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ABSTRACT

This paper deals with the electrical characterization of topological network

junctions, using a formalism in accordance with Electromagnetic Topology. More

) precisely, it is shown how the characteristic impedance of the network in which the
. junction is located can be chosen to treat several physical cable connection and

termination configurations.

It is possible to characterize, in the electromagnetic sense, any junction of order
N (with N ports), by considering it as the connection of two junctions of lower order
which it is easier to model analytically, or to measure its Y or S parameter.

A topological approach has been adopted to obtain the result, not only because
the BLT equation is applied but also because the concept is used for breaking space
down into topological volumes. Moreover, this method is well suited for numerical
treatment.

The case of junctions called “forks”, which represent the separation of a conduc-
tor into other conductors, is given as an example.

Keywords (NASA thesaurus): Electromagnetic Topology—BLT equation— Scat-
tering coefficients — Electromagnetic radiation— Transmission lines — Electromagnetic
wave transmission— Complex systems.
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TERMINOLOGY INDEX
NOTATIONS

(@) Electromagnetic Topology.

— Interaction diagram: graphic representations of
the breakdown of a problem into several problems
included in one another and limited to so-called topo-
logical volumes; their surface is called “topological
surface”.

— Interaction graph: graphic representation of the
interactions between the various topological volumes.
Each volume is symbolized by a so-called volume
node. The channel of penetration of one volume into
another is symbolized by a so-called surface node.
The nodes are interconnected by edges expressing the
electromagnetic interactions.

(b) Topological Network of Lines

A network consists of tubes interconnecting the
junctions. The tubes are propagation lines. The
junctions express the scattering of a signal. There
are surface junctions associated with the surface nodes
of an interaction graph and volume junctions associ-
ated with the volume nodes. The signal transmitted
on the network is called wave. It can be electrical
(case of physical lines) or electromagnetic (case of
fictitious propagation channel of an interference).

— Order of a junction: number of ports of the
junction (from the standpoint of an electric circuit, it
is the number of conductors connected to the junc-
tion). As tubes can include several conductors, the
number of tubes connected to a junction is necessarily
less than or equal to the order of the junction).

(¢) Matrix and Vector Notations

A matrix A4 is denoted (4) and a vector V is denoted
(V). Several quantities of this type are defined herein:

(S)=matrix of the S parameters of a junction.

(S,)=matrix of the microwave S parameters of a
junction (generally referenced to a characteristic sca-
lar impedance Z =50 Q).

(Y)=matrix of the Y parameters of a junction.

(V)=column vector of the input voltages of the
junction.

(D=column vector of the input currents in the
junction.

(Z.)=characteristic impedance matrix.

()= propagation matrix.

(d) Supermarrix and Supervector Notations

A supermatrix is generally a large matrix in which
the row and column indexes have been grouped into

superindexes in order to break the matrix down into

locks. This allows a supermatrix to be considered
as a matrix of matrices. Similarly, a supervector is
considered a vector of vectors.

The notation of a supermatrix 4 is [4] (in
brackets); similarly, the notation of a supervector ¥
is [V].

We also use blocks of supermatrix 4 denoted [4]; ;
where I and J are superindexes in Roman numerals.
Similarly, a block of supervector ¥ is denoted [V];.

When we wish to specify the size of a supermatrix
or a matrix block, we write [A],, where n is the
number of rows and m is the number of columns.
Thus, we define a zero block by [0],«, and a unit
block by [1],xm

Similarly, the size of a vector block is defined by
writing [V], where n is the number of components.
A zero vector block is thus denoted [0],.

The main supermatrices and supervectors used in
this paper are:

[Y]: admittance supermatrix;

[S}: supermatrix of topological S parameters or
scattering supermatrix;

[Sol: supermatrix of microwave S parameters or
microwave scattering supermatrix;

[W(2)]: wave supervector propagating on the
network;

[W)]: source supervector applied to the junctions.

I. — INTRODUCTION
AND STATEMENT OF THE PROBLEM

Electromagnetic topology is a method used to
approach a complex electromagnetic coupling prob-
lem. One of its original features is to break space
down into several volumes in which the problem is
solved locally independently of the neighboring vol-
umes [1, 2, 4]. The formalism best suited for describ-
ing the interactions between volumes and the path of
interference through the volumes is inspired from
that of multiconductor transmission line networks
generalized to topology.

The signals propagating in these networks are
waves whose mathematical expression contains
electromagnetic information (fields E and H) or elec-
trical information (voltage V and current I). A net-
work consists of a set of tubes through which propa-
gate the waves, interconnected by junctions insuring
distribution of the waves [3].




On each tube can be defined a propagation matrix
(T') connecting the waves to each end and to each
junction, a scattering matrix (S) (called matrix of
parameters S). Each of these matrices is used to fill
the blocks of supermatrices [S] and [I'] of the topolog-
ical network ([4]).

The BLT (Baum-Liu-Tesche) equation is used to
determine the signals in any point of the network by
grouping the propagation and distribution equations.
Its expression generalized to waves is as follows [4]:

{=[SUTT} W O)]=[S} "] (M

where

[1] is the unit matrix;

[S] is the network distribution supermatrix;

[T'] is the network propagation supermatrix;

[W(0)] is the supervector of the waves leaving the
junctions;

[W1 is the supervector of the source waves applied
to the junctions.

The concept of supermatrix means that all the
calculations of equation (1) can be made by blocks.

In this paper, our analysis is limited to networks
or portions of networks for which the voltage and
current quantities can be defined unambiguously. We
then propose to determine the topological S param-
eters of any junction with N ports.

It may not always be easy to measure or model
the electric properties of such junctions. This is why,
after describing a general method for determining the
S parameters, we propose to approach this problem
by considering the junction of order N as the union
of two junctions of an order lower than N and whose
S parameters are known (or easier to determine).

II. — GENERAL METHOD
FOR DETERMINING
THE S PARAMETERS OF A JUNCTION

Il. — REVIEW OF THE SCATTERING
EQUATION OF THE JUNCTION

A junction of order N is characterized by a scatter-
ing matrix relating the outgoing waves with the
incoming waves. In the case of a multiconductor
line, the following expressions [2, 5] are generally
associated with the incoming and outgoing waves:

(MN+(Z,){I) for the incoming wave
MN—(Z)() for the outgoing wave.

Where (V) and (J) are vectors with dimension N of
the voltages and currents incoming in each port of

the junction, (Z,) is a matrix with dimension Nx N
called characteristic matrix of the junction, which
characterizes propagation on the lines connected to
each port.

The scattering equation is defined by the following
relation [2]:

V)= (Z) D)= (N +(Z) (D) @

(S) is a matrix with dimension N x N called junction
scattering matrix.

II,2. ~ IMPORTANCE OF (Z) FOR THE
DETERMINATION OF (S)

Equation (2) shows that matrix (S) is referenced
to a characteristic impedance matrix (Z,) which
expresses the propagation and electrical coupling
properties of the lines connected to the N ports of
the junction.

In network topology, the lines are grouped into
one or more tubes, according as they are electrically
coupled or not [4].

We will use two simple examples to illustrate how
the S parameters of a given junction can have a
different expression depending on the topological net-
work used.

Let us take the example of a junction J of order
N. Let us consider that this junction is the electrical
termination of N lines which we will assume to be
electrically coupled.

The topological representation of the junction in a
network is that shown in Figure 1, where only a single
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tube is to be considered. Matrix (Z,) to be considered
in (2) is then full so as to express the coupling of the
N lines connected to the N ports of the junction. It
has the form:

Zoyy o Zoy
(Z)= < : : )
Zey i+ Zey n
Let us now consider that two groups of coupled
lines (N1 and N2 lines respectively) are connected to
N1 and N2 ports of this same junction J. Assuming
that these two groups do not interact, we can rep-

resent them topologically as two tubes, / and IJ,
connected to J (see Fig. 2).
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Matrix (Z,) that we must consider in (2) is struc-
tured as follows:

)= ( Z) «mm)
(O)Nz xN1 (Zc”)

where (Z,,) is a matrix block with dimension N1 x N1
corresponding to the characteristic impedance matrix
of tube I and (Z,,) with dimension N2X N2 cor-
responds to tube II. The notation (O)y, xy, and
(O)y2xn1 cxpresses two null matrix blocks with
dimension N1 x N2 and N2xN1.

II,3. — ELECTRICAL CHARACTERIZATION
OF A JUNCTION

As was seen, the expression of matrix (S) depended
on a characteristic impedance matrix (Z_). This repre-
sentation is therefore not an intrinsic representation
of the electrical properties of a junction. With this
in mind, matrix (¥) of the admittance parameters
appears better suited. It is defined by the following
relation:

BH=MD /) 3)

However, the Y parameters are not iterative, which
means that if several junctions are cascaded, the out-
put quantities of a junction become the input quanti-
ties of the next junction. For topological processing,
a characterization closer to the topological S param-
eters may therefore be preferred.

Let us assume that each of the ports is referenced
to a unique scalar characteristic impedance Z,.
Equation (2) becomes:

(N =2 (D= (S (N +Z,0 (D) 4)

It can be seen that if each of vectors (V) and (J) is
divided by 2_ /Z,, expression (4) corresponds exactly
to the definition of the microwave S, parameters [5].
Combining this equation with (3) yields the expression
for the Y parameters:

<Y)=Zi[(1>+<so)]'1.[(1)—(so)] )

0

Equations (4) and (5) therefore show that a junction
can be characterized independently of the network by
conventional methods for determining the admittance

Y parameters or the microwave S, parameters.

The evaluation of the characteristic impedance of
the medium (Z,) then allows the topological S param-
eters of the network to be found by the following
equation:

®)=ID=Z)MND+EZ)M]™} (6)

determined from equations (2) and (3).

HI. — CHARACTERIZATION OF A JUNCTION
OF ORDRE N
USING TWO JUNCTIONS
OF ORDERS M1 AND M2

III,1. — STATEMENT OF THE PROBLEM

It is not always easy to electrically characterize a
junction by ‘measurement or analytic modeling,
especially when the number of ports is large. This is
why we had the idea of breaking down a junction J
of order N into an arrangement of two other
junctions, J, and J,, for which the expression of the
S parameters is known and with orders M 1 and A2
respectively.

The principle consists of sharing & ports between
J, and J,. It is demonstrated that k is equal to:

_MI1+M2-N
—

k

In order to express the S parameters of J as a
function of those of J, and J,, we adopted a topologi-
cal approach consisting of comparing two networks
conraining J and J,, J, respectively. To facilitate our
reasoning, we assumed that all the S parameters used
here were referenced to a single scalar characteristic
impedance Z_, (typically 50 Q).

Once junction J of order N is constructed, its S
parameters can be referenced to any characteristic
impadance matrix (Z,) using equations (4), (5)
and (6).

Figure 3 shows the two topological networks.

Network 1 includes junction J of order N. Tubes
T, connected to the junction are assumed to contain
only one conductor. At the end of each of tubes T,
we included a terminal junction J,.

Network 2 includes two junctions, J, and J,, of
orders M1 and M2. Tube T, interconnects J, and
Jy. It contains the lines interconnecting the k ports
of the two junctions. The dimension of the two wave

vectors [W], and [W], propagating on 7, is.therefose. .

equal to K=2%.
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Fig. 3.

The other tubes T; not interconnecting J, and J,
are assumed identical to those of network 1 as is the
case for junctions J;.

It should be noted that grouping the lines in tube
T, allows a better synthesis of the grouping of J, and
Jy, although all the lines of networks 1 and 2 are
assumed decoupled.

To express the S parameters of J as a function of
the S parameters of J, and J;, the BLT equations for
the two networks are written assuming that the source
wave generators (W), identical in both cases, are
located in junctions J,. We shall also assume that
terminal junctions J; insure optimum energy transfer
of sources (W®);, on the network. They actually

correspond to a terminal impedance equal to the
reference characteristic impedance Z,,.

The identification of the networks also assumes
that there is no propagation on tube T, (by definition,
a junction must be small compared with the wave-
length used).

III,2. — SYNTHETIC REPRESENTATION OF
THE PROBLEM

We can simplify the representation of networks 1
and 2 of Figure 3 by advancing purely topological
considerations. Figures 4g and 5 shows networks 1
and 2 with space broken down into a volume V¥,
separated from an external volume V,,, by a surface
So. Under these conditions, junctions J,, J, and J
can be assimilated to surface junctions and junctions
J; to volume junctions.

We are then able to determine the topological graph
corresponding to the above topological diagram. The
graph shows the interactions between volumes. Each
volume is represented by a so-called “volume” node;
each surface is represented by a so-called “‘surface”
node. The interaction between volumes is expressed
by arcs connecting the volume nodes to the surface
nodes.

The topological graph corresponding to the volume
breakdown defined above is illustrated in Figures 5a

N
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//’ \\
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/ //
[ vo
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Fig. 4.

Fig. 5.



and b. It shows a volume node N,; corresponding
to the source located in V,,, and two surface nodes
Nt and N,. Nodes N;; and N in Figure 52 and
nodes N;; and N; in Figure 5b interact. Node N3
interacts with itself (expressing the interaction
between junctions J, and J,).

We can then define a new representation of topo-
logical networks 1 and 2 similar to the topological
graphs of Figures 5a and b, thereby allowing a better
synthesis of the volume interactions and providing
more condensed analytic formulas. A junction Ji;
grouping all the terminal junctions J; is made to
correspond to volume node Ny, Similarly, J% of
Figure 6 a corresponds to surface node N%° expressing
the grouping of junctions J, and J,. Junction J;
of Figure 65 associated with surface N, represents
junction J.

The reconfiguration of the two topological net-
works defined in Figure 3 leads us to group all the
vector quantities in supervectors. Thus, the group of
source vectors (W), aliows us to define a supervector
denoted [Ws],; located in junction J;;. Similarly, on
each of the tubes, we define wave supervectors [W],;
and [W]; for the incident and reflected waves respec-
tively on junctions Ji* and J,, Wave W,;, shown
only in Figure 6 a expresses the propagation in ¥,

III,3. — WRITING OF THE BLT EQUATION
FOR THE NETWORK INCLUDING THE JUNC-
TION OF ORDER N (Fig. 6b)

Let us go back to equation (1) and attempt to
express supervectors [ W (0)] and [WS)] with dimension
2N as well as the propagation supermatrix {I'] and
a scattering supermatrix [§7] with dimension
2N*2N.

Tube 1 is the support for two waves, W, and W,
which can be represented by [W], and [W],;. These

Fig. 6.

two quantities can be grouped to obtain [ (0)], i.e.:

_[ 7 }
W(0)]= 7
woy=| [l ©
Similarly, supervector [ is expressed by:
_[ [0y :|
W)= 8
[ ] [: [WKS)]II ( )

It can therefore be seen that supermatrices [['] and
[87] can also be treated by blocks according to indexes
I'and II

Supermatrix [I'7 is a unit matrix since the propa-
gation effect on the network is ignored. We can there-

fore write:
My [Oyxn
= ’ 9
o [[0]~x~ [nu,u] )

where:

L, =0Ty, =y xw (10)

Supermatrix [S] which we shall denote [S'] for case
66 is obtained by writing the characteristic wave-
wave matrix (W. W) for the network [4] relative to
indexes I and IT:

(01
w. w) (1 0) an

This matrix has the advantage of indicating the
location of the nonzero blocks of [S]; we can therefore

write:
_[ ©Olysx [SL,H]
) [[S']II.I 0]y x n

Considering the assumption of no reflection on the
terminal junctions and since [S'];; ; corresponds to the
matrix of the S parameters of junction /7, we have:

(ST 1={00yx (13)

(12)




hence
(Wl =[0]y (14)

(see Appendix I).
The BLT equation for the network is then summa-
rized by a single relation:

(W)= [SI]I, I [W(S)]u 15)

III4. - WRITING OF THE NETWORK
INCLUDING TWO JUNCTIONS OF ORDERS
M1 AND M2 LESS THAN N (Fig. 64q)

The network studied is that of Figure 6a. It
includes three wave supervectors, (Pl (W (Wi
Indexes I and II are associated with vectors of
dimension N; index III is associated with vectors of
dimension K=M1+M2—N (see Sec. IIL,1).

These indexes can be used to define all the quanti-
ties of relation (1).

We therefore have:

(W]
WIO)=| Wy (16)
Wi
[0ly
(WO [ (17
[0«

The absence of any propagation effect in the net-
work means that [I'] has the following structure:

(W=

My [Olvexy  [Olyxx
Tl=] [0y xv Tl [Olyxx
0xxn [Olxxy (Clier, 11
where
[n1,1=[1—]u, n=[yxy (18)
and
M s, 1=k <k (19)

The scattering supermatrix is constructed from the
characteristic (W. W) matrix of the network, i. e.:

0 1 1
(W. W)= < 1 0 O) (20)
0 1 1 '
hence:
[0y xn ISh, 1t Sk, 11
[S1= [S]u, I [0y xx [0l xx (21
[0k x» [S]m, n [S]m, 11

The assumption of the absence of reflection in the
terminal junctions and the fact that [S]11, 1 is identified
with the matrix of the S parameters of J 11 is expressed

by:
[S]u, 1=[0lyuy (22)

hence

(W =10y (23)

(see Appendix 1).
The BLT equation of the network is then summa-
rized by two relations:

{S]I, I [W(S)]n =[W],— [S]I Vil (24)
[SJm, ul W(S)]u =(Hgkxx— [5]111, uD W (25)

The elimination of [W],; from (24) and (25) leads
us to the relation:

{08, 1+ [SY, 1 (UMlk x
=[Sl up ™! [STiar, 11 } [W(s)]u =["], (26)

IIL,5. ~ EXPRESSION OF THE § PARAMETERS
OF THE JUNCTION OF ORDER N AS A FUNC-
TION OF THE S PARAMETERS OF THE TWO
JUNCTIONS OF ORDERS M1 AND M2

Equations (15) and (26) both relate supervectors
(W), and [W];.

They must be identical by construction of the two
networks of Figures 6 and &.

We infer that:

(SN, 1= (S, 1+ (S1r, 1r (Mg K
- [S]III, III) -1 [S]III, u @7

where [S"];, ;s the distribution matrix for the junction
with N ports and [S], ,/, (81, 1115 [Shyz, 1y and STiar, i
are expressed as a function of the S, parameters of
the two junctions with M1 and M2 ports (since, as
was seen in Sec. I1.2, we can reason considering that
all the ports are decoupled; it is only a posteriori
that supermatrix [S'] is referenced to the characteristic
impedance supermatrix [Z] of the real case to be
treated).

Equation (27) has the same form independently of
the number of ports of the system. It can therefore
be used recurrently to treat the problem with N ports
from problems with three ports.

I11,6. — APPLICATION: CHARACTERIZATION

- OF A JUNCTION OF ORDER 4 USING TWO

JUNCTIONS OF ORDER 3

HL6.1. ~ Definition of the Application

The junction to be characterized is the so-called
“four-port fork™ function consisting of the separation
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Fig. 8. — Model of an electric cell Ci.

of a conductor into three other conductors.

The diagram of Figure 7 shows this fork with an
electric cell C; on each conductor i This expresses
an imperfect electrical connection in the connection
node. Figure 8 represents an elementary cell C; by
two impedances, Z; and Z; (used, for instance, to
express a choke effect), separated by a parallel impe-
dance Z!' (used for instance to express a capacitive
coupling).

The branch points P,, P,, Py, P,, Ps and N, N,
are used to identify the location of the cells on the
different conductors. ’

As an example, we chose a junction such that all
its cells C; exhibited purely resistive impedances, an
ideal case reproduced in the laboratory:

Table I gives the values of Z;, Z; and Z;’ :

TABLE |
Cell Z;inQ ZiinQ Zi"inQ
(o] V] 0 o
G 16.6 16.6 118.44
Cs 33.17 33.17 20.57
Cs 41.05 41.05 10.17
Cs 16.6 16.6 68.18

The microwave S, parameters (with respect to a
characteristic impedance of 50 ) were measured by

network analyzer and calculated by a numerical cade.

Identical results were found with both methods:

—0.340 0.357 0.048 0.024
0.357 —0.039 0.026 0.013
0.048 0.026 -—0.018 0.013
0.024 0.013 0.013 —0.002

(So)=

We propose to find these values by breaking the
four-port fork into two three-port forks and then
applying equation (27).

I11,6.2. — Breakdown of the Four-Port Fork into Two
Three-Port Forks

111,6.2.1. — Principle of Characterization of a
Three-Port Fork

The three-port fork consists of separating a conduc-
tor into two-other conductors. As for the four-
port fork, we symbolized in Figure 94 any electrical
imperfections by cells C; of the same type a those of
Figure 8. The global electrical diagram is shown in
Figure 95. This allows us to establish simple analyti-
cal formulas for the Y parameters of the junction
(sec Appendix 2). The Y parameters can then be
transformed into S parameters by equation (6).

It should be noted that these analytic expressions,
relatively simple in the case of three-port junctions,
become rapidly very complicated to determine when
the number of ports is increased. This shows the

G
Port 2

Port 1

a)

Port 3

Fig. 9. — (a) Model of a three-port fork.
{b) Global electrical diagram of a three-port fork.




advantage of breaking down junctions with a large
number of ports to lower order junctions.

III,6.2.2. — Presentation of the First Three-Port

Fork

The first three-port fork J, that we chose for the
breakdown has the properties given in Table II.

TABLE Hl
Cell ZiinQ ZiinQ ZF'inQ
G 0 0 el
C2 0 0 o)
Cs 16.6 16.6 118.44

The corresponding S, parameters are with respect

to 50 Q.
-0.297 0.703 0.380
(So,)= < 0.703 —0.297 0.380>.
0.380 0.380 —0.027

They can be determined by direct measurement or
by numerical or analytic computations (see
Appendix 2).

I1,6.2.3. — Presentation of the Second Three-Port
Fork

The second three-port fork J, has the following
characteristics (Table III).

figure according to the various ports P,, We summa-
rized these properties in Table IV.

1L,6.3. — Topological Processing of the Grouping of
the Two Junctions

The next step consists of filling the matrix blocks
of equation (27).

For this purpose, we must identify the two net-
works described in Figures 104 and .

TABLE IlI
Cell ZiinQ ZiinQ Zi'"in Q
C1 16.6 16.6 68.19 Fia. 10 (&) N h
ig. 10. — (a) Network with two three-port junctions.
Cz 33.17 33.17 20.57 (b) Network with one four-port junction.
Cs 41.05 41.05 1017
The first network corresponds to the interconnec-
Parameters S, (with respect to 50 Q) are: tion of J, and J, on ports 2 and 1 respectively and
the second to J, a junction with four ports.
—0.085 0.067 0.033 In the two figures, ports 1, 2, 3 and 4 and waves
(So,)= 0.067 -—0.017 0.013 }. W, to Wy are common, which complies with the
0.033 0013 —0.001 principles stated in Sec. III.1.

It can then be demonstrated that the different
blocks of (27) are written (see Appendix 3)
I11,6.2.4. — Placing in Common of the Two Three-

Port Forks —0.297  0.380 0 0
. . . 0.380  —0.027 0 0
What remains to be done is to place in common Sk = 0 0 _0.001 0013
junctions J, and J,, to recover the scheme of Figure 7. : :
For this purpose, we can locate the junctions in this 0 0 0.013 —-0.017
TABLE IV
Junction Port 1 Port 2 Port 3 Separation:
location location location node
Ja Pl P5 P2 N,
Js Py P, P, N,




[according to equation (41) of Appendix 3]

0 0.703

0  0.380
Shr=) 6033 o
0.067 0

[according to equation (42) of Appendix 3]

0.703 0380 O 0 il

[S]m,u=|: 0 0 0.033 0.067

[according to equation (43) of Appendix 3]

0 —0.297 :‘

(S, m=[ —0.85 0

[according to equation (44) of Appendix 3).

It is easily verified that the determination of [S']; ;;
by equation (27) yields the matrix of [S;] parameters
of the four-port junction given in Sec. IIL,6. 1.

CONCLUSION

In aeronautics, electric circuits occur as main cable
paths and branches connecting numerous equipment
items. The cable branches result in impedance dis-
continuities on the conductors, affecting the signals.

Branches are conventionally represented as
junctions with N ports whose scattering parameters
are determined. They can be computed analytically
when the number of ports remains smalt (less than 3)
but are almost impossible to compute in the practical
case encountered in acronautics.

In this paper, we used electromagnetic topology to
develop signal scattering in a junction with N ports
by the S parameters. The formulation of a complex
problem by the topological method [1, 2, 4] consists
of breaking it down into elementary problems ex-
pressed in a suitable form (matrix of S parameters,
propagation matrix, etc.).

It appeared that using the formalism of BLT equa-
tion led to a recurrent formulation of the scattering
matrix for a junction with N ports from scattering
matrices for a junction with a lower order.

The difficulty of the computation does not increase
with the complexity of the junction to be described
and the method proved to be well suited to numerical
processing of complex problems.

It is interesting to note that the BLT equation
(topological description) proved the most efficient for
conducting this work aimed at calculating an input
term in topological formalism.  Electromagnetic
topology thus appears not only as a formalism but
also as a methodology for approaching electro-
magnetic coupling problems in global systems such
as those encountered in modern aircraft.

APPENDIX 1

DEMONSTRATION OF THE ABSENCE OF

REFLECTED WAVES ON TERMINATION

JUNCTIONS J; OF THE NETWORK IN
FIGURES 64 and '

Using the notations of Sec. III,3, the BLT equation
for the network of Figure 65 can be broken down
into two matrix equations.

[S‘]I, II {W(S)]11=[W]1_[S’]1. u (Wl (28)
[Oly=— [S']u, 1 [Wh+ Wy (29)

Similarly, using the notations of Sec. I11,4, the BLT
equation for the network of Figure 64 can be broken
down into three matrix equations.

(S, [W(S)]u=[WJ1_[S]1, 1 Wl
- [S]I, 1 W (30)
Oy= =181z, 1 Wl + (W] €2))
[Slers, 1r [, = = [Skar, 11 (Wl
+ Mg xx=Slot, 100 [Why (32)

For these two networks, the BLT equation there-
fore leads to two identical equations, (29) and (31).
The absence of reflection in termination junctions J,
is expressed by:

1SN, 1= 01y wn
and
[S]u. =[Oy xn

Accordingly, from (29) and (31), we infer equations
(14) and (23) of Secs. IL,3 and IIL4

(W =[S"l, 1 [W]; =10y (33)
or
(W1 =[S, 1 W] =10}y

Equations (15), (24) and (25) of Secs. II1,3 and
I11,4 are then easily inferred.
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APPENDIX 2

Y PARAMETERS
OF A THREE-PORT FORK

Let us return to the electrical diagram of Figure 9 5.
The matrix of ¥ parameters is defined by:

I, Yy, Y, Y, Vi
I Yoo Yo Yy )x{ V1, (33)
I Yy, Y Y, Vs

where I, 1 £i<3, is the input current on port i and
V is the input voltage on this port.

