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ABSTRACT

The paper presents the general principles of Electromagnetic Topology, method
developed in the seventies in the USA by C. E. Baum.

Using this method, one can break down a complex electromagnetic problem into
several small problems that are easier to solve. An example explains how this theory
can be applied to a practical case.

A formalism is then described that can be used to deal with all these problems
from an electromagnetic point of view. It is based on the equation derived by C. E.
Baum, T. K. Liu and F. Tesche [6] (BLT equation) dealing with multiconductor
transmission line network theory. This theory is generalized to topological
networks. An equation is derived that expresses the propagation and scattering of
disturbances into and through different volumes.
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I. — INTRODUCTION

Current aircraft use electronic equipment operating
at a very low energy level to perform vital functions
(fly-by-wire controls). The vulnerability of such
equipment to external electromagnetic interference
(lightning, radiofrequency transmitters, EMP) or
internal sources (EMC) leads to the requirement for
protecting the on-board equipment. A protection
method based only on “common sense’ leads to over-
sizing, detrimental to the performance of the aircraft.

Correlatively, the massive use of composites for
their mechanical properties and low weight does not
lead to an improvement in the equipment protection
against electromagnetic interference. In effect, these
materials, dielectric or poor conductors, have shield-
ing properties inferior to those of metals. In addition,
their interfaces (between one another or with the
metal parts surrounding them) are often major sour-
ces of interference. These new technologies risk lea-
ding to such an increase in the shielding that the
resulting weight increment exceeds the benefit
expected from the use of composites.

Engineers are therefore confronted with the prob-
lem of optimizing the shieldings.

A predictive computation of the electromagnetic
coupling on a complete complex structure would
allow a reduction in cost and a better quality of the
end product compared with the method consisting of
making successive improvements to a system whose
electrical and mechanical architectures are for the
most part already finalized and therefore difficult to
modify a posteriori.

The question of feasibility of computer-aided design
in the area of electromagnetic compatibility can there-
fore be raised.

The problem to be solved is that of the response
of a complex system (complete wiring of an aircraft,
electronic equipment, etc.) to an electromagnetic
aggression. Strictly speaking, to solve this problem,
it is necessary to solve the Maxwell equations for the
entire volume of the system, considering the presence
of all the conductors and their shieldings. The size
and computation speed of today’s computers make
numerical analysis of this problem impossible with
three-dimensional codes. In addition, it would often
be unsuited, since the interference energy for a given
aggression generally follows privileged paths which
do not involve the entire structure.

However, the choice of these privileged paths can-
not be made arbitrarily, since it represents an approx-
imation which it must be possible to evaluate. A

quantitative method for solving this problem was
developed by C. E. Baum [1] to [4] in recent years in
the USA under the name “electrogmagnetic topol-
ogy”.

To our knowledge, this method is the only one that
exists. It has the advantage of formally separating
the respective influence of the interference sources,
the scattering of signals between the various conduc-
tors and the propagation problems. It therefore seems
very well suited to predictive computations of the
interference received by the equipment subjected to
several sources. In addition, it has the advantage of
being able to test different paths followéd by the
energy through the structure.

After C. E. Baum [5, 7, 8, 9], many authors worked
on various problems raised by application of the
method. As far as we know, no compilation of the
prirciples and methods used by the topology has yet
been published nor has it been applied to practical
examples.

In this paper, we summarize the principles pub-
lished by various authors, stressing what is specific
and interesting in the topological method.

II. — THE TOPOLOGICAL METHOD

II,1. — GENERAL DESCRIPTION OF THE
METHOD

In practice, the topological approach to a problem
includes two stages:

— the first consists of making a geometric descrip-
tion of the problem. It uses the concepts of “volume”
and “surfaces” (these concepts are defined accurately
below) and leads to establishing a “topological dia-
gram” of the problem. This breakdown of space into
regions privileges a path of the interference energy.
It therefore requires making a number of assumptions
to break the global problem down into one or more
partial problems adapted to each situation. It should
be noted that the results obtained in the framework
of this breakdown can be compared with (or possibly
overlaid on} those obtained in the framework of other
breakdowns.

This breakdown into “volumes™ allows an interac-
tion graph to be established. The graph theory can
then be used to model a problem with N independent
sources as a superimposition of N elementary prob-
lems (principle of state superimposition).

The second part is an electromagnetic description
of propagation of the interference. The path follows a
network whose geometry is dictated by the interaction
graph. The formalism used to describe all the. ele-
ments and signals is drawn from that of “multicon-




ductor transmission line networks” [6].

This leads us to writing a general equation (BLT
equation in the terminology of C. E. Baum) relating
the source quantities to the unknowns (these quanti-
ties can be electromagnetic fields, voltages, currents,
etc.) while taking into account the propagation and
scattering effects on the network.

I1,2. — THEORETICAL MODEL

IL2.1. — Topological Diagram

The basis of the topological method consists of
privileging certain axes of penetration of the electro-
magnetic energy so as not to have to solve the general
problem. In a complex system including partitions,
recesses, openings, cables, the system must be broken
down into elementary subprobliems.

The initial concept is that of “volume”. A volume
can be defined as a region of space in which the fields
and currents are created by the same source(s) of
interference. Typically, a “source” is any quantity of
the electromagnetic field or voltage or current genera-
tor type susceptible to coupling with a system. We
then define volumes included within the preceding
volumes. They are subjected to the same initial source
as the outer volume but the effect is modified (gene-
rally attenuated) when entering the subvolume. A
subvolume can therefore be considered a volume that
is excited by an “equivalent” source, expressed as a
function of the initial source.

Now let us consider a system subjected to a single
aggression which is localized in a volume, called outer
volume. We can then structure the path of the inter-
ference by establishing a diagram where the various
volumes are included in one another, as is shown in
the example of Figure 1. ¥; is the notation used for
the different volumes. ““/” indicates the hierarchical
order of the volume, ¢’ indicates a number in the
volume defined by i. For instance, volume 3 actually
breaks down into two elementary volumes, ¥, ; and
V5. 5, both of which are included in V, ;.

Fig. 1. — Topologica! diagram.

With this concept of volume is associated the con-
cept of surface Sj;, 4 separating volumes V;; and V.

For instance, to reach volume V, ,, the interference
must cross surfaces S ;.2 5 S2,1.3,1 and finally
83,2.4,10

It should be noted that the breakdown into volumes
is a difficult step, essential for correctly representing
the problem {4, 7).

I1,2.2. — Interaction Graph

A topological diagram allows us to establish
another graphic representation of the interactions
between volumes: the graph corresponding to the
diagram of Figure 1 is given in Figure 2. This graph
involves nodes connected by edges used to model the
path of the electromagnetic interference:

— The volume nodes (black circles in Figure 2)
correspond to points in space located inside the volu-
mes.

Several volume nodes can be included in a given
volume so as to display certain points of space to be
analyzed ‘(electrical equipment, composite walls, etc.).

— Surface nodes (white circles in Figure 2) are
nodes in space located on topological surfaces.

Fig. 2. — Interaction graph.

Several surfaces nodes can be included on a given
surface to display certain lines of penetration.

The best way of making a synopsis of the topologi-
cal diagram consists of grouping the different energy
penetration and prcpagation channels and represen-
ting each volume by a volume node and each surface
by a surface node. The advantage of such a represen-
tation is that it lends itself well to the superimposition
theorem. In effect, let us consider N sources, each
located in a volume. The problem can be treated as
a superimposition of N problems with a single source.




For each of these problems, it is sufficient to reor-
ganize the topological graph so as to place the node
corresponding to the source volume at the top of the
tree. This operation is called “topological inversion”
and easily allows the corresponding topological dia-
gram to be reconstructed.

In Figures 3a, b, ¢ we show how the problem is
approached when an electromagnetic source is located
in volume V; ,.

S1.1;21

53.2;2.1

S2.1:1.1
52.1;3.1

$3.2;4.1
{c

Fig. 3. — (&) Source located in Va.2; (b) inversion of the graph;
{c) corresponding diagram.

I1,3. — TOPOLOGICAL APPROACH IN A REAL
CASE
I1,3.1. — Statement of the Problem

In order to illustrate the concepts of topological
diagram and graph, we show how it is possible to

approach a real case concretely. The example we
chose is that corresponding to the diagram of
Figure 4.

Circuit 0
ol Circuit 2

~
ST

Circuit 3

Wall P 1 Wall P2 Circuit 1

Fig. 4. — Breakdown of an aircraft into volumes.

Figure 4 shows an aircraft on which we determined
three regions of space, 4, B, C, allowing us to have
a better view of our breakdown into volumes.

We included imaginary multiconductor and
shielded cables (the shielded cables were connected to
the metal structure of the aircraft) that we called
circuits 0, 1, 2, 3.

Circuit 0 is assumed to be on the outside of the
aircraft (meaning that the cable shielding is directly
in contact with the outside). Circuits 1, 2, 3 are
located in physical volumes 4, B, C respectively. It
is assumed that all the walls are metal.

These circuits interconnect electrical equipment
shown in Figure 4 as rectangular boxes.

— Circuit 0 includes the cables interconnecting
units 5 and 4;

— Circuit 1, units 4 and 6;

~ Circuit 2, units 2, 10 and 11;

— Circuit 3, units 5, 7, 8 and 9.

The units are in certain cases cable terminals such

as 6, 8,9 and 10; others correspond to cable branches,
such as 2, 4, 5and 7.

