. square root)

N
(Zey . (9)) = " 2y (2.5) (3n(5)) 5 (Znls))g
=1

N
(Pepm (2:5) = D Py (228) (Bnls))g (%als))
p=1

(4.2)
1

Zey (205)= Y72 (2.5) = {ZB (= S)}

.I. square root
TS (p.r. sq )

19



All the matrices in (4.1) and (4.2) and their z derivatives commute with all other matrices in this set. ‘

Expand voltage and current in terms of these eigenvectors as
vp(z,5) = (i,,(s))p . (Vn(z,s))

5(2.5) = Z0)(6) (3a()g - (Tn(2.9))

N
(V,,(z,s)) = ﬁz;l\"/j (2,5)(%n(5)) B (4.3)

N

(Falz.s)) = Bz 79(5) p(a9)En(e))g

The second-order differential equations (1.5) and (1.6) then scalarize as

2 [a,/s, 19 -2 .
{_a._z.i_ - _Efn(zﬁ(”s))_g —yﬁ(z,s)} ¥p(z,5)=
(4.4)
82 [ a X7 i a b, i
{8z_2 __Een(yﬁ(z’s))_z —'yg(z,s)} lﬁ(l,S):O
with the relations between them (from (1.3) without sources) as
ad . =7 Y.(!) -
Evﬁ(z’s)—_ 5(z.5) P (s) ig(z.s)
(4.5)

a%fﬁ(z,s) =-Y4(z,9) ZS.;)(S) vg(2,5)

For convenience these Bth eigenterms have been normalized via the characteristic impedance/admittance
gigenvalues so that Vg and fﬁ have the same dimensions. As before, the superscript ¢ refers to some

convenient z, as

20
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Noting that homogeneous second-order linear differential equations have two linearly indepen- -
dent solutions, denote these by fo's) and z’éé's) for §=1,2. These are related by

ifrg’a)(z,s)=—2l’3(z,s) Yg;)(s) féz's)(z,s)

oz
47)
%Z,gf"s)(z,s)=-?,§(z,s) 28¢) 5 z,5)

Note that there is a superscript £, since there may be other special functions for other sections of the
NMTL. Then we can write the voltage and current vectors in (4.3) using linear combinations of these

functions as

N
(7a(z.9)= X[806) 7§20215)+8P05) D09 3o

p=1

N
(T,,(z ) 2 z)(s [d(l)(s) i 1)(z s)+d(2)(z 5) 1 (z,s)}(in(s))ﬁ
B=1

The coefficients depend on boundary conditions, say at z= z,.

 Now go to the matrizant form as in section Il where

= ((u,(:,)n(z S))v,v’} = ((&,(f,)n(z,s))v’v’} o [(u,(,f,)n(z s))V'V’J

N
(Onm) X Zp(e.s) 76 (2als) plEn(s)) g

~(£) - B=1
{(an’m(z s))v V,j N »
’ /3Z=' /§ z,5) Zﬁﬁ)(S) (in(s))ﬁ(in(s))ﬁ (On,m) (4.9)

{(a,(f)n(z,,s))v V,J - ((1,,,,,‘)”,) (boundary condition)

This can be written out as four equations for the NxN matrices (blocks) as

21




N
%(ﬁg}n(z,s)lJ:— gl";;(z,s) 7O(5) (32(5)) (x,,(s))ﬁ}.(agf;(z,s))m
- :
9 (&) =N 500 7O (70N (.M 1-[7© (5
(8 e0) = 275069 TG00 (a9 (5o (#ne),
) :
260 09) = ST 290 G0 G0 (76
Z(#@0e) TFpte) 26000 (a9 (e (@) o

N
2 &(i) z =— Y5(z,s 7(4) s) (% X, (s . &(l) z
AR ZIpte) 200 (a9 () (#9)

These are coupled first order equations.