We then find;

1+Z2./Z}
W= : (34)
R+Z, (1+2/Z}")
and
Y,=4xBxC 35
where
A= !
VH(Zi+Z3 122+ 2 112,
B= (1 l 1
(I1+Z/Z)) (2, +Z//Z}")
V44
with
1=i<3; 1</<3; 1£k<3
and
I#);,  j#k; i#k
for the extradiagonal terms.
The notations of (34) and (35) are as follows:
— whatever /e[1,3]
Z'Z,
Z“ Z = 1 l 36
112, 7'z, (36
Zr=ZH(Z ZD)IZ) 2+ 22112, (3)

It should be noted that equations (34) and (35) are
not valid for zero series impedances Z;and Z..

These relations also allow us to determine the S
parameters of the junction using equation (6).

APPENDIX 3

DETERMINATION OF THE DIFFERENT
MATRIX BLOCKS OF EXPRESSION (27) IN THE
CASE OF EXPRESSION OF THE S, PARAM-
ETERS OF A FOUR-PORT JUNCTION J AS A
FUNCTION OF THOSE OF TWO THREE-PORT
JUNCTIONS, J, AND J,

For this purpose, we identified the two networks
of Figures 104 and b called network 1 and network 2
respectively.

Let (S,,) be the matrix of the S, parameters of ¥
(So,), the matrix of the S, parameters of Iy, (Sp) the
matrix of the S, parameters of J.

To place ourselves in a case similar to that dis-
cussed in Sec. IIL,6.3, we showed on each tube of the
network of Figure 10a the corresponding port of
junctions J, and J, as was also the case for
Figure 105.

1. We then write the wave-wave matrix W.w),
for network 2:

1 2 3 4 5 6 7 8
(W.W,=170 0 0 0 1 1 1 17
200 0 0 0 1 1 1 1
30 0 0 0 1 1 1 1
4o 0 00 1 1 1
5110 0 0 0 0 0 0
600 1 0 0 0 0 0 o
710 0 1 0 0 0 0 o
glLo 0 0 1 0 0 o o_

The scattering supermatrix [$] of network 2 there-
fore has the form:

[S,]=[[014x4 [T, u]
(ens [0

where superindexes I'and I7 group the following wave
indexes, N, ie[l, 8]:

(38)

I={1,2,3,4)
={56,1,8)}.

It can then be seen that block [ST. 1y of
equation (27) identifies with (S;), in the case of
Figure 105 and we have:

S011 501’ SO13 5014
S Ss.. S, S
[S’]] 1 _ 021 02 023 024 (39)
SO:u SOzs S033 S034
S041 S024 SO43 SO44

i1




2. Now let us write the wave-wave matrix (W W),
of network I

1 23 456 7 8 9% 10
(W.W),= 10 000 1 1000 I
2o o001t 1 000 1
3looooo0o01 11 O
slooo0oo0o00 1t 11 0
sfi 0 0000O0OOCO0 O
6lo 1 000000CO0 O
1o o1 000000 O
glo oo1 00000 O
slo 00011000 1
iobo 0 0 0001 1 1 O
The scattering supermatrix [S] of network 1 there-

fore has the form:

[0laxe [SlLu (). 111
(S1=1 [Skw: [Olsxa. [0lex2 (40)
02x¢ [Slurn [(Shur 1

where superindexes I, II, III contain the following
wave indexes W, ie[l, 10}

={1,2,3, 4}

I={5,6,17, 8}

=19, 10}.
From Figure 104 it can be seen that the matrix
blocks inciuded in relation (27) are expressed as a

function of the following S,, and S,, parameters of
J, and J,;:

:;o‘ll

0‘13

S S, 0 0
Sl.u= Seas Oess ) “én

0 0 Sobzz Sob;s
0 0 Sos, Sop,,

0'12
(Sl = Sou, (42)
1. 111 )
05y, 0
SQ“31 0
So.,, 0

:;0'21
(S u=

0
] (43)
0 0 So,, Sou,,

0 S°-n
Sk, = “44)
So,,“ 0
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