In addition, we showed the paths of penetration
from one physical volume to another, symbolized by
apertures located in 1, 3 and 12.

It should be mentioned that we voluntarily num-
bered the units and apertures from 1 to 12 without
distinction since both units and apertures are consi-
dered below as points of penetration of the energy
into the structure.

In Sec. 11,2, we showed that a good topological
breakdown assumed a breakdown of space into inde-
pendent volumes included in one another and was
valid at any level of the analysis. We will now show
that in practical cases, this breakdown can be called
into question for particular processing. This concerns
in particular the analysis of cable circuits which,
because of their multiple branches, can extend into




areas of space that can be considered independent
when it is attempted, for instance, to determine the
current distribution on the shielding. However, when
it is attempted to analyze the electromagnetic interac-
tions on the cables located within the shieldings, the
same regions of space become interdependent.

II,3.'2. — First Stage: Breakdown into Physical Volu-
mes

1. Topological Diagram

The construction of this diagram consists of
transforming the above physical breakdown into a
breakdown into topological volumes. It should be
noted that this breakdown depends on the choice
made by the user according to the equipment he
wants to privilege. In addition, it can also depend
on the frequency range of the aggressions considered:
for instance the phenomena of diffusion through the
walls and diffraction of electromagnetic fields by the
apertures are involved in different spectra for which
the volume breakdown is not the same.

In the case of Figure 4, we assume that the aircraft
is subjected to an external aggression of the electro-
magnetic field type. We assume that there is no
diffusion phenomenon through the walls.

To establish the topological diagram corresponding
to this textbook case, we will attempt to follow the
path of the energy through the aircraft structure. The
energy is first coupled on an external metal surface,
in particular on the shielding of circuit 0. It then
penetrates the structure through apertures 3 and 12
located in volumes A4 and C respectively. In each of
these volumes, it is coupled to the shieldings of
circuits 1 and 3. From volume A in particular, it
penetrates volume B through aperture 1 then couples
to the shielding of circuit 2.

We can then establish the topological diagram of
the problem, illustrated in Figure 5, showing the path
followed by the energy from an external volume ¥, ,
up to the cable shieldings.

The three following topological volumes are distin-
guished first:

— V,,, corresponds to volumes 4 and B. Its
surface S, ;,, ; consists of the aircraft fuselage in
the location of volumes 4 and B and by the sepa-
ration wall P1 (see Fig. 4).

—~ V,,, corresponds to volume C. Its surface
S1,1.2,2 consists of the aircraft fuselage surrounding
C as well as wall P1.

— V,,; corresponds to circuit 0; surface Sy ., 3
identifies with the circuit shielding.

S1.1.2.1; surface of volumes A and B

S2.1:3.1: circuit 1 shielding

S2.1,3.2: separation
surface between
volumes A and B

Sa.2; 4.1: circuit 2 shielding

51 :1;2.3:
circuit 0 shielding

V1.1: external volume

S1.1: 2.2:
surface of volume C

S2.2:5.1: circuit 3 shielding

Fig. 5. — Topologica! diagram corresponding
to the breakdown of Figure 4.

In volume ¥V, ,, we can distinguish a subvolume
Vs, | consisting of circuit 3 whose topological surface
S5, 2.5, 1 is the cable shielding.

Volume V, ; separates into two volumes, V5 ; and
Vs, 2

V5 , corresponds to circuit 1; the topological
surface S, | 3 ; consists of the cable shielding.

— V3, . corresponds to volume B: its separation
surface S, , 3, ; consists of the aircraft fuselage oppo-




site B as well as wall P2 (containing aperture1).
This volume itself contains a subvolume ¥, , whose
separation surface S; , 4 ; corresponds to the
shielded sheath of circuit 2.

It can then be seen that it is not possible to continue
the breakdown to the cables located inside the shield-
ing in volumes ¥V, ,, V, ;. V, 3 and Vs , as this
would call into question the topological breakdown
already defined (see Sec.II, 3.3).

2. Interaction Graph

The interaction graph corresponding to the dia-
gram of Figure 5 is shown in Figure 6, superimposed
on the volume breakdown defined earlier so as to
clearly show the concept of volume nodes and surface
nodes (black circles and white circles respectively).

Fig. 6. — Superimposition of the topological graph
on the topological diagram of Figure 5.

Here, the volume nodes are each associated with a
topological volume in which an equivalent source,
determined from the source of the outer volume, must
be computed. In the textbook case studied, this
amounts to calculating the electromagnetic fields in
each of volumes 4, B, C (volumes nodes V, ;; V; ,
and V, ,).

The surface nodes are divided into two categories:

— those corresponding to penetration of the energy
through an aperture (aperture3 for S, ;. ;
aperture 12 for S, ., ,; aperturel for S, ; 3 5;

— those symbolizing shielding of the various cir-
cuits (S, 4,5,, for circuitl; S, ,, , for circuit 2;
S1.1.2,3 for circuit0; S, , s , for circuit3).

They correspond to surfaces on which is calculated
the distribution of the electric currents due to the
coupling of the electromagnetic fields of the higher
volumes.

IL,3.3. — Second Step: Processing of the Cables

After solving the problem broken down as shown
in Figures 5 and 6, we can now determine the current
distribution on all the surfaces of the topological
volumes, more particularly on the cable shieldings.

Fig. 7. — (a) Display of the interactions between the volumes
internal to the cables. (b) Breakdown of the volume nodes
in each volume internal to the cables.

Figure 7 a shows the interactions between volumes
corresponding to the inside of the cable shieldings,
Vi is Va3 Vs,q and V, ;. We clearly see that at
this level of problem solving, we must call into ques-
tion the volume breakdown previously established.

This is why we grouped volumes V; ,, ¥, 5 and
Vs , into a single volume V,, distributing the currents
on its surface S, according to their initial distribution
on S; 13,15 S1,1.2,3 S2,2.5,1. As for volume V, |,
it is completely isolated from ¥,. We will call it V,
and we will call its surface S,.

Figure 75 shows these two volumes, ¥, and V,,
and the breakdown of the volume nodes of the inter-
action graph into other nodes, corresponding to the
poinis of penetration defined in Figure 4. For
instance, node ¥ , is broken down into 5, 7, 8 and
9; node ¥, 5 into 4 and 5; node ¥V , into 4 and 6;
node ¥, , into 2, 10 and 11.

We thus obtain two new graphs reflecting the inter-
actions on the cables, represented in Figures 8 and
b. The cable problem is broken down into two
independent problems limited to topological volumes




V, and V, on which we redistributed the electro-
magnetic sources previously determined - by the
volume breakdown of Figure 5.

(0)

Fig. 8. — (a) Interaction graph for the cables of topological
volume V1. (b) Interaction graph for the cables of topological
volume Va.

III. — PROCESSING
OF ELECTROMAGNETIC INTERACTIONS

IIL,1. — THE ELECTROMAGNETIC NETWORK:
PROPAGATION SUPPORT FOR THE INTER-
FERENCE

III,1.1. — Constituents

The interaction graph described above is used to
represent the interactions between volumes. We now
need a model to physicaily represent the propagation
channels of the electromagnetic signals and their scat-
tering in the different topological volumes. For this
purpose, we define a topological network inspired
from the interaction graph, on which propagates an
electromagnetic signal called “wave”.

The signal propagation channels are materialized
by tubes associated with the nodes of the graph. It
should be noted that the term “propagation” must
be understood as movement of a signal along the
tube in a single direction, from an origin 0 taken at
the end of the tube to the other end L, where L is
the length of the tube (z can represent a curvilinear
abscissa). This general propagation term obviously
includes the propagation of signals whose phase @
can be represented by o=@ (z—ct), where 1 is the
time; ¢ is the speed of propagation; z is the abscissa
in the direction of propagation.

The signal scattering is modeled by junctions
located in the nodes of the topological graph. A
distinction is therefore made between volume
junctions associated with the volume nodes and sur-
face junctions associated with the surface nodes.

The network then consists of a set of junctions
connected by tubes. Figure 9a shows the network
associated with the graph of Figure 8a. It should be
noted that this network involves only volume
junctions.

IIL1.2. — Electromagnetic Quantities Propagating in
the Network: Waves

The “wave” type quantities are denoted W(z),
where z is the position abscissa on the tube. It is also
a vector quantity whose components are expressed as
a function of the various voltage and current quanti-
ties on lines or the propagation modes in guides, etc.
It should also be noted that this quantity depends on
the frequency, even if this does not appear explicitly
in the notation of the wave,

In order to identify the waves on the different parts
of the network, waves propagating in the opposite
direction on each tube are arbitrarily assigned. The
direction of propagation is modeled by an arrow
leaving each junction, as is shown by the numbers of
the waves of Figure 9 a shown in Figure 95.

(b)

Fig. 8. — (&) Topological network corresponding to the graph
of Figure 8a. (b) Numbering of the waves on the network
of Figure a.

It should be noted that arbitrarily assigning a direc-
tion of propagation to each wave and using two waves
in opposite directions agrees with the conventional
forward and backward wave propagation concept.




IIL,1.3. — The Equations of the Network
III,1.3.1. — The Main Unknowns of the Network

The main unknowns are the waves to and from the
junctions. In effect, the volume junction can be
considered as a point in space physically scattering a
signal, but also as a point where the interference level
is to be evaluated. This is the case, for instance, of
an electrical unit located at the end of a cable harness.

The surface junction corresponds to the channel of
penetration of a wave from one topological volume
into another. It is therefore used to reduce equivalent
sources calculated in a higher volume to the level of
penetration in a lower volume.

The “outgoing” waves are those leaving a junction.
It is observed that they are identified with W (0).
The ‘“incoming” waves are those entering the
junctions: they are therefore identified with W, (L))
where L, is the length of the tube on which propagates
wave W, (z,).

II1,1.3.2. — Grouping of the Incoming and Outgoing
Waves on the Entire Network: Concept of Supervector

We now propose to group all the waves.

Since waves W, are already vector guantities, the
resulting vector becomes a vector whose components
are also vectors. It is a supervector denoted between
brackets [ (2)].

Accordingly, if we define the order of a network
as the number of waves propagating in the network
and where N is this number, the supervector has the
following structure:

W1 (2)
wel=| "2
Wy (2)

We can therefore define:

— the incoming wave supervector, denoted [ (L))
where z=L means that the waves are taken at the
end of the tubes in which they propagate.

— the outgoing wave supervector, denoted [ (0)]
where z=0 means that the waves are taken at the
origin of the tube.

HIL,1.3.3. — Eguations Relating the Incoming and
Outgoing Wave Supervectors

1. Concept of Supermatrix

The wave supervectors defined above remain vec-
tors broken down by blocks. Accordingly, the
matrices defining linear operations on these vectors

can also be broken down into blocks. Let us consider
a supermatrix [4] multiplied by a supervector [V].
The result is the supervector denoted [Y].

Processing of the supervectors by blocks clearly
shows blocks in supermatrix [4].

In effect, we have:

[Y1={4].[X] ()

¥
let us assume that [¥]= [:’ and whatever

Yn

ISisN, Y= (7

o

vector Y; and y,, is the k-th component of Y; and,
X

similarly, [X]= [ : ] and, whatever 1Z£/<M,

m

, Where n; is the dimension of

i
*1
Xi=4{ : ) where m; is the dimension of vector X
Xy

4

and xj, 1 £1<m; is the /-th component of X,
Equation (1) can be developed as follows:

¥ &
Y |= 4;,; x| %, )

where:

[4]=supermatrix with dimension Nx M (N rows,
M columns);

A;, ;=matrix with dimension #; X m,.

Equation (2) can be broken down still further by
using coordinates yi and x

()
3 4

o« (0]
i .
1 ()

: ij
ai’y. . .ayln, ‘
where 4, ;= : and a}J corresponds

i J i
ang. 1. 'an;.m_,-

to the coefficient of matrix 4; ;(k-th row and /-th
column).

Expression (3) shows that the supervectors can be
processed as vectors (they are then placed between




parentheses like vectors although they represent the
same quantity as the supervectors). For instance, for

(Y] and [X]:

Ay
(Y) has dimension Ny= Y n;;
i=1

my
(X) has dimension My= Y m;.
j=1

Similarly, the supermatrices can also be considered
as conventional matrices (denoted between paren-
theses), 7. e. for[A]:

(4) has dimension Ny x My.

2. Propagation Equation

The purpose of this equation is to relate the incom-
ing wave [W(L)] and outgoing wave [w(0)] supervec-
tors using a so-called “propagation” supermatrix [I']
with dimension N x N (N: order of the network).

Actually, this matrix expresses the movements of
the waves at the ends of each tube.

We therefore set an equation of the type:

W (L)) =[T1W )]+ W] )

The [W®] term is the source wave supervector
expressing coupling of the external sources on the
tubes. It can be seen that components W are actu-
ally source vectors that can be put on the junction
where W;(L) enters. Supermatrix [I'] is a physical
characteristic of each tube of the network and does
not depend on the waves propagating in it.

3. Scattering Equation

This equation expresses the scattering properties of
each junction. It thus relates the outgoing waves
[W(0)] with the incoming waves [W(L)] by a
supermatrix [S] with dimension (N X N) (N: number
of waves associated with the network), which can be
considered as a transfer function. The equation is
written:

WOI=[SIIW©L)] )

It should also be specified that [S] is a physical
characteristic of all the junctions of the network.
Moreover, it assumes that there is no propagation
effect in the junction. In effect, the junction always
has a characteristic dimension which is less than the
wavelength studied.

III,1.3.4. — General Description of Interactions in
the Entire Network: the Generalized BLT Egquation

Equations (4) and (5) allow us to group the propa-

gation and scattering properties of the network in a
single equation.
This yields:

- [SHII[W (0] =[S W] (6)

in which the only unknown is that of the outgoing
waves [W(0)] and [1] represents the unit supermatrix
with dimension N x N, where N is the order of the
network.

We have called this equation ‘“‘generalized BLT
equation” since its structure is similar to the equation
established by C. E. Baum, T. K. Liu and F. Tesche
[3] in the specific case of networks of multiconductor
propagation lines.

III2. — EXPRESSION OF QUANTITIES [S], [T],
W]

II1,2.1. — General Case

As was seen above, quantities [S] and [I'] are char-
acteristic of the electromagnetic properties of the net-
work. Quantity [W™] expresses the coupling of the
electromagnetic sources on the network. Quantity
[W(2)] corresponds to the signal propagating in the
network for a given coupling with the outside.

There is no rule for choosing the expression of
waves W (z). They must however contain the electro-
magnetic information best suited to the medium.
Thus, for electric lines, the waves are expressed as a
function of the voltages and currents; for electro-
magnetic fields, the waves are a combination of the
electric and magnetic fields.

Actually, their expression can be obtained by writ-
ing the propagation equations for the medium (as
will be seen for multiconductor lines). In any case,
the choice of the wave quantities unequivocally condi-
tions quantities[S], [I'] and [W®)]. In particular, the
wave quantities determine the units of the supervec-
tors and the amplitude and phase of the components
of [I'] and [S] (which are with arbitrary units).

1I1,2.2, — Particular Case of Multiconductor
Transmission Line Networks

IIL,2.2.1. — Advantage and Description of the
Model

The model whose results we will describe has the
advantage of being able to unambiguously process a
genuine propagation on each tube, thereby giving an
expression of the propagation matrix [I]. It is
actually the model which must be approached to
represent all forms of coupling between wire struc-
tures.

The electrical model of a tube is that shown in
Figure 10. It shows a group of N lines over a
length dz. On each of the lines can be defined volt-
ages V,(z, s) with respect to a common voltage refe-
rence and currents I, (z, ).

To express the electrical couplings batween wires,
we used impedance matrices (Z, ,(s)) and admittance
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Fig. 10. — Model of an elementary cell
for a multiconductor line.

matrices (Y, ,(s)), both assumed in independent of
the abscissa z and defined per unit length dz.

To express the external coupling, we used serial
voltage generators V¥(z,s) and parallel current
generators I (z, s), defined per unit length dz.

We can write two differential matrix equations:

d
SV D= =20 ). Gyl N+ D ) (D)
di‘ia,, @ M=~ Xy ). (Vs @ DT @ ) ©)

By setting
en,m N =U(Zy, 1 (5)) . (Y, m (NI, ©)

propagation coefficient matrix (actually we take the
main value of the matrix product, see Appendix 1),
and

(Zen, m (D= Ven, m () (Yo, m (N, (10)

characteristic impedance matrix, making the following
changes of variables:

V(2 9 =(Valz, N+ (Zo, m (D L (2, 5) (1)
Va(z, N-=(Valz, N = (Zep, m (D Un (2, ) (12)
V2@ N =V @ N+ (Zep, m N Uz, 5)) (13)
V2G N-=V0 @ N~ Zan D) UV (2, 8)  (14)

differential equations (7) and (8) are written:

d
[(1,.. SR (s»]
XVl s =z, )0 (15)
d
[(1,,,,,)5—(ycn,,,,(s»]
x(V,(z ). =(M9(z 5. (16)

where (1, ) represents the unit matrix.

To relate these results to the topological network
formalism, we set:

W, ()=, s, (17)

which solution corresponds effectively to a wave
propagating in the direction of increasing z on the
tube (forward waves), as is shown by equation (15).
It should be noted that to recover the quantities
with a physical meaning, (V,(z, 5)) and (,(z, 5)), we
need quantities (¥, (z, 5)) corresponding to backward
waves. In effect, according to (11) and (12) we have

(Va(z, s))=é[(Vn @ N+ +Vyz sn-]  (18)
and
(Zen, m(5)) - T (2, 5)) =%[(V,. (2, 8) o = (Vo(z, 5))-1 (19)

The backward wave concept is preserved in the
case of topological networks, since we arbitrarily
assigned two forward waves propagating in opposite
directions to each tube. Figure 11 shows the corres-
pondence between these quantities.

iWn(z) = (Vn(z,9)) +

H 7
O ()
-——

W (L-2) = (Vn(z,8)) -

: L

0 z

Fig. 11. — Concept of backward wave
on topological networks.

Generally, if two waves W,(z) and W,,(z) propa-
gate in opposite directions on a tube, we can write
that since

Va2, ) =W, 2)
hence (20)
(Va(z, 5))- = Wi (L—2)
II,2.2.2. — Solution of the Propagation Equations

The solution of equation (15) gives:

(Vn (Z'v S))+ = { exp - (ch, m (S)) [Z - ZO] } (Vn (207 S)).;_

+ j " {exp= (o n D z= 2]}

zZ0

(VP ). d () Q1)

(*) See Appendix 2: “Exponential of a Matrix™ and Appendix
3: “Integral of a Matrix™.
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where z, is an arbitrary origin on the tube. It should
be noted that this expression allows the signal to be
determined in any point of the tube.

If, in equation (21), we take z,=0 and z=L, we
obtain:

(ValL, )+ = { XD~ Wen, m (). L} (V1 0, ).,

+ JL {€XP = (Yon, m NIL—21} (VD (', )+ d2' (22)

o]

If we attempt to identify equation (22) with the
topological network propagation equation (4), taking
(17) into account, it is shown that we have on each
tube:

()= {eXP= (Yen, m(s). L} (23)
propagation matrix, and
L
(U ()4 = f {exp= (Yen, m SN [L—2T}
o
X(VP(, s+ dz (24)

source wave vector,

II1.2.2.3. — Description of the Entire Network

Equations (17), (23) and (24) allow the quantities
of the entire network to be grouped as forward wave
supervectors denoted [(¥'(z, 5)]+, propagation super-
matrix [I'] and scattering supermatrix [S].

The scattering equation is then written:

[(V©, s+ =[SV (L, N+
and the propagation equation is written:
[(V (L, N+ =TIV O, NI+ + [TV (D] (26)

Combining equations (25) and (26) then gives the
BLT equation in its known form as established by
C. Baum, T. K. Liu, F. Tesche [3]:

{M=ISITT}HV @, N+ =[SITP ] @7)

(25)

I11,3. — SOLUTION OF THE BLT EQUATION

III3.1. — Block Matrix Computation: Advantage of
the Characteristic Matrices

Let us go back to the BLT equation defined in (6)
and set:

[1=[1]-[s]T] (28)
interaction supermatrix.

Solving the BLT equation then consists of isolating
unknown [W(0)] by inverting the interaction matrix.
We can write:

(WO =11""[S][#*] (29)
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However, care must be taken when applying the
conventional matrix inversion methods. In effect,
supermatrices [/} and [S] must be considered as large,
poorly conditioned matrices (they include many null
values).

This is why it is preferable to solve (29) by working
directly on the matrix blocks. Concretely, a method
must be found to allow only the nonzero blocks of
the supermatrices to be kept in the memory. For this
purpose, we introduce the characteristic matrices of
the network which allow the network geometry to be
numerically described at the same time as indicating
the location of the nonzero blocks of the supermatri-
ces used in (6).

The computation must be conducted in several
steps. The characteristic matrices are used to group
the coefficients of the propagation and scattering
matrices in blocks. Then, for each computation, the
characteristic matrices are tested to check which
blocks must be used, thereby avoiding computations
on null matrix blocks.

The topological description of the problem ex-
pressed numerically thus allows the computations to
be simplified and structured.

I11,3.2. — Definition of the Characteristic Matrices

III1.3.2.1. — Characteristic Matrices

Characteristic matrices are matrices of indicators
whose values correspond to a code used to describe
the topological network. Typically, the values of
these coefficients are 0, +1,—1. These matrices
therefore give the geometric relations existing between
the three constituents of the network: junctions,
waves, tubes.

The coding depends on the choice of each user
and a small number of characteristic matrices can
completely describe the network (although the com-
putations may be facilitated by redundant indicators).
We therefore chose the following characteristic
matrices:

— the Junction-Junction matrix: (J.J);

— the Wave-Wave matrix: (W. W);

— the Junction-Wave matrix: (J. W).

Finally, to completely describe an aggression, it is
necessary to know the tubes on which electromagnetic
couplings of external sources occur: we therefore
introduce the characteristic Wave-Source vector

(W.S).
I11,3.2.2. — The Jurction-Junction Matrix (J.J)

- This matrix is defined by the following code: given
two different junctions J, and J,.

{ (., =1If junctions J, and J,,
are connected by a tube
(J.D)yy=0 else.




For instance, the (J.J) matrix corresponding to the
network described in Figure 95 is as follows:

junction number
=column index
6 4 5 7 8 9 J
6 0 1 0 0 0 O
4 1 01 0 0 ¢
v.h=5 0 1 0 1 0 0
7t 0 0 I 0 1 1
8\ 0 0 ¢ 1 0 O
9 ¢ 0 0 1 0 0
1 junction number
=row index

It can be noted that this matrix is sufficient to fully
describe the tree structure of the network.

II1,3.2.3, — The Wave-Wave Matrix (W. W)

Given two waves, W, and W, the matrix indicators
are given by:
(W.W);=1if there is a junction J
such that wave W, leaves J
and wave W, arrives on J
(W.W),;=0 else.
In the example of Figure 9b, the Wave-Wave
matrix is written:

wave number=column index

1234567829 10
IF0O 10000000 07
201 00100000 O
31 00100000 O
4001001000 O

W.w=5001001000 0
6} 000010010 1
717000 01001 0 1
slooo0oo0oo00100 0
910 00 010010 1
olo 00000001 o

1 wave number=row index

This matrix is very important for the construction
of the scattering supermatrix [S]. The nonzero coeffi-
cients are in effect significant of the location of the
nonzero blocks in this supermatrix.

I11,3.2.4. — The Junction-Wave Matrix (J. W)

This matrix is used to determine the junction to
which each wave is related. We can adopt the follow-
ing convention: given a wave W; and a junction J,

. Wyy=1 if W, leaves J,
J.wo=-1 if W; arrives on J,
(J.w)v,=0 else
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Let us go back to the example of Figure 95, The
characteristic (J. W) matrix is as follows:

wave number /=column index
1 2 3 4 5 6 7

6 I1-1 0 0 0 0 O
4/-1 1 1-1 0 0 O
W)y=5 0 0-1 1 1-1 0
7 6 0 0 0-1 1 1
8 0O 0 0 0 0 0-1
9 0O 6 0 0 0 0 O
T Junctionnumber v=row index.

II[,3.2.5. — The Wave-Source Vector (W.S)

This characteristic matrix is used to determine the
tubes on which there exists an electromagnetic cou-
pling due to an external source. We use the following
ccnvention: consider a wave W

(W.S);=1ifthereis asourcecoupled
on the propagation tube of W¥;
(W.S),=0else.

This characteristic vector is used to determine the
location of the blocks of nonzero vectors of supervec-

tor [W¥].
In the example of Figure 95, (W.S) equals:

—

-
1
1
1
1
(w.S)= 6| 1
i
1

1
| 1|

T wave number =row index

O D CO 1N\ BB DN

—

IV. — CONCLUSION

Electromagnetic topology was developed in the
USA by C. E. Baum. To our knowledge, no paper
making a synopsis of the knowledge required for
practical use of this method has yet been published.
Herein, we detailed the steps in the topological proc-
essing of a problem: the topological breakdown and
writing of the BLT equation.

The first operation, undoubtedly the most impor-
tant and the most difficult, consists of breaking space
down into regions to obtain a hierarchy of the chan-
nels of penetration of the energy into the structure.




Depending on the subject investigated (currents on
shieldings or signals induced on cables), we show that
there are several possibilities of breakdown, using a
simplified example.

The second operation consists of establishing an
equation which governs the scattering and propaga-
tion of the interference signals in any point of the
system: this equation, established and applied by C.
E. Baum in the framework of multiconductor lines,
is presented herein in a form allowing all types of
wave propagtion to be taken into account.

It appeared that electromagnetic topology,
although using a very complicated mathematical for-
malism, represents a real simplification of the prob-
lem. In effect, it may appear unsuitable for processing
a simple case, but in complex cases where conven-
tional methods are inoperative, it continues to be
usable with no greater difficulty. This good suitability
to processing of complex systems is mainly related to
two characteristics: the ease of computerization and
the modularity.

The modularity is due to the capacity of the method
to break a problem down into several elementary
problems and manage their interactions. This break-
down requires creating a library of “elementary cou-
pling modules” to identify and express the widest
variety of electromagnetic problems. Certain of these
modules are already formalized (diffusion through a
wall, coupling of fields through openings, etc.).
Unfortunately, the presentation of the results often
lends itself poorly to their integration in the topologi-
cal method and they therefore have to be translated.
Other modules remain to be developed and will be
the subject of future work.

V. = MATHEMATICAL APPENDICES

APPENDIX 1
Calculation pf the Principal Value of a Matrix

Let us consider a diagonalizable matrix (A4); we
shall call the principal value of (4) a matrix (B) such
that (B)?>=(4).

In effect, let us diagonalize (A4); let (4), be the
diagonal matrix. There exists a unit matrix P such
that:

(A=(P)" 1 (4,)(P)

where

A if i=j
(A= { ‘0 else !

where (P)™! is the inverse matrix of (P).
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Let us set
(B)=(P)™'(4,)'*(P)
where

LR A
0 else

(Ad)il./jz = {

It is verified that (B)2=(A4). In effect:

(B)*=(P)"! (49! (P).(P)"* (49! (P)
=(P)" 4 (P)=(4)

APPENDIX 2

Exponential of a Matrix

Let us consider matrices (4), (4, and (P) of
Appendix 1.

We have
(exp (A))=exp {(P) (4 (P)}
=< S (B4, (P))

i=1
=(P)~ ! (exp (4,)) (P)

where
et if i=j
(exp(Ad))ij_ { 0 else.
APPENDIX 3

Integral of a Matrix

We consider a matrix (4) denoted (g;;(x)) depen-
ding on a variable (x).

The integral of matrix (4), denoted J (A4) dx, is the

matrix B whose elements are B;;= J. a;;(x)dx.
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