Write the second order differential equations for these blocks in the same way as done for the
voltage and current vectors (section 1), giving

2z

N A oo lo (& )
()= =| 25, #1(2p(29)) () g (EnlN)p |5 = | X 75(55) (Gl (E(s))

B=1

N
Z ?ﬁ (z,5) (in(s))ﬁ (in(s))p ]}
B=1

p(zfr)n(z’s))l . = (On,m)

J

P &, s
(1,1,,,,)52—2- ~ zgfn(zb(z,s)) (Eal))p (%a(5))5

¥

? |, s ) |
{(ln,m);.}z—z —*[Zgin(l’é(z,s)) (in(s))ﬁ (in(s))ﬂ}g - _,7,3(2’5) (in(s))ﬁ (in(s))ﬂ}}

f=1

22




SJIQJ

‘ (1 )—19—2— —[iiln(fﬁ(z s)) (% (s)) (% (s)
n, 522 ﬂ=1 oz

N
{2 (2,8) (2als)) (xn(s)),;}}

(u,(f,)n(z .9))2’2 = (On,m)

(4.11)

All four of these equations have the same form. Clearly the (%,(s)) 5 are N eigenvectors for each of the

above equations. Consider an individual eigenterm which we take of the form

557 )z5) (a6 (3n(s))5 (4.12)

where the coefficients (eigenvalues) are scalar functions of z on which the derivatives act. Then (4.11)
separates into the scalar equations

2
{g;_i. --a—fn(Zﬁ(z s) _ —'yﬂ(z 5) 11)(2 5)=0

' {;—22 -ien(zﬁ(z ) (z,s)} 12)(2,5)=0

2
{;;3-2- L n(Tps)) 2 - 73z} By (2s) =0 (4.13)
i -ien(?' (z s)) —72(z,5) (22)(2 5)=0
922 oz A 7‘6
Solving for the Eg""") we construct the blocks of the matrizant as
y N
(#he9) =D e Ealolp (Eale))g (414

’V B=1

The bévl") are mutually related via (4.10) as
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U WICORSACORON yll o

———bﬁ (P (z5)=-2p(2.9) Ygé)(s) B (2.9

) (4.15)
—b(2 D(z,5)=~Fp(zs) Zg;)(s) b[(f;ﬁ)(z,s)

—b( 2(z,5) = ~Th(2.5) z“)(s) b<1 2z,s)

Noting in (4.13) which coefficients satisfy a voltage or a current differential equation, let us write

5;(31;’})(2,.9)=3£31;'11)(s) s,gf’1><z,s)+a,g§g><s) ﬁél’z)(z,.v)
b(‘ D(z,s)= d(l 2)(s) s8N, s)+.dfI 2)(s) 5625 )
(4.16)

55025 =350 (s) i (2,s) + 350 (5) Eé‘-z)(z,s)

55202, =50 (5) IV (2,9)+ 35D() B4 .s)

Using (4.15) to give

25800 =-23(5) 1) [ED0) D)+ ED0) Ia0)]
= "Z/'S (s) ?E;) (s) [&[(32;{1) (s) fél'l) (z,8)+ &1(32,51 ) (s) fét’z)(z,s):'

b( D) =-Tp() Z1(9) [d(lz)(s) 7Dz, + 35D () 752 s):| 417

=-75(0) 20 [a§6) 30+ dfP ) 55D

the coefficients are reduced to four unknowns (for each B) as
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o & (9)=a; 1)() . d5)(9)=d55 )

L= L B50=4

a5

Applying the boundary conditions to (4.16) as

55 (20,5) =1=50(5) D (zg,5)+ ()

Eg;’zz)(z £:8)=0= 3,%2) (s) \7;(3!’1)(

zg,5)+ 3}(32;é2) (s) ﬁl(f’z)(z,g,s)

véfﬂ)(

zz,s)

5&?}1)(25,3) =0= c?l(}l;’ll) (s) fél’l) (zg,8)+ 35121)(3) fél'z) (2¢.5)

B (ceos) =1=855200) B o)+ 35000 1

this gives matrix equations for the coefficients as

\

(
L (9)-[ e ]
0 +(£,1 (4,2

\fé ’ )(zz,s) zé ’ )(zg,s))

(Zlgf,l) (Z[ ,S) {ﬁ(z’z)(ZZ,S)\

| IJ- |
(0 \Gg’l)(q,s) ;gﬂ)(z,,s)

Y,

These are solved as

%"2) (zg ,S)

(Ll)( 5) _ A0
d(1,1) | 8 (s) _{éz,l) (25.5)

Gxxoll -7

(a(l,l)( )]

Eoe

a&D(s)
‘2 ()

-—ﬁl(;'z)(zz , s) .
75 (24.9)

D) __poo 5 e
g 22.5) ‘< Dz.5)

o

)

' where the common coefficient has the form of a Wronskian
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)

3,2)(22,‘9)

(4.18)

(4.19)

(4.20)

(4.21)




-1 -
B 0= 35 e2.) 3§ e0.) =55 e0rs) 0(z009)]

Z(l)( 5)

3 5D d (z 2) ~(z 2),. 2.0 -(41) }
-5 S)[ () 23D e.9) -7 2,5 274D ) . oo
p(£)
Y (s ){ (41)(2 S) J - (zz)(z 5)- (‘2)(2 s) d - (u)(z S)}
Y (z s) =2
So now collect together the various terms to give the matrizant
p
iy m(z,s) J=
(#nte),.,
\

( N
ZDE;!)(S)[E éf’z)(zz,s)ffg’l)(z,s) -i lgé’l)(zg,s)ﬁg‘z)(z,s)}(in(s)) 8 (Zn(s)) 8

=1

N
Z ~g)(s)[—\7g’2) (zl,s)\"zg’l) (z,8) + Gg’l) (zl,S)f’g’z)(Z, s)}(in(s)) B8 {Zn(s)) B

™

N
2 [ (4 2)(% s)ig 70 (5,5) - z(l 1)(24 s)ig (-2, S)](xn( s)p ()

Mz

E;)(S)[—v(z 2)(21 s) A 1)(2 s)-l-v(! 1)( )gél’z)(zrs)](in(s))ﬁ (En(s))p
1

\ )

(4.23)

™
L

This can be evaluated at z=zy +1 and renormalized to the characteristic impedance matrix there via

(2.14).

If we further assume that the eigenvectors (%,(s)), for the £th section are not changed on going
B

info the £+1st section, then the renormalization can be accomplished in terms of the same modes as
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(o5, )

N
z”@(s)[ (2 e, 99D 2011,5) = I a2 995 D a11.9) [l (nle))g

N
ED%!)(S){ (3 2)(25 s) ( )(zz 1» S)-!-Vg )(Zj S) ( )(zg_,_l,S)}(in(S))ﬁ (in(s))ﬁ

=1

Xy 2Oy e e, i (62)
ZD,B (s) Z[Zé)() [lﬂ (Zg, )5 (zt+1’s)"iﬁ ’ (Zg s) (Zg+1,s)](in(s))ﬁ (in(s))ﬁ
B=1 cp S
N ££+1)( )
ZD% T S ORI (O 7 SS[ORI] EXE)PEEAC)

(4.24)

If, however, there are new modes (iffﬂ)(s))ﬂ on the ¢+1st section, then the matrix (Zg“l) (s)) appear-

ing in (2.14) in the renormalization cannot be placed inside the summations in (4.24) in terms of its eigen-
values. Rather ( (“1)( ))- appears in front of the summations in two places (the (2,1) and (2,2)

positions).
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V. Limitations of Foregoing Solutions for NMTL Segments

In our search for analytically convenient forms of the NMTL parameters section IV has shown the
general result for the case that (Z,',,m(z,s)), (?é’m(z,s)), (ﬁ?énm(z,s)), and (Zcm(z,s)) are all symmetric.
and diagonalized by the same set of N eigenvectors (J"cn(s)) 8 with each matrix having in general N eigen-
values. Inthe case that the NMTL has the propagation eigenvalues ")'//;(z,s) not all the same, this diago-

nalization is based on the physical modes which propagate with different speeds along the NMTL. Asin
section Il one can have a biorthonormal set of eigenmodes (ﬁc,, (s)) 5 and (z’cn (s)) 5 for a nonsymmetric

diagonalization of the (nonsymmetric) propagation matrix in (3.5). This gives a representation of the other
matrices (in general non diagonal) as in (3.6). Provided these 2N eigenvectors are all position-
independent, except perhaps for position-dependent scalar multipliers, then the results of section [V can
be extended to this case, since one does not need to take the z derivatives of the various eigenvectors
into account {(which would otherwise be of different orientation (not parallel) with respect to the original

gigenvectors).

A limitation in the foregoing approach concems the smooth matching of the solution at z, to that
at zg,1. If the characteristic impedance matrix (ch m(zl,s)) has a representation in terms of the (:’E,,(s))ﬁ

or (Gcn (s)) 5 at z=z,, one cannot in general represent (Zcm (zz+1,s)) in terms of sums over N dyadic

terms like (in(s))ﬁ (Zn(s)) 5 O (x"zcn (s)) 5 (%ﬂ (s)) 5 One can use the dyads to construct intermediate

values of (Zcu m (z,s)) for z; < z < z;.1 which are continuously varying from the value at z,. However, as
one reaches z,.; there will in general be a discontinuity in the matrix as one tries to approximate a pre-

specified value (ch n (z,.,_l,s)). Associate with such disccntinuities there are reflections, including in the

high-frequency limit.

In segmenting an NMTL we would like to use the general solution (2.16) for the line as discussed
in section 1l. However, one would like to be able to construct the solutions for the individual segments

(the ((ﬁ,(f,)n(z,ﬂ,s)) )) in a form which was not limited o the piecewise-constant form in section i, or
v,v’

other forms which contain discontinuities at the segment boundaries. This would remove the high-
frequency reflections produced at the boundaries by appreximation of the NMTL in terms of these
segments, thereby giving a better approximate solution. Instead of a piecewise-constant approximation
let us look for continuous approximation.
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VI Continuous Characteristic-impedance-Matrix Approximation for the Case of the Propagation
Matrix as a Scalar Function Times the Identity Matrix

So now let us make some assumption which will allow a continuous variation from (ch (Zg,s))

m

to (ch " (zz.,.l,s)). One way to do this is to constrain the propagation matrix to the form (asin[ 3])

1
(7.0 (2:5) = [(Zhm(2.5))- (P m(z. )2 = 7(2:5) (1nm) (6.1)

i.e. all modes propagate with the same speed. Furthermore the identity commutes with everything, and
can be described by a complete set of eigenvectors (orthogonal or biorthogonal) that are generated by

any NxN matrix with such a complete set.

Basically (6.1) assumes that, except for scalar factors, the per-unit-length impedance and admit-

tance matrices are mutually inverse. These can then be represented as

(Z,’,,m(z,s))=2’(z,s) (fgn’m(z,s)) (symmetric)
(?;,m(z,s))= ¥'(z,s) ( ‘?gn,m (z,s))_l (symmetric) (6.2)
Z'(z,s) ¥'(z,5)= ')"/2(2,s)

which also gives

(ch’m (z,s)) =Zc(z,5) (fgn’m (z,s))

(f'c,,,m (z,s)) =T.(z,s) ( fgn,m (z,s))—1 -
. 1
Ze(z,5) =17 (2,5) = [32"%}2

So now we have the matrix ( fgn (2 s)) to deal with.
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Physically this form includes the case that the electric parameters (e,0) and magnetic parameter

() of the medium surrounding the N perfectly conducting wires (plus reference) are uniform on each
cross section (constant z). So, while other special cases may fall under the form of (6.2) let us further

assume that

( J;gu n (z,s)) = ( fenm (z)) = geometrical-impedance — factor matrix (6.4)

so that it is frequency independent as well as dimensionless. Then we have

Z'(z,s)=su , ¥(z,5)=0+s¢e
(6.5)

O+ s€

1
1 . . L
$(z,5)=[splo +se)|2, Zc(z,5)= 71 z,5) = [ sy }2
where u,g, and o can be functions of z and s.

Substituting this form in (2.11) for the £th section we have

L), (@), ) 0 ([#e9), )
((ur(fr)n(%s))v,vj = ((lmm)v,v')

(), ) o o) (B (200)
) |(# O) (Gined)  (Onm)

(Onm) Zu(axs) Tuless) (1500))
T.0) Zelars) (70)) (Onm)
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‘ Thus, after factoring out —#(z,s) the supermatrix ((an,m(z s)) ) has the off-diagonal blocks as

mutually inverse. Furthermore at z =z, thisis

Onm) (tnm)

((&g?n(zl’s))v,w):_7(21,8) (tam) (Onm) -

By a change of the coordinate z in the general form

7(z,5)dz = 7(z4,5)dg

IZ 7(2”5) dz’ = ?(zl’s) [g - gi]

2

the first-order differential equation in (6.6) has the propagation constant ¥(z,s) moved to the derivative
(now with respectto ¢ ) on the left hand side, leaving ¥(zy,s) on the right hand side. Furthermore the

coefficient Z,(z,s) ¥,(zg,5) of ( () (z)) can be absorbed into this matrix (which can allowed the more

. general form as a function of frequency if desired). Then the coefficient matrix has the canonical form

o) Yo O (A30)
(.

(6.9)

which by the above discussion can be changed to the more general dependence on z and s indicated in
(6.8). Interestingly enough the formin (6.9) is for constant 4 and & with o=0. This corresponds to the

case of N perfectly conducting wires (plus reference) in a uniform lossless/dispersionless medium.

Now we come to the important advantage for this form of the NMTL equations (all modat veloci-
ties the same). Suppose that we have some functional form of ( fenm (z)) specified to us along the line.

This matrix, while symmetric (reciprocity), may have eigenvectors which are functions of z. However,
consider the values of this matrix at the various z, as some specified set of ( fg ( )) taken essentially

as samples along the NMTL. Next consider the normalized form of this matrix in (6.9) which is in general
‘ nonsymmetric. In particular note that at the endpoints of the interval z; < z<z,,; we have
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(f (Z)( )) (Lam) (f,gf,),,(zz+1))=(fg,,,m(zm))'(fg,‘,m(ze))_l (6.10)

These two matrices commute, so the idea is to interpolate between these two matrices on the same
interval by a matrix function of z which commutes with other values of the matrix for all pairs of points on

the interval.

To form this interpolation matrix diagonalize as

()= S 80000 (89) (49

p=1
(6.11)
(2n) A “(hn) B, = 181,55 (biorthonormal)
where we have assumed that this is not an atypical case and a complete set of eigenvectors exists.
Clearly this matrix commutes with the identity which we write as
(0 (D) (4O
(toum) = (£0(22) )= Z(gn )B (hn )ﬁ (6.12)

B=1

This is. of the same form as (6.11) except that the eigenvalues are all 1. This suggests that we try the

form (as an approximation)

[ ¥ <z>] Zf<"<z> (), (%),

(6.13)
= (#9)
with equality assured at both z, and z,.; provided
P)=1 (6.14)
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. So let us require that all fl(f)(z) be continuous from z, (in 6.14) to zy,1 (from (6.11)). The interpolating

functions can be chosen for our convenience (e.g. a polynomial or an exponential in z), perhaps with an

eye to minimizing the error in the approximation in (6.13).

So assuming the formin (6.13) as our (f (z)) we need to find the matrizant ((u,, m(z, s)) )

Following a procedure similar to that in Section IV the coefficient matrix is written as

N
@y (D) (4O
» (On,m) ﬁz_lfp ()(gn )ﬁ (hn )ﬁ
((a" ml: S))v v')by Yot (@) (.0 ) (619
' z n hy, On,m
%fﬁ ()(g )ﬁ( )/3 (Onm)
The matrizant blocks in (4.14) are replaced by
N
. vV @) (KD 6.16
(u (2, s)) vy ﬁzﬂ (z s) ( )/3 ( )13 (6.16)
‘ and we replace
Zp(zs) (0> 7 1)
(6.17)

~ - -1
Tpzs) 207 1) (@)

The second-order differential equations for the eigenvalues are

{12_ - _gn( (Z)(z)) } l;lg;’tl)(z,s) =0
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(6.18)

Use the 9},"5)(z,s) {voltage-like) for the first two of these equations and the z’lge’a)(z,s) {current-like) for

the second two, and note that

ey =7 1) 1§z

¥l

2909 =—r 7§ () 75 s)

e . -
B ()= 350 rss) 1D (a0.5) - 5 P a2,8) D (a2.9)]

Y Bz

2=z, (6.19)

fﬁ(zl)(z) (&1, 9 =(42) =(8.2),. 9 #(41)
T[zﬁ' (z,s)gzﬁ' (z,s)—zﬁ ’ (z,s)gzﬁ ’ (zt,s):|

Z=2Zy

Here one can note that the £th section of the NMTL will in general have different special functions to
describe voltages and currents depending ¢n the particular fg)(z) used for each section.

The matrizant now has the form
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® (#69), )

{ N
%ﬁg)(s)[fﬁu’z)(u,s) i’éf'”(z,s)—z’é“)(zi,s) aff'z)(z,s)](g,(f’)ﬁ(h,(f’) ;

;D“)(s)[ o) 3 50 ers) 5 D0 () (W)

N
> B ) 3 -1 ens) 7§D o) (40
e ; B\ /B

}ZV'. O] 5e0) D450 o) 7000 (z))ﬁ(h,(f))ﬁ

\ B=1
(6.20)
This can be readily evaluated at z=z,,,. Thenfrom (2.14) we have
_ (in.m) (0r,m) )
® ((Ur(f;zl)(S))v,v’) i [(on,m) (29 (20 o) J [(u&f%(zz+1,s))v,v»]
(Z9)-(22 <s>)'1 = (fgn (z220) (fgum (22)) 621)
N
= (frglrzt (Zz+1)) = 52’=1f /(3!)(2”1) (&(zl) ),6 (hr(zz)) 8

This can be combined with (6.20) to give
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(o, )

( N 3
5 (o)l 7(62) 5(41) _~( 1) 5(42) (DY (8

% ) (s)[zﬁ (zz,s)v/3 (2441,5) (Zg,s)vﬁ (zl+1,s)}(gn )ﬁ(hn )ﬁ

N

R R R SOt CORCY)
N
DO L R R O PRl CORCON

N

Y R S I CHICON
\ B=1

(6.22)

This can now be used directly in (2.15) and (2.16) to obtain the matrizant for as many sections
(¢’=0, ..., £) as desired.
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Vil. Case of N=1 for Piecewise Constant Approximation

The special case of N=1 reduces our matrizant to 2x2 form where B=1 is the only value allowed,
i.e. only one eigenvalue for the matrix blocks which are reduced to scalars in this case. The piecewise
constant approximation in section Ill then has the solution for the ¢th segment (including renormalization)
in (3.4) take the form

(Gv,v ())ze41 ~2¢]

1 0
(U‘(f::l)(s))=(o 78+ ) Zgz)'l (S))'e

(26)=-01; o]

(7.1)

Here the propagation constant and characteristic impedance are scalars, constant for each section of the
line. The exponential matrix takes the form (from (3.4)) as

cosh([Zz+1 —22]7“)@)) —sinh([25+1 —22]7(2)(8))

el O =] - ~sinh({z111 22 ]7009)  cosh{[zes1 - 2J740(0) @
Combining, we have
GO A SO i o A
250 20 (@psint[zen -~z O0) -2 2 ()eosh([zrar - 2} s)
(7.3)

as the solution for the £th line section. This is a comparatively simple 2x2 matrix which, of course, only
applies to the case of a single-conductor (plus reference) transmission line.

Referring back to (2.15) and (2.16) this gives the solution in terms of a product of 2x2 matrices for
the various sections of the transmission line. This solution has, of course, the discontinuities in going
from sections of characteristic impedance th) (s) 10 Zg“l)(s) in approximating a more general

continuous Z.(z,s).
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VIIl. Case of N=1 for Continuous Characteristic Impedance at Section Boundaries

Séctions IV and Vi present two different approaches to the problem of the variation of the
characteristic impedance within a section. Section IV allows different speeds for the eigenmodes, but has
limitations concerning the continuity of the characteristic-impedance matrix at the section boundaries.
Section VI makes the characteristic-impedance matrix coritinuous at the section boundaries, but at the

price of having all modes propagate at the same speed.

For the case of N=1, however, the problems simplify considerably. Now there is only one
propagation constant (+ for two directions) at each z. Furthermore, there is only one mode (8=1) so that

we have

(%n(s)) p=1 (section 1V)

(gr(zé)) s = (h,(zl) ),B =1 (section VI)

and the index B can be suppressed on all the eigenvalues. The formalisms in the two sections then

reduce to the same formalism.

The representation for the £th section in (4.24) arid {6.22) now becomes a 2x2 matrix as
(U(f) (s))

(ﬁ(!)(s)[f(z'z)(zl S) ( )(Z[ 1» S)—- ( )(Zl S) ( )(Zt.!_l,s).l
B -5 21,55 (a41,5) - 94D 20,59 ag1)|

50 )z(f+1)(s)[ (2 (3 57D (201,8) -7 2y, o & )(ZM,S)]
)s)

5(£+1)
50(s )Z (S)[ 5D (a0, 5 D 2g11,5) = 5D a2, 4P 241.9)|
k o )
(8.2)

Using (2.15) and (2.16) one can construct the representation of the entire transmission line (now single
conductor plus reference). The characteristic impedance Z.(z,s) can now be approximated in a

continuous manner through the section boundaries and take the prescribed ng)(s) there.
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[X. Concluding Remarks

The analysis of NMTLs has now led to some interesting extensions involving canonical forms of
the variation of the eigenvalues of an appropriately normalized characteristic impedance matrix. Here
-explicit formulas are given for the cases of linear and exponential variation. Using various solutions in the

- literature for nonuniform transmission lines, these can now be applied to NMTLs as well. Such cases
include arbitrary (real) powers of the coordinate z as well as other cases described by linear second-order

differential equations such as may be found in various books (e.g. [12}).

The results here depend on the symmetries in the matrices characterizing the NMTL. These
symmetries include reciprocity, the relation between the electric and magnetic parameters of the media in
which the wires are embedded, and the geometry of the multiconductor cross section. Such symmetries
are used here to construct canonical forms of analytically solvable NMTLs which can be used to
approximate actual NMTLS, at least on a section-by-section basis. Another potential use of such
canonical forms, and the associated symmetries, is for the design of NMTLs with various desirable

properties for special applications.
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Appendix A. Linear Variation of Eigenvalues

In the form used in section VI the differential equations (second order) for the voltage-like and

current-like modes take the form (from (6.18) and (6.19))

-tz

922

2
{;_22.+_ (@)L - };gw)(z,s):o

259 (z,5)=-y 19 3§4D(zs)

dz

DH88), o, A o(8)

az zﬂ (Z,S)— 7 fﬁ (Z) vﬂ (Z,S) (A.1)
6=12

Zp<z2<Zjyl

These equations in terms of the eigenvalues féf)(z) of ( f,(:,)n(z)) can also be applied to section IV

(specifically (4.4) and (4.5), or (4.13) and (4.15)) provided one reinterprets the eigenvalues in terms of the
impedance - and admittance-per-unit-length eigenvalues appearing there. By an appropriate scaling the

formin (A.1) is achieved.

Now fl(;)(z) is constrained as
() =1

. -1
f/(f)(z 1+1) = eigenvalue of (f ,(:B,,(ZHI)) = (f g)m (2241 )] : (f Snm (2 ))

One can choose various forms for fg)(z) matching these boundary conditions. In particular one can
choose some power of (z + some constant). For simplicity one can choose the first power (linear

variation) as
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(4) (£)
‘ 1)< 1+z£+1_zl[fﬁ (2041)- 1}

4 —f( )(Zz+1)zz +[f( )(Zz+1)—1}z

Zg+1 24

= pl(f) [z - z(()‘%:}

fl(;z)(23+1) 22441 Zp—2441

+2zy

208 =
g f/(f)(Zj.{_l)—l f( )(Z€+1)‘1 (A-3)

0I5 )1
P 244124

Since we are considering only positive definite { f, _ (z)] the interpolation of the f (z) is strictly positive
Zn,m

inthe interval zy <z<zy.). The zeros zg g lie outside this interval. Note that the first-power formin (A.3)

is for an impedance which applies to the 51(31,6) in (A.1). Forthe z’é"a) this is a minus-one-power form

‘ corresponding to an admittance, with no singularity in the line section under consideration.

Substituting in {A.1) we now have
9% 1 J
drz) 7[2"2(()%} a(yz)

-1 i?/(;'a)(z,s) =0

9 ( 8) of,_,07 :

3z ) (2, s)——pﬁ [z zO,ﬁ] ig (z,5) "o
d  :(49) _ 1 -(46) ;

2(r2) (2.9) (z)[ ZggH Vs (2,5)
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Here we recognize the Bessel equation of order zero for the current modes with two independent

solutions [ 6,13 ] which we take for convenience as

E‘éz.l) (2,5)= KO(Y[Z - Z,(,f/)s D
;éz.z) (z,5)=1, (7[2 - zg}i D

From this the voltage modes are constructed as

SRR I AR C I

6},"2) (z.5)= ~p§f)[z - 2023] h (”[z ~%05 D

(A.5)

The Wronskien relationship used in sections IV and V0 is [13 ]

-1 - -
Dg) (@:[s}fl)(z,s) ilgf’z)(z,s)—ag“)(z,s) iél’l)(z,s):l

= (f)( )[ (@ 1)(z §)— (! 2)(2 s)—zél”(z s) (72) 7t 1)(z,s):n

( )8

Z=2;

=126 w1z )]} 1l 0]}

__(—l)(—z)_ == p(f) ()
’y[z - z(z) :l A

For section IV replace y by y(z) and note that the f(z) z) represents the variation of the eigenvalues
B B

there as well, except for normalized impedance per unit length (and reciprocal admittance per unit length)
since the eigenmodes are the same for the £+1st section as for the £th.

As the line becomes uniform, i.e. f( )(24+1)—>1, note that Dl(f)(s) —» o0, SO that appropriate limits

are needed. Alternately the solution for such a uniform section can be treated as in section lll.
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Appendix B. Exponential Variation of Eigenvalues

An alternate approach uses exponential interpolation for the eigenvalues as

0=l
(B.1)
w 1 e
ap’ == ——m———
B2 2y
where the factor of 2 is included for later convenience. Then (A.1) takes the form
P03 _ 2|68
?—leﬁ g"y Vﬁ‘ (Z,S)=O
P 2l
y-&-Zaﬁ =7 zﬁ' (z,5)=0
B.2
gz_lflgiﬁ)(z,s)_ ,},e—Zaﬁ [z—zl]c(l,é‘)(z,s)

This is solved in the usual way by substitution of an exponential [ 7 ]. Starting with the voltage
modes we have

ﬁ/(sz,S) (2.5) = efé"a)(s){z—n]
1

()= alf) —[aff)z ¥ yz}z (+z propagation) (B.3)
1 :

72(5)= afd) +[“/(f)2 N 72}2 (~z propagation)

with due attention to the positive square root to keep things analytic (causal) in the right half s plane. The
‘ current modes are then constructed as




F&0) (s)

(=28 ke

(B.4)
-(£,2) ;
{ﬁ(!a) (Z,S) = —M e—rg'l)(s)[z—zl]
The Wronskian relationship is now
-1 - -
P (s)=|:\7‘(;‘1)(z,s) (52 (2,9)~ 55D 2.5) fgf-1>(z,s)]
(£2) (&Y
__B 7B
=T + > (B.5)
) 1
-3}

Due to the exponential nature of the solutions there are simplifications that appear in the
combination of functions that give the rencrmalized matrizant as in (6.22) and (4.24). In the form of (6.22)
this becomes




N a(‘) N
Z aﬁ [Zl+1—zl] cosh I(; +y [2£+1 —zl]J ———_lsinh[[ag) +‘}’2]
B=1 [ 0., ]7

L

[eev -2 ]](g;(f)) ﬁ(h;(f)) 5

N ’ 2 +
-3 & (201, —L_%sm([ag) +72] [zl.‘_l—zl]J(gg))ﬁ(h’(ll))ﬂ

B=1 {ag!)z +72]
3 (0 UL v4 &’ g Y (L0
I O B [ BT ] [zes1=22] 1) (59
B=1 [agywzJ

N £ % 2 %‘
Z fp(l)(zlq-l)e'azg)[’lﬂ"zl] oosh[[acg)2 +72] [Zt+1'zl]J‘—ﬁ-siﬂh[[ag) ] [Zz+1 z!]]( “))ﬁ(h,(f))ﬁ
B=1 [ag) +yz}

(B.4)

Comparing this to the uniform MTL in (3.8) one can note that (B.4) achieves this form by letting aéo -0,

noting also the impedance renormalization in (B.4). As aninteresting observation note that the
supermatrix in (B.4) has no branch cutin the y plane. This is found by noting that the cosh is

represented by a series involving only even powers of the argument, and the combination

1
) s
o +72 2 sinh (Z) 2p+1— 24| | similarly removes the square root by the presence of only
£+1 2

even powers of the square root.
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