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Properties of Eigenterms of the Impedance Integral Equation

Carl E. Baum

Phillips Laboratory
Abstract

This paper considers the eigenmodes and eigenimpedances (eigenvalues) of the impedance (E-
field) integral equation for scatterers described by a closed surface. The modes are paired as electric and
magnetic modes. The eigenimpedances are decomposed into the parallel combination of internal and
external parts, these parts also being simply related between electric and magnetic modes.
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1, introduction

This paper delves further into the properties of the terms in the eigenmode expansion method
(EEM), specifically as related to the eigenterms resulting from the E-field or impedance integral equation.
The background is given in [2,5,6,15,26]. Our starting point is the impedance of E-field integral equation

- ol ‘nc) > =
IS(FS)-EéFs,s)=< (Fs,Fg;s);Js(Fs’;s)>

Zy(75.7555) = 15(Fs ) Z(Fs. Fois)- 15 (Fs)

impedance kernel (in time domain a convolution operator)

Z(Fs,F438) = =s10Go F,F's5)

Qi

»(F,F’:s) = dyadic Green's function of free space
Fofies (1.1)

1g(7s) = unit outward - pointing normal at 7 to closed surface §

= transverse dyad for S at 7;
1=10 + 1,1, + L1, = identity dyadic
E(W)(F,t) = incident electric field from sources in V,, or V;,, but not S
Js(Fs,t) = surface current density on S
<,>= symmetric product

integration over S with respect to common coordinates (7,75, etc.)
with sense of multiplication indicated above separating comma

Vg,U SU Vin = all three dimensional Euclidean space

~= two - sided Laplace transform over time ¢
s=Q+ jo = Laplace-transform variable or complex frequency

where our perfectly conducting object (scatterer) is illustrated in fig. 1.1. Note that the closed perfectly
conducting surface S can be simply or muitiply connected (e.g. a toroid).

The eigenvalues and eigenmodes are defined via




Fig. 1.1. Scatterer Consisting of Finite-Size Perfectly Conducting Closed Surface



(B Fiss) o 7509) = 2 g (For9)

(i.s'ﬁ (Fs’s) ir(rmrsv )>= Zﬁ(s);slg (Fs»5)

2(Fs,7s’;s) = ZtT (Fg.73:5) symmetric by reciprocity

<jSB (Fs»s )/:/3 (rs,s)>=1/31,/j2 orthonormalization

Zg(s) = eigenimpedances
Yg= Zgl(s)z eigenadmittances

Zg(s
Zﬁ(s)s ﬁz ( )E normalized eigenimpedances
(7}

jp(s) = Z,¥4(s)= normalized eigenadmittances

=25'(s)

Zy

/%’- = wave impedance of free space
o

A sufficient condition (but not in general a necessary condition) for a complete set of eigenmodes

spanning tangential vector fields on § is distinct eigenvalues. It is less clear what happens at discrete
values of s when, say Zg, =Zg, for f # B2 [17]. For example, the perfectly conducting sphere has no

special problems when eigenvalues are equal [8]. In the case of a numerical approximation to the integral
operator using the moment method (MoM) with N weighting functions the same as the N testing functions
one obtains a symmetric NxN matrix. One can check that N separate eigenvalues are produced for any

given s of interest, guaranteeing N mutually orthogonal eigenvectors [2].
Now write the kemnel as

Z"(Fs,i"s’;s)= (Fs.75:5) Zé S)jsﬁ Fs\S )jsﬁ (Fs.s) (1.3)
B ,

including the inverse as a spécial case. The identity kernelon Sis




iS(Fs)as(F" F') = EP(Fst§25)= 2;3,3 (Fs-s);:sg (Fé,s)
B

[ 8s(F-7)1(Fo)as = £(7s)
S (1.4)

[[isFe)8s(Fo = 72))- FolF3)as < (F)
S
7 (Fs) = tangentiai vector on §

For later use note that we aiso have
TS(Fs)as(Fs‘F.;):'iS(FS)X[IS(Fs)as(Fs _Fs')]XTS(;.;)

) %"[TS(FS)XJ?SB (7505|021 25

giving a representation in terms of what later will be used as complementary modes

;S(;) (Fs.5) = T5(Fs) x}"‘sﬁ (Fs.5) complementary eigenmodes

' ;ﬁﬁ)(rs,s) }.s‘ﬁ (rs,S) 0 pointwise orthogonality (1.6)
<fs(;)( F4,5); J_s(ﬂ) (rs,s)>=<TS(F§)><}S'31(F;,:);IS(F_;)xfsﬁz (Fg,s)>

= (T, Pk, (72.5)

=1 B1.82 {orthonormal}

Some auxiliary relations are [2]
23(5):(}} (Fs,s);Z,(Fs,Fg;s);fsﬁ(F},s))
2 2o0)= (g orsh L BulFerissh g (2
= 5(s jﬁ(rs,s) = t(rs,rs,.\:),JS',3 (Fs.s)

] ; Fs,s);?;(Fs,Fé;S);?sﬁ (F.;as)> _ (1.7)
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I Analytic Continuation from the Real Axis

In the integral equation we are dealing with quantities such as fields and currents which in time
domain are real. As such in complex frequency (Laplace) domain they are conjugate symmetric, i.e.

g.7(-"&5"‘)‘"'E*(“s’s) , ﬁ(fsys*)=ﬁ*(?s,s)
jS(F31S*)=}S* ;"s,s) . (2.1)
Z(;s,?;;S*)— é:(rs,rs,s)

for the various fields, etc. Then, in particular, for s real (i.e.=Q) these are real. Noting that the
impedance kernel is symmetric, then on the Q axis it is real and symmetric and therefore Hermitian (i.e.
equals its conjugate transpose). The real symmetric NxN matrix approximating this is also Hermitian and
has N orthogonal real eigenvectors whether or not the N real eigenvalues are all distinct or not [24]. For

continuous operators the results carry through [27], so we have

5 =Q (real)
Zg(Q) = real scalar
;sﬁ (F5,Q) = real vector (2.2)

- 2
jsﬁ (FS,Q){ dS=1

<f‘sﬁ (FS,Q);J:'SB (FS,Q)> = j

with the eigenmodes forming a complete orthonormal set on S.
As a passive object the eigenimpedances and eigenadmittances are positive-real (p.r.) functions, i.e.
Re[Z[;(s)]ZO for Re[s]=Q 20 (2.3)

where limiting cases of zero and infinity are possible onthe jo axis. Specifically the Zﬁ {s) have no
poles in the right half plane (RHP) excluding the jw axis. Furthermore, the f’ﬁ are bounded in the RHP
(since they are p.r. and we do not allow identically zero ZB(S)) so the Zﬁ(s) have no zeros in the RHP so

we have

Re[ZB(s)] >0 for Re[s]=Q>0 (2.4)

Note specifically on the real axis the impedance kemel is positive definite since

Zg(Q)>01forQ>0 (2.5)




From (1.7) the derivative of Zﬂ(Q) on the real axis is real and bounded, this derivative applying in an

analytic-function sense (i.e. independent of direction of ds).

As illustrated in fig. 2.1 let us analyticaily continue the eigenimpedances from some point on the
positive Q axis to some more general point s, say in the first or second quadrant via some path Py,

avoiding any singularities. Then repeat the process to s* by a path P, which is the reflection of P

through the Q axis which we can indicate symbolically as
&
Py =P {2.6)

i.e. conjugate symmetric paths. Following the parameters along the two paths allows us to define 8 such

that

Zp(s*)=2(s)
T 4= Se (2.7)
fSﬁ ("Sss*) = ']S,B (rs»s)

Thus not only for each eigenparameter is there a conjugate parameter at s, this is the conjugate of the
same parameter (same f). if one is at some starting point on the Q axis where say two

eigenimpedances are equal, say for B; and 35, then there is the question of degeneracy, i.e. how to
properly separate the two orthogonal modes. In such a case move the starting point slightly along the Q
axis where this degeneracy no longer exists, uniquely identify the two (real) modes before analytic

confinuation.



e

s plane
$=Q+jo
S ‘ﬁ
Py
starting
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P2
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Fig. 2.1. Conjugate Paths from Positive Q Axis



iil. Boundary Conditions

In deriving the impedance integral equation we consider some scattered electric field

= (sc)

E(F.s)= _<§(F,F;;s);}'s(ﬁg,s)> (3.1)

res

= (s¢)
which exists in both V., and V;,. The associated scattered magnetic field H(r,s) related by the Maxwell
equations, can also be found by an integral over the induced surface current density }s(Fg,s) using a
different kernel related to the curl of the above kemnel. Given some incident field we have the boundary

condition on S that the tangential components of the total electric field are zero, i.e.

= (ine) = (se) |
I(Fs):| E(Fs.s)+ E(F5,5)|=0 (3.2)
Taking the limit as 7 — 7 in {3.1) and applying (3.2) gives the impedance integral equation in (1.1). Note
that taking tangential components makes the singularity in the kernel at 7 = 7; integrable [16].

Now the form of the incident field has not been specified. These come in two general forms

(inc.ex)
(F,s) ,H (F.s) = external incidence, sources in v, (including c) (3.3)

=(inc,in} ~ (inc.in)

E (F,s) ,H (F,’s) =» internal incidence, sources in vy,

Sources on S are excluded from present consideration except in a limiting sense from a single specified

side. Inthe case of external incidence we have

= {(sc,in) = (inc,ex)

E(F,s)=-E (F,s) |_ v (3.4)
2(scin)  a(incex)| < @

H({F s)=-H (F,s

with both satisfying the sourceless Maxwell equations. Note that for external incidence no power can
penetrate through S to V;,. This is sometimes referred to an extended boundary condition [14,28].

Similarly for internal incidence no fields reach Vv, so we have

FE--EF | -
) FeVy (3.5)

~ (sc,ex) = (inc,in)

H (F,s) =—H (F,s)
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On S we also have the boundary {(discontinuity) condition

= - = {ex) = ‘_’})

Js(Fs,8) = 1g(Fs) x| H{Fg,s)— H(Fs.s) (3.6)
where the exterior magnetic fbield is evaluated just outside S and the interior magnetic field just inside S in

the limit 7 — 75. The incident field is continuous through S, so only the scattered field contributes to the

surface current density as
= - = (sc.ex) = (sc,in
JS(FS,S)=IS(FS)>< H (Fs,s)- H(Fs,s (3.7)

This allows us to divide the surface current density into two parts as

ZS(FS’S)=js é?:)s +js é;”;)s
= (ex) . ~{sc,ex ’
fs<(’-s’5)= s(?s)XH%?s,S§ | (3.8)

the sign reversal being accounted for by the convention of the unit surface normal for the closed surface
pointing toward V,, and away from V;,. Note that while the fields are considered scattered fields they

can also be considered as radiated fields if one considers the surface current density as a distributed
source on S. Such a source sends real power (for s = jw) into V,, (radiation) and zero real power into

Vi (lossless).

-11-



\A Eigenadmittance Paris

With these preliminaries consider any incident field (external, internal, or a combination of
both) and consider a single eigenterm of the impedance integral equation (by operating with
isg (Fs,s)}"sﬁ (F3,s) as in the identity) as

inc) = = z Y
Yﬁ(3)< ("Sv )J‘.s'ﬂ (’s»5)>.lsﬁ(’s= )= <Js(‘;s"5);fs5 (F§’5)>fsB {Fs.5)

<Js (rs,s) fsﬁ (rs,s)> ' (4.1)
Ya(s)=25 1(8)— < s >

E(I’;,S);jsﬁ (F_;,S)

Of course, our choice of the incident electric field should be one that is not orthogonat to the
eigenmode of interest on S.

Now consider a case in which a wave is incident from Vv, (only}. The internal scattered
fields are the negative of the incident fields as in (3.4). Expand these internal fields on S via the
identity (1.4) as

- Esc } = (inc,ex)
IS("S) E(7s,s -_18("5) E ("s’s)

=_Z< rs, Js’g rs, )>jsl5 (Fs*‘y)

(4.2)

= (in) - se,in)  _ = {inc,ex)
JS((rS, s)=~ S(rs)xHEr:, 3 15(F5)x H (Fs,5)
in) -

%(f&s,s):fw (f;,s)>?s,3 (s

= (inc,ex) -

=§<ls(r3)xH(r5,s) jsﬁ(rsa )>Jsl3("s’s)

The expansion for the surface current density is equivalent to the expansion of the tangential
incident or scattered magnetic field just inside S in terms of the complementary modes via the
identity (1.5). This expansion is the same as originally used for the electric field and surface
current density in the integral equation. Here we have identified the internal part of the surface
current density.
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Now as a gedankenexperiment let there be a single surface-current-density mode ( Sth)

driven as a source. From the impedance integral equation this gives only one mode (the same
B) for the tangential electric field on S, which we can consider as the scattered electric field in

(4.2). In response to this "source” mode there is a unique distribution of surface magnetic field
inside S which we take in the form of an internal surface current density as in (4.2). Identifying the
Bth mode as the internal part of J; we can relate it to the scattered electric field by a coefficient
_p(in)

Y B (s) as

Btytia)-(urd Elty )

in sc,in w(in z(incex)=
=yl )(s)< {rs,s; jsﬁ (rs,s)>—yé )(s)<E (Fsrs ;st (r§,s)>

f’gn)(s)s internal admittance (4.3)
=2;1557(s)
yg")(s) = normalized internal admittance

With a general incident field (from V,, or V;, or combination of both) we have
Ts(7s)- [E‘(sfsf"ﬁ CEC 3)} G
= = (inc) =
< (m)(;é’ )Jsﬁ (72,5 )> (m)(s)<E(Fs’,s);jsﬁ (Fs’,s)>

The scattered field (including fﬁ"”)) is proportional to the strength of the assumed source surface-

= (inc)

current-density mode jsﬁ, i.e. with a coefficient < (Fs.s); J:B (F;,s)> which is just a complex

number. The special choice of an external incident field is just to give a condition in which the
extended boundary condition can be applied for relating the incident field to the interior surface
current density (defined by interior scattered magnetic field).

The proportionality constant (constant with respect to space) is chosen in this form because
it represents an admittance. It has various equivalent representations. From (4.3) we have

13-



2o i) 13 3

(E%;::?;) ;53 (’s-5)>
(i {4.5)
<H ((rs,s) ;S(;) (rs,s)> .

(é%?” Vg )

where the complementary mode enters in weighting the magnetic field. Note that this formula

..(m (s)=

applies for an arbitrary external incident field (electric and magnetic), as long as it is not
orthogonal to the mode. The weighting in effect converts the assumed incident field to one which
is proportional to the eigenmode on S, and then takes the ratio of surface current density to
incident electric field.

Now a dual of an incident field is aiso an incident field. The sources of this field are also
duat (e.g. magnetic currents as dual of electric currents) but these are away from § and do not
enter into the formulas. So let the external incident fields in (4.4) be chosen as dual fields giving

= (inc,ex,d) (e
ZO<H (72.5) js(ﬁ)(F_;,s)>

=(in), N _ _
g (s)= s (4.8)
E (F3,s); jsﬁ (Fs,5)
Now use the transformation formutas relating fields and their duals (Appendix A) to find
:}"{_‘C"’x): -
E (Fs.s); jsﬁ (Fs.5)
-(In) (S) - (4.7)

(mc.ex)
ZO<H (rs,s),]sgﬁ)(rs,s)>

as an alternate representation reversing the roles of the incident electric and magnetic fields.
Noting that this internal admittance can be computed using any external incident wave consider a
uniform TEM plane wave in which case (4.5) is transformed into (4.7} by a rotation of the
polarization around the direction of incidence by an angle of 7 /2.

Similarly let there be a wave incident only from V;,, where there are electric and/or magnetic

sources to produce this wave. Now expand the external fields analogous to (4.2} as

14~



= (inc,in) = 4 (4.8)
=-3(E 55): Jsg (7-5) Visg (7s»5)
B
= (ex) - = {5c.ex = (inc,in)
Js(Fs.8) =15 (F )xH%rs,sg——lg('r's)xH(Fs,s)

(incin) -

=_Z<"S(Fs’)x;{(r .S} Jsﬁ(rs, )>7s/3(FSvs)
B

Note the change of sign on the magnetic field due to the orientation of the unit surface normal.

Again choose the surface current density as a source proportional to the Bth eigenmode,
giving thereby the scattered electric field as having only this mode in (4.7). ldentitying the SBth

mode as the external part of J:s, relate it to the scattered electric field by a coefficient —Yl(fx)(s)

as
=z _(_ex) z = (inc,in) =
JS(rS’S);jSB(rS’S) 1S(’s)XH("s’s) J B(rs, 5)
C,eX) = (inc,in) = ‘
=26y ) -1f ><s>< CHAACR) 49
) (s)= external admittance = "yB )(s)

9/(3"1) (s)= normalized external admittance
. =(imein) -
Z, ls(rs)xH(rg,s);jsﬁ (7s,5)
- =§"£'C’i")=. R
E r§,s);jsﬁ (Fs.5)

<E:i‘;}:,'"3) .;Sﬁ (Fs.s )>



Note the similarity of the external eigenadmittance to the intemal eigenadmittance in (4.4) with a
change of sign to account for the orientation of 'fs(i-‘s). With a general incident field (from

Ve OF Vi, OF combination of both) we have
<(sc.ex} = (i) ]
(’ )| E (Fsis)+E (Fs.s}|=0

(ex) - = (inc) -
<J’ (7s. ),;Sta(r's,‘t»‘))=Y‘(;?JC)(:;)<E(i-'“;,s);js’5 (Fs’,s)>

(4.10)

Again the scattered field (including 7 (¢9)) is proportional to the strength of the assumed source

surface-current-density mode ; . The special choice of an internal incident field is again to
B

allow the imposition of an extended boundary condition for relating the incident field to the exterior
surface current density (defined by the exterior scattered magnetic field).

Again a dual incident field is as good as any other, so we have
= (inc,ind) =y
ZO<H (rs,s) ,Js(ﬁ)(rg,s)
{(4.11)
< (inc,ind) =,
<E (Fs.s) isg (rs,s)>
Transforming these to the “unduals" we find
Ync Lex) 2(c)
E(Fés) jsﬁ {Fs,s)

a = (incex) =
<H (Fs»s)s jsﬁ(r§,5)>

557 (5)=

(4.12)

Basically any internal incident field, such as from an electric or magnetic dipole, will work in (4.9}
and (4.12) as long as the integrals do not give zero.

Now put the external and internal parts back together. Between (4.2) and (4.7) we have the

complete expansion for the tangential electric field and surface current density on S. From (3.8)
and (4.1} the coefficient of the Sth mode is writien as

Yﬁ< i‘;’:’))jﬁ(;§,5)>=<.?S(Fs’,s);jsﬁ(F§,S)>

(ex) = =(in}) -
<Js (Fors)i ], jsﬁ (rs,s)>+<.ls((rs,s) Jﬁ(Fg,s)>

{4.13)
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Now the external and internal surface current densities are associated with the scattered
magnetic field, or equivalently the fields radiated by ]‘sﬂ {Fs,s) as a source. Look at this as a

= (inc) =
source with a coefficient <E(?§,s);jsﬁ (F$,s) ). Thenusing (4.4) and (4.10) we have

~ /= g"“:) .
Yg <E(rs’,s);15ﬂ (r§,s)>
~(ex :g_if‘c); - ={in :.(.[nc):: -
= 1(3 )(s)<E(’s’s);Js[;("s"s)>+Yé )<E(rs'r5);fsﬁ(’s"5)> (4.14)
Tp(s) =75 (s)+ ilg"")(s)

Knowing the modes one can now solve for not only the ?/3 from the impedance integral

equation (1.1}, but also the external part from (4.9) and/or (4.12) and the internal part from (4.5)

and/or (4.7).
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V. Mode Paring

Recall from (1.5) that the complementary modes also can be used to represent tangential
fields on S. However, we do not yet know if they diagonalize the impedance kernel. Consider
some surface-current-density complementary mode as

T Fers) =IO Fors) =T s o) g (o) 5.1

with a coefficient T lgC)(s) (units As). Inorder to satisfy the Maxwell equations and boundary

conditions let us consider certain appropriate interior and exterior fields, similar to the approachin
section IV. Note that if some electric and magnetic fields satisfy the Maxwell equations, then the
dual fields (away from sources) necessarily satisfy the Maxwell equations, and conversely. On S,
however we will still require that the surface current density be electric (no actual magnetic
currents).

Considering first the exterior scattering problem let there be some external incident field
which we take as a dual field. In V;, the extended boundary condition gives

= (sc.in,d)
E (r,s) =-E (F,s)
= (sc,in,d) = (inc,ex,d)

H (Fs) =-H (F.5)

(5.2)

Now expand these fields on S {just inside S) in terms of the eigenmodes as {Bth term)

= (sc,ind) (sc.in.d) = =
Eg (Fs»5) E<E {Fs.5) ,jsﬁ(rs, )>jsﬁ {Fs.s)

(? d) - i}(sc,m d) =~ - = 53
Jsp: Fs.S)=- S(’s)x (7s. ).Js‘g("ms) fsg(rs’s) (5.3)
(sc,in,d) = {sc,ind) =

a (Fs.s) e~<ls( )% H (75.5) 5 jsﬁ (F.s )>.1'S(Fs)xj:s5 (Fs»5)

Here we keep the actual distributions (modes) on S together with the coefiicients. Note that the
dual electric field and dual interior surface current density are expanded in terms of the fsﬁ
modes, making the dual magnetic field take the form of the complementary modes i

J.s'ﬁ

Now transform the dual electric and magnetic fields back (fo the "unduals”) giving
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= (sc,in = (sc,in) = -, 2(e),m
Hﬁti"s,s;5<H275,s;;jsﬁ(rs,s)>1_£;)(rs,s)
(5.4)

se,in

Eirs.s3=—<ls(rs)xsfi§‘f3 ;

jsﬂ ("s,s)>18(’s)x1slg (’s’ )

The internal part of the associated surface current density is just

sc,in
Jsﬁ"(rs,s =- rs xH Fg,S

=_<H2i§’,‘"3 g (f;,s>>Is<a)xisﬁ (o)

Now that the electric field and internal surface current density are both expanded in terms of
complementary modes, let us replace the scattered fields by external incident fields giving

s (nee) /. - (inc,ex)
Eﬁ (Fs.5) = <15(Fs’)xE (F5.8); jsﬁ(rs, )>Js( )(rs, )
[ =(inc.ex) < | |
=<E (f;,s>;f§;(rs,s>> (7525 (5:8)
=(; = (inc.ex) -
J<‘"’(fs,s>=<ﬂ (7525)sJsg (7 >>J§ﬂ’<rs, )

Relating these defines what we might cail the complementary internal admittance ( Stk

ing), . z(inc.ex)
Js,ﬁ Fous)=F C)(s)Efrs,g 7 V)E (7ors)

Y‘[(;"’C)(s) = 20’15/(9"") = complementary internal admittance

= (inc,ex) =
, ZO<H (F_;,s);jsﬁ (Fs',s)>
-(m,c) (S) - (57)

where the relation to internal admittance comes from (4.7). Analogous to (4.4) let us have an
arbitrary incident field (from V,, or V;,, or a combination of both) giving in terms of

complementary modes
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(3513 G0 )= <s><éérs,sf 197 )) (7,5

J sg
(i (5.8)
—Y‘""‘”(s{ (Foos )fﬁﬁ’(rs,s)>fs,3’<rs,s)

The previous use of an external incident field was merely to determine an admittance using the

extended boundary condition. A general incident electric field stifl produces a scattered electric
field via tangential field on S.

Considering second the interior scattering problem begin with the dual fields associated with
internat incidence as

~{sc,ex,d Jin,d
£

= (sc,ex,d) = (inc,in,d)
H (75.s) =-H (’s’s)

Expanding these on S in terms of the eigenmodes gives the Stk term as
= (sc.ex d) =(sc.ex,d} = P
Eg (’fs‘as) E (Fs.5) J.s‘ﬁ("s, s) Isg (rS’S)

= (ex,d = (sc,ex,d) =
JErs, S <13(rs)><H (Fs.5) ,Jsﬁ(Fg,s)>jSB (Fs.5) (5.10)

~ (sc,ex,d) = (sc.ex.d) ~
Hg (5,5) =- IS("s) X H (73,5) jsﬁ(rs,s)>lg(rs)><jsﬁ(rs, )

Again the dual magnetic field ends up expanded in terms of the complementary modes J:S(;)
because the dual interior suiface current density is expanded in terms of the fs 5 modes.

Transforming the dual surface fields back (to the “unduals") gives
i (o) = AR g G0 i
Hp (rs,s) ={ H{Fs,s JSﬁ(’Ss 5) fs5(r§’s)

éﬁ ﬁf_’:"f = "<15(’s)x Eg'cs’a; ;5,3 (Fsss )>TS (Fs)x J?Sﬁ (Fs:5)

(5.11}

~ while the external pan of the associated surface current density is just
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< A7)

(5.12)
SC, -
< Ers,sgl (75 >15 ’s)xlslg("s’)

Replacing scattered fields by internal incident fields gives

’—\
v
mu

= (inc,in (inc,in) =

Eg (;':;’,sg ‘-<IS(’s)XE(’Sv ): ﬁ(Fs”s)>‘iS(7s’)x7sB(Fs»5)

(inc,in) -
=<E (7s.8)s JS(B)(fs, )>/fﬁ)(rs, ) (5.13)
= {inc,in) ~

J(;‘)(rs,s) —<H (7§,S);fsﬂ (F§,5)>j’§;)(?s,s)

Relating these gives the complementary internal admittance Btk as

T8 (sos) =T 0 Eg o) = r{)(s)Eg !

Yée""’)(s) = Z‘ly(""c) (s) = complementary external admittance
= (inc,in) =
Z, H("s, ) Js'B("s’ )
J(exc) _
i) =
<E s “;’(?;,s)> .

-1
=55 ()

where the relation to the external admittance comes from (4.12) Analogous to (4.10) now
consider an arbitrary incident field giving in terms of complementary modes

- (ex) - lexc sc.ex) « ¢
<J ErS’ )Js(ﬁ)(’s’ )>Js(ﬂ)(’s’ )=‘Y§;ex' )(S)<Eé"s’ )’J§B)(’s' )>Js(ﬁ)( )

{5.15)
=7 C’<s>< T s )>z§ﬁ’<rs, 5

The previous use of an internal incident field was merely for application of the extended boundary

condition in computing an admittance. A generai incident electric field still gives a scattered field

via the boundary condition of zero tangential field on S.



Now combine the external and internal parnts from (5.8) and (5.15) as
(inc), =,
[Y(ex.c)(s)+y(uz.C)(s)]< (s.9); f.gﬁ)(" 515 )>fs(ﬁ)(’ 515)

ST CeE SRR
S RCERACRY LRy o
AT NI
where we have identified
=20 =F 0 022 517

. ) 1 . =1
350 =3 )+ 35N =55 ) + 57 )

So from (5.16) we see that the boundary conditions on S relate the tangential part of the incident
electric field to the surface current density via the complementary modes. Summing over  and
noting the identity (1.5) we have

- = (inc) = (mc
5B )= BB )
B
=22‘(36)(s)<;s(r3, )js(ﬁ)(rs,s)>j(ﬁ)(rs,s) (5.18)
B
=<§,(Fs,rs’,s) Jo(Fs )>

7 Z (Fs.Fgis)= ZZ( )(s)j(c)(rs, )js(ﬁ)(rs,s)

rs,rs,s) ZY(C)(s)j(C) rs,s)jc(ﬁ)(rs,s)

So now we have a diagonalization of the impedance integral equation in terms of complementary
eigenimpedances and complementary eigenmodes.

For simplicity consider the case of distinct eigenvalues so that we can easily compare the
two diagonalizations. Consider a surface current density with & spatial distribution of one of the
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original eigenmodes js 5 : then the associated electric field (tangential part) is proportional to the

same mode, i.e.

}S(Fs,s) = 78(‘9)25 (Fs»s)
(5.19)

- 4 inc) ~ = ~ ~ =
IS(FS)-E((Fs,s)= Zﬂ(s)Js(Fs,s)= Zﬁ(s)ls(s)jsﬂ (Fs»s)

Using our new diagonal representation from (5.18) we have

(5.20)

For one 8’ operate (multiply and integrate over S) by ;S(ﬁ) giving

A7 s Ty (5)) =2 6 ) .58, ) 521
Assuming for some B’ that

(5.22)

(7962513, 5.9 20

then
Zl(f,) (s)=Z5(s) (5.23)

and since the eigenvalue Zﬂ,)(s) is assumed distinct, i.e.
Zéc) (s)# Z}(g“:)(s) for each 8" = B (5.24)
where we restrict our range of s for this to be cormect (i.e. avoid points of eigenvalue degeneracy).

Then we have
(5.25)

<j§;2’ (7e.s); J:sﬂ (Fivs )> =0 for each B” = B’
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is orthogonal to ali the ;( ) except ;s(") Then jsﬁ must be representable by j( ) alone,

ie. }'Sﬁ sp- spr

which allows us to identify

:’?s(;?v (Fso8)= ifz'sﬁ (Fs.5) (5.26)

due to orthonormality.

Viewed another way the diagonalization of the impedance kemel is unique for distinct
eigenvalues. A distinct eigenvalue in one representation must equal an eigenvalue in the other
representation, and similarly for the corresponding eigenmodes. There is then a one-to-one
pairwise correspondence between the terms in the two representations, i.e.

26) 9% (Feus )ik (F525) = 25 (575 (s 15)y (Fivs) ‘ (5.27)

Note also from (5.22) that 8’ = 3. So now partition the 8 index into two parts which will be later

associated with electric {e) and magnetic (h} eigenmodes with

B=(5r)

?sh,n(Fsas)Ef;(c) (FSsS)=TS(Fs)xjsen(Fs’s)
.:f;se‘n(?s's)“"fﬁh) ("Sas)‘_IS(’s)xJ’sh (Fs:5) (5.28)

Zhn(8) = ZL0() = ZoZhn(s) = ZoT5 5 (s)

Zon(5)= 2L (5)= Zotenls) = 2,55 L(5)

$en(s)=35(s)+ 500 (s) = y,,,) (s) +y("‘) (s)

Shn(s) = 320 ()+ 35 (5= 54 (s) +y“’"“(s)

One thus only needs half the modes and half the eigenadmittance parts, the remaining terms being
expressed in terms of these.
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VL Interior Eigenadmittances: Reactance Functions

Consider the Poynting vector theorem in complex-frequency domain without sources in V_

(7]

f [E-(;S,s)xi:(;s,-s)].ls(;s)ds

S_

- jl:eOSE(F’s) . E’(F,-S) —uosl:-i(?',s) . ﬁ(F,-S)}dV

V-

Here S_ is taken as just inside S with the limit taken as S_ — S for present purposes. Similarly
V_ is the volume inside the closed surface S_, and V_ — V;, in the limit. With no sourcesin V.

the volume integral in (6.1) is over terms which are manifestly odd functions of s. So we have for
the interior problem

[ | EFyus)x A(Fsums) | Ts 7 das
S_

- [B [ <A o)s

S-

AR
S_
= odd function of s

If one sets s = jw then conjugate symmetry replaces functions of -s by their conjugates and the
above implies zero real power into V_ (lossless).

Applying this result to the case of an external incident field (no sources in V;,) we have
= (inc,e.x - - :(inc’ax)
E(F5,—s)| 15(Fs)x H (Fs.5)
= (inc,ex)| _ = (sc,ex
=—( E(Fs,—5); IS(FS)xHiFs,s;
= (inc,ex) = (in)
={E(Fs,~s)Js(Ts,5)

= odd function of s

Now using the representations of the identity




T5(7; )85 (Fs - 75) = Zfsﬁ (;s,s)f'sﬁ (72.5)
B

= = (6.4)
=2js5(Fs"s)fsB (’.'s’"s)
B
we have
- = (inc,ex < (inc,ex) = -
15(@).52?5,-53 = 2<E{F§,-s3;jsﬁ (F;.,s)>jsﬁ (Fs.s)
B
= (in) - = (inc.ex) - :
T (Fsos5) = 2<xs (Fs}>x H (Fs.5) Hsp (f;,s)>js‘3 (Fs.5)
B
= (inc,ex) « (in) ~ {inc,ex} - ~ (inc,ex) ~
<Eé?§,—ss;fs (Fé,s)):2<Eé?§,—s§;jsﬁ(rs, )><ls(rs)><H (F5.8)s jsﬁ (F_;,s)> (6.5)
B
= odd function of s
So let us consider that the external electric field is chosen to take the particular form
..(mcex =
E (Fs,s) = Eﬁ(’s,s) Eﬁ(s)f.s‘ﬁ (’s,—ﬁ')
- (incsex) (6.6)
Bpls)= < (Fevs) s Jag s)>
i.e. with spatial form of the eigenmode of -s. With this choice (6.5) becomes
2 S = (inc,ex) -
E,B Fgi—S Jsﬁ(rs-s) Ig(75)x A (F5.s) fsp(’s' 5)
= (inc,ex) ~
_Eﬁ(—s) Ig(Fs)x H (Fi.s)s jSB(rS, 5)
- = ., 3 (in) v
=Eﬁ('5)<Eﬁ(rSaS);]Sﬁ (rs ))Yﬁ (s) (6.7)

= = 3 ., z (in)
- Ep(-0)Eg (N op (o5 Jop (72.5) T3 (9
= odd function of s

where we have used (4.5) for the eigenadmittance. Evidently we have
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Eg(~5)Eg(s)= even function of s

<J;SB (?;,-s);J:‘sﬁ (?;,s)> = even function of s
and furthermore on the jw axis
<.7s[3 (Fs’,jco);]‘sﬁ (s, jw)>= 1 (orthonormality)

(i (- Tog 75.0) = <f':ﬁ (7. j0) jsg (7§,jw)> (6.9

= real humber =1
So (6.7) gives

74 () =~7§"(~5)= odd function of s (6.10)

Since the internal eigenadmittance is a p.r. function (section Ii), it has no singularities in the
RHP, and since it is an odd function of s it has no singularities in the LHP. This is a reactance
function [22,23] (Foster's theorem) with properties:

1. ltis an odd p.r. function
2. All poles are first order and lie on the jw axis.
3. All pole residues are real and positive.

4. All zeros are first order and lie on the jo axis.

5. All coefficients of zeros are real and positive.
8. Poles and zeros alternate on'the jo axis.
7. s=0is either a zero or a pole.

Re| 3¢ (5) |> 0 in RHP
g. Re yp (s >0i

- T

Re yf;”) (s) |>0inRHP

- - (8.11)
Re yg")(s)]w in LHP

L

R

[¢]

y}_{")_l (s)T <0inLHP




Note that for this electromagnetiq problem (as distinguished from a finite lumped-element circuit
problem) s = is neither a zero nor a pole.

Now take the formula for the normalized internal admittance (any of the several being
suitable for present purposes) as

I f=r =(b_15,ar) = —-
. Zo{ Is(75) % H (73,5) 1Jsg (755)
yl(;n)(s)= -([nc‘a) - <6.12}
<1§ Fis, (r-;,s)>

An acceptable form of external incident wave is a plane wave
{p) . A
E(r,s)= Eof(s)lpe—yll"
=(p) I
H{F,s) = %f(s)ll X lpe_yll"
Qo

Y =—= propagation constant

|t

1
c=[o€,] 2 = speed fo light
1, = direction of propagation
- - {6.13)
1, = polarization
Il --l.p =0
f(t)= incident waveform

As indicated in fig. 6.1 let Fr be the first point the wave touches the scatterer and 7, the last
point with distances -Lr and L, respectively the distances from the time reference plane

through the origin [8]. As Re[s]— o in the RHP the contribution to the integrals is dominated by
the contribution from a region Sy centered on 7 where the exponential is largest as

Zo<'1'5 (Fe)x ﬁ(p)(i’;,s);fgﬁ (F;,s)>
— E, f(s) J.[TS (F_;)x['l'l x1, ]e-yﬁi_; ]fsﬂ (F2s)ds’
St
= Ef(s) [[-Tix[TxT,]) g (Frs)e™ 13 45 (6.14)
Sf
= E,f(s)1,- j fsﬁ (72.8)e" 0745’ in RHP
Sf '
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time
<. reference
~.plane

Fig. 6.1. Scatterer liluminated by Plane Wave (External Incidence)
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<1§i52 ,s);;’sp (F;,s)>

- E,F(s)1,- J’};ﬁ (72,s)e "1 754s"  in RHP
St
As in [6] the behavior of the exponential decay away from 7¢ for Re[s] — +<= dominates the
assumed slower variation of the mode around 7y . So we have

757(s) > 1in RHP (6.15)

Similarly as Re[s] — —e= in the LHP the contribution to the integrals is dominated by the
contribution from a region S, centered on 7, where the exponential is now largest as

ZO<TS(FS’)>< Ij(p)(Fg,s):;s‘B (F§,5)>

- E,f(s) J‘[TS(?})X[TI xhl"[,]e”ﬂl';é } ?Sﬁ (Fe,5)dS”
Sh

= E,f(s) J'[-l.p x[-fl X Tp]]-jsﬁ (F},s)e“YII'F:‘dS'
Sb

(6.16)

=—E,f(s)1,- ﬁsﬁ (F2,5)e "17548"  inLHP

- E,f(5),- J'fsﬁ (Fo,s)e™ " 175ds”  in LHP
S

So we have

;g")(s) —>-1inLHP (6.17)

with this result and (6.15) consistent with an odd function of s in (6.10).

Considering a pole expansion of the internal eigenadmittance write a pole expansion as
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. N
5700 = s+ Lanle=snl”

Re[s,] =0 (6.18)

If we assume N finite then there is some largest |s,,| and we have

5‘(Bin)(s)=ams+ao+0(s'1) ass—o oo (6.19)
From (6.15) and (6.17) there is then no pole at « and a, cannot be both +1 and -1. So we
conclude that the internal eigenadmittance has the properties we can append to (6.11):

9. yg")(s) —+1in RHP

yg")(s) —-1inLHP

10. Number of poles is infinite. (6.20)

11. Number of zeros is infinite.

At s=0 the internal eigenadmittance must have either a zero or a pole. If itis a zero write

Y[(;")(s) =77 (s)=5Cy" +0(s%) as s >0 (6.21)

where B is now taken as (e,n) i.e. the nth electric eigenmode. Similarly if there is a pole at s=0 we

have

1
i)

Y[(;n)(s) = Y}(If:)(s) = +0(s)ass—0 | {6.22)

where the next terms in the expansion are limited by (6.10) giving odd terms in Taylor and
Laurent series. For the same n the two modes are complementary giving

in ey -l
ZOY(e’;z(s) = l:ZoY(;:,Z(S)}

i 6.23)
LS:H) =72 =Ho (

cm =% e,

In order to evaluate the coefficient as s — 0 we need consider only an E mode. Rewrite
(6.12) in the form
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=(inc,ex) =
<H((Fs’,s); Fonn (;;,s)>
@(@f’,ﬁzf&n (Fs'-5)> (6.24)

- sC,(f") + 0(s3) ass—0

50 (5)=

Choosing the plane wave in (6.13) gives

T U3 -y} 7L 3 =
m [11X1p]-<e Yl"s’JSh,n(rs,s)>

Zos T - I'F' z =
1P<e Yl S;jse’n(rs,S)

(6.25)

Considering the denominator integral as s — 0

I, <e— g (;;,s)> A A )
S

=-1,- J' FiVs Jop p (72:0)dS”

3 (6.26)
=-1,- (real vector)

where integration by paris casts the result in terms of the divergence of the eigenmode, giving an
electric-dipole-like term.

Cne can take as the definition of an E mode a not-identically zero divergence at s=0,
consistent with the capacitive behavior in (6.21). As discussed in Appendix B, tangential vector
fields on S can be represented by two parts, one with zero surface divergence and one with zero
normai surface curl. Intransforming a mode to the complementary mode, operation by TS(Fg)x
interchanges the roles of these two parts, converting electric to magnetic and conversely. The
numerator integral as s — 0 should be 0(s) as s — 0. As a magnetic mode then this is the case

provided

vs .-}:Sh’n (F.;’O) = 0
) X (6.27)
1g .[vs Xjsp (FS,O)]= -V, .1:1S(Fs)>< Ishn (FS,O)]# 0

and consistent with this
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Vs Jspn (Fs:0)#0

) ) (6.28)
15(7) -[vs XJsen (?s,o)] =-V, -{13 (Fs) X Jsg (r‘s,o)} =0
Expanding the exponential in the numerator of (6.25) then gives as s » 0
1 1+ T —')’Il';’ 2 = . 1 = 3 I = 2 =7
Z—s[11><1p].<e s’—’Sh,n(rs’s)>_)—zz_s'[llx1P]'<_711'rS’JSh,n(r3’0)> 629
.29

=—&,[f xip]-<11 7 ,]’sh,n (?;,0)>
Writing the integral as
<Il 5 Tshn (?;,0)>
- %KL o (;;,o)>+<i1 o (7;,0),?;” (6.30)

1 /= = 3 4 T3 - =r
=-2-{<11~rs,_]s}1,n (rs,0)>—<11 '-lsh,n (rs,O),rs>]

the first part (symmetric) gives an electric quadruple term [25] which is zero since the H mode is
divergenceless at s=0. The second part is a magnetic-dipole-like term which is rearranged [27] as

T o= 3 = 1~ =, X3 =r
<11 Fh ’-’Sh,n(rs’o)>= —511 ><<r S>’<.]Sh‘n(rs’0)> (6.31)
Then the result of (6.29) becomes
_50[11 X Ip].<il Pl ,]‘sh‘n (7—;,0)>

=golp.[ 1x<11'F§’jsh,n(F§’O)>:| . (832)
Ep T - z =
=?o‘1p‘ rs*]sh,n("svo)>

=¢€,1, - (real vector)

Combining (6.26) and (6.32) gives the interior modal capacitance as
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1= =iy =
Elp -<rs>,(1s}t,n (rs,0)>

Tp ',[fse.n (F_;,O)dS'
by

clim = ¢, >0 (6.33)

Since this capacitance must be positive (from p.r. condition) this ratio of integrals must be
positive. Varying over all possible 1, we have

[T (Fir0)e5"= _<;;,v; Fion (;;,o))
S

(6.34)

£ 1 -y '—.' -
= §<rs s 7 s'0)>
C’l

so that the electric-dipole-like and magnetic-dipole-like vectors are parallef (have the same
orientation). Note that {(6.23) gives the interior modal inductance for the complementary magnetic
mode from (6.34) as well. '

Note that the above results are for the case that the appropriate dipole moments for the
modes are non zero. This is not always the case as the example of the sphere illustrates {1,8]. In
this example the dipole terms correspondio n=1, and n22 corresponds to higher order
multipoles. In such a case that a given n has no dipolar parts, one can extend the analysis by
continuing the expansion of the exponentials until a non zero term (for small s) is obtained. Other
forms of external incident waves can also be used in the formula for the internal eigenadmittance.

So now index the internal poles and zeros as indicated in fig. 6.2. Since the poles
correspond to internal natural frequencies iet us start with them. Since s=0 is a zero for E-mode
eigenadmittances, we have

s(i“) = E—mode poles = H-mode zeros

e,nn’
sgf';?_n, = ‘Sg’:;,n' = imaginary (6.35)
n#0

The natural frequencies are ordered by their distance from the origin, with +»” designating
conjugate pairs onthe jw axis. For H modes s=0 is a pole, so we have
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X = pole location
O =zero location

X sene bsen
G s Xsnns
£ sS,’:,)J L Sc(ai,nn)J
S > ;
S | S0

X som. Dson-1
Dol Lol
fsen-2 Dsin-a
q’g,r:u)(S) ~ ?S,r,?(s)

E modes H modes

Fig. 6.2. Poles and Zeros of Internal Eigenadmittances
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() _gy. =E-
Shon = H -mode poles = E -mode zeros

sf";)'_n. = ‘g.i’:x),n' =imaginary
in
ng,n),o =0

(6.36)

Noting the reciprocal nature of the internal eigenadmittances, the poles of one are the zeros of
the other, thereby indexing both poles and zeros.

The poles of the interior eigenadmittances are zeros of the denominator in (6.12), i.e.
3 (incex), =
E (rs*sﬁ,n’ ):Jsﬁ (rs:sﬁ,n’) =0 (6.37)

In effect the content of the external incident electric field for the particular mode is zero at an

internal natural frequency. This corresponds {o an interior or cavity natural mode with tangential
electric field zero on S. Consider the fields of such a mode in V;, which satisty the wave equation

{following [20})

v. E(F',sgf;}, ) —0inv, (6.38)

VxE(7 i )= ~sih g (7.5 ) iy

The solution of this with imaginary natural frequencies admits a purely imaginary eiectric field with
purely real magnetic field. The boundary condition on $ (inside) has

ig(7)x H(rs,g)) = 7 (rsg)) (6.39)

this surface current density being proportional to the eigenmode. Noting the orthonormalization

condition we have
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J:'sﬁ (Fs,sg':,).) = real vector function
(6.40)

(Fop (s Y (i ) =1

and noting the conjugate symmetry of the modes from (2.7) we have

Jig (;;,s(‘j‘_)n,) =Jss (Fs',sgj;),) (6.41)

Using the complementary-mode relationship we have from (5.28)

.:/;s(;)("'s”s) = IS(FS)X.—,:Sﬁ (Fs’s) = j:JSﬁ' (FS’S)
(6.42)

So at zeros of yg")(s) which are poles of y}_{"'c)(s) the modes are also real functions as

2 {z (n) Y_3% (= (in)
Jsﬁ (rs,SBt‘nl) = jsﬁ (rs,SB/'_nl)
= real vector function (6.43)

(g (s V75, (s ) =1

Summarizing, the eigenmodes are real at both poles (natural frequencies) and zeros (natural

frequencies for complementary eigenmodes) of internal eigenadmittances.



VI, Exterior Eigenadmittances

The normalized external eigenadmittances take the form (one of several suitable forms)

- - %im:,in) =
zo<1S(F;)xH F§,S):js,3 (F§,3)>

59(5)= - (7.1)

(inc.ex) -

<§ (7s.s) Hsg (Fg,s)>

Unlike the interior eigenadmittances in Section Vi these are not lossless, so the Poynting vector
theorem, allowing for sources (electric and magnetic) in Vin, does not lead to an odd function
{reactance function) as discussed there. However, this is a p.r. function associated with the lossy
problem of the energy transported by the external scattered fields.

Considering the incident fields on S from sources in V;,, note that the radiation condition
makes these fields as in (7.1) represent positive outgoing real power for s= jw, exceptat s=0
since finite-size antennas cannot radiate power at D.C. with finite currents and voltages driving
the antenna. Given some tangential E field on S, (i.e. just outside S), say in the form (spatial
distribution) of the Bt eigenmode this will radiate a finite, non-zero real power indicating that the

external eigenadmittance has no poles or ze roé, except at s=0. As will be computed later this is
a zero for an E mode and a pole for an H mode. As a p.r. function these must be first order with

real and positive residue (for a pole) or coefficient (for a zero). All other poles and zeros are in
the LHP excluding the je axis for this assumed meromorphic function.

For our incident wave let there be a smali source at 7, as indicated in fig. 7.1. For high-

frequency asymptotic evaluation we have the usual results for the far field of some antenna as

= (inc,i = st
E(‘(';‘C’;’)t) - V(9r¢;s)%fli as ESI-—)co

To

= (inc,in) ilF -7, = (inc,in)
g e F %0 2
H (7,5} - 7 [IF—Fai XE (Fg,5) as |s} = (_7 )

5( 6,¢;5) = antenna pattern

This might be a simple electric or magnetic dipole, or some more elaborate source.

Consider Re[s] — - inthe RHP. The contribution to the integrals is dominated by the
contribution from a region §; centered on 7, the point on S closest to 7, where the exponential is

largest giving
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source 7

point

Fig. 7.1. Source liluminated by Small Antenna in Vi, (Internal Incidence)
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ZO<TS(F§)X 1:-1(( ),jsﬁ (rs,s)>

"s "o V 8, ¢: TI’s""a' 7
—)I Irs—rol X ¢ss) m _]Sﬁ (I‘S,S)dS ( ,3)
- = _Yst‘Foi
— J. r1) ’:IS "1 XV 9 (p,S)jHJS‘B (Fé,s)-e{Ts:-—;o—l—dsl
== lr? ‘I;IIS J‘.’SB "s= Yi s roldS' in RHP

E((ff.‘")’ ;s,g(rs. 3)

?’i rs "ol
lr1 _[JSB 7,5) ds’ in RHP

The pattern function now is assumed slowly varying as compared with the exponential and the
subscripts on the angles indicate the direction to 7 from 7, (iaken as the origin of spherical

coordinates for this purpose). So we have

55 (s) > 1in RHP (7.4)

Similarly let Re[s] — —e= in the LHP where the contribution to the integrals is dominated by
the region S centered on 7, the point on S farthest from 7, where the exponential is now

{argest. The results are as in (7.3) with 1 subscripts replaced by 2 subscripts. The signs are also
the same since iS(FS) is aligned parallel to 7, —F, (outward) in both cases. Hence we have

75 (5> 1inLHP (7.5)

Note that this implies that there is some Qg <0 such that there are no poles or zeros for
Q< Q. Adding this to the information for no poles or zeros in the RHP gives a strip
Qe <Q<0 containing all the poles and zeros of the Bth exterior eigenadmittance.

Further refining the asymptotics for large |s|, let 2 be inthe above strip and let @ — +e.

Then the exponentials in the integrals do not grow or decay with distance (thereby isclating
r, and 73 ), but they do oscillate more and more rapidly as @ — « suggesting an evaluation by

the common stationary-phase approach. In this case we look for positions on S where the
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surface is locally perpendicular to a ray from 7, to 7;. In the vicinity of such points 7, the phase
of f/:'(@z,m;ﬂi- jw) is approximately uniform as compared to other paris of S for a suitably

chosen source (e.g. an electric or magnetic dipole). Note that such stationary points have the
property that ig(7,) is parallel to 7 - 7,. We have already encountered two such points

r1 and 75 . There can be in principle more such points depending on the shape of S and choice of
7,. For reentrant shapes we can even have %(7,) antiparallel to 75 —7,.

Assuming a finite set of stationary points, then for each one we obtain integrals in both
numerator and denominator which are evaiuated as in {7.3), now for @ — +«. Adding the
contributions from all the stationary points the numerator will again be asymptotically the same as
the denominator giving

9f36x)(s) — lin strip as @ — +eo E (7.8)

Noting the conjugate symmetry the stationary phase also works for @ — —e giving

y}f")(s) —linstripas w — - (7.7)

Note that there is some w, >0 such that there are no poles or zeros for w = ., and similarly for

W< =-0,.

One can approach this stationary phase result a little differently by making 7, close to S, say
near 7 as infig. 7.1. Then the denominator Ifg —70| is minimized for the stationary point at 7; as

in(7.3). As 7, is made closer to 7} this contribution will get larger, dominating the contribution

from the other stationary points. Then one only has the two integrals as in (4.3) which are
asymptotically the same. Note that one first takes @ — + for each choice of 7, before taking

7o — 71. Inthe limit one could also consider a point electric dipole just inside S and evaluate the

integrals for w — +oo Over what is approximately a circular disk.

Assume that yg;x) is a meromorphic function of s and thereby has only a finite number of
poles in any finite region of the complex plane [21]. Here we have found a rectangle defined by

Re[s] =0, Qleﬁ‘

CO=iC0+

outside of which there are no poles. Then the number of poles of the exterior eigenadmittance
must be finite, say N. Consider a closed contour enclosing this rectangle. On this contour the
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function is 1 (asymptotically). The change in phase around the contour is then zero so that by the
argument-number theorem

Number of poles (including muitiplicity)
-Number of zeros (including muitiplicity)
=0 (7.9)

and there are also N zeros (exactly). Recognizing the reciprocal relationship between the electric
and magnetic exterior eigenimpedances we now have

[number of zeros of j:f_f:)(s)

number of poles of jé"‘:)( )
N(n)=1 (7.10)
number of zeros of yﬁl o (8)

|number of poles of y(ex)( )

This number is then only a function of the index n. For the sphere one can observe that N is just
n+1 where n is now the index on the spherical Bessel functions [1,15].

Looking at fig. 7.2 there is an illustration of what the pattern of poles and zeros might lock
like, consistent with the foregoing. As in the previous section (for the internal eigenadmittances)

we have

‘(e n)n = E~mode poles = H —mode zeros

s,(f;f)n, = H —mode poles = E —mode zeros

(7.11)
S(a) = S(ex)*r
e,n,—n e,nn
(ex)  _ (ex)"
Sh.n,—n’ Shon’

At s=0 we can define, consistent with the results for the internal eigenadmittance,

Sy =0 (7.12)

However, there can in general be other points on the negative real axis (@ = 0,Q <0) with natural

frequencies for E and H modes, as the sphere exhibits [1,8,15]. This requires (in some cases)
another index as ‘
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X =pole location
QO =zero location

(ex) X (ex) O
Se,n,1 Se,n,1
ex) O (ex) X
Sh,n,1 Sh,n,1
Q
% O— > &
(ex) &%) (ex) (ex)
se,n,0 h,n,0 Sen0 Sh,n.,0
(ex) © (ex) X
Sh,n,-1 Sh,n,-1
(ex) X ex) O
Se,n,-1 Se,n,-1
~ (ex . (ex)
Ye,nzs) Yh.n(s)
E modes H modes

bdio
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Fig. 7.2. Poles and Zeros of External Eigenadmittances



Sglex)o n' = f98| < 0 N Sg:i‘)o'o =0

(o) (7.13)
ex
Shn.On” =real <0
with say n” =1,2,--- with the one exception above.
Now look more closely at the natural frequency at s=0. For our source point at 7, (fig. 7.1) let
us take an electric dipole of moment 5 as [9]
B(s) =1, £(s)
O | N ) To) 3 (7.14)
axfr -7, F =7,
. _Zos- —+ E — 3(F -—-roz(rz— 7p) 1L B
4afF ~F,| 47r€0|r—r0| Ir-—rol
~(di) s 2
Psym e 1Pl |__s S bl BTN
4m:|r - rot 4,11,. -F I |r -rol

Then for small s the intermal eigenadmittance for an E mode is
<I;'(d) (’é’s);;sh,n (r},s))
(E(d) (r3+)s s, (ré,S)> (7.15)

= sC,(zex) +0{32) ass—0

Y{ex) (s)=

Considering the denominator integral as s — 0 we have
=t£"f') s,
E r_;,S);jse‘n (r,s"as)

The numerator integral similarly gives

o) g BTN 55 e g

[l Pt

di)
<H€rs’ i op (Fios )>—+——p(s)j i To) X Jsp (F2-0)dS” (7.17)

P -7 i =7l

Then we have
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p(s)- j.‘ (lrs rol) X Jop (74:0)dS"
Cr(zex) =& rs"3(.0., 7o )7L = 7,)
I's=To)\’'s~To) =13 =
-1 ,0)as’
, P(S) f(’s 0I3 ,F£—FO'2 :’Jse,n(rs )

>0 (7.18)

Since the capacitance must be positive (p.r. condition) the ratio of integrals must be positive.
Varying over all possibie orientations of the dipole gives

MECEA AT
[ e s

£o 1 (Fs~7o)
s""ol XJshn(S 0)as

(7.19)

B gl -rf

n

which can be compared to (6.34). Note that this result is independent of 7, as long asitisin V,.

Furthermore, we have for the complementary magnetic mode

L&ex) C,(fx)

Mo &o

(7.20)

While in (7.15) the error is easily shown to be Ov(sz) by use of Taylor expansions, the next
term in the expansion of the external admittance can be seen to be O(s3>. This is based on

consideration of low-frequency scattered power. ltis the 1/r terms in the dipole fields which
contribute to the radiated power. The 1/r° and 1/r2 terms should contribute nothing to the real
radiated power. In an incident wave (unit amplitude (s independent)) the induced electric dipole

moment is proportional to the field. The associated scattered electric and magnetic far fields are
both proportional to s2. The real power in each dipole term is like st (for s=jw). So areal

power which appears in the even powers of s in the admittance expansion does not appear in 52

but in higher powers.
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VIiL Eigenmodes

Having discussed the eigenadmittance decomposition let us go back to the eigenmodes
themselves. In section V the modes were observed to come in pairs which we have termed
“electric’ and "magnetic”. In sections Vi and Vil we have seen that one of these leads to a
capacitive eigenadmittance for both the interior and exterior parts as s — 0, and a corresponding
inductive eigenadmittance for the other mode of the pair { the complementary mode}. Identifying
the capacitive case as the electric mode we have for smali s

Vs Togn Gor) 20, T5(7)-| Vo e, , Gos0)|=0
7R () — ¢, 7L (5) > s (8.1)

?e’n(s) RN SCn, Cn = C’(lm) +C’(18X)

Similarly for the complementary magnetic mode we have

Vs Jspn 0 =0, I5(Fo) -[vs X Jsom (FS,O)} #0

et T S -1

B[], 7 - (s8] (8.2)
- - e | -1

Phn(s) = [La] ™, L1=r8m7 4 po0

These are generally related as

Top (Fss3) =I5 ()X Ty (Fss5). Ty  (so5) = =T5 (Fs) X T (Fio5)
in Lyl ex)]
5 ()= 35 (5) L5 5)= 552 (s) (8.3)

Cr(zin) _ Lgn) C’(lex) ) leex)

&o Ho & Ho

While for certain geometries (such as a sphere [1,8]) the modes are frequency-
independent, purely real-vector, and pure electric or magnetic, there is reason to expect that
these properties do not all extend to arbitrarily shaped scatterers. As discussed in Appendices B
and C, tangential vector fields and hence, surface current density on S can be expanded in terms
of solencidal and irrotational parts. Apply this to each eigenmode in the form

Jsgp F5:8)= V5D (7s,8) = 1 (Fs) X V5@ (Fs5.)

fsh‘n (Fs,8)= Vs&’h,n(;:s,s) + IS (rs)x Vsée,n(Fs’S)

-46-



So, there are only two scalar functions needed to characterize the mode pair. These satisfy the
Poisson equationon 8

Vgée (Fs»8)==ps, (;s’s)svs'fse (Fs,5)=FVs- iS(;s)x]sh (Fs+5) (8.5)
h’n h,n h,n e,n

which can be solved as in Appendix B. Note that this decomposition applies as well in
combination with operations that commute with the operations in (8.4), such as real and
imaginary parts, even and odd parts (with respect to s), etc. For convenience we have defined

Ps, 5 Fsi8) ==V }’se , = surface -charge - density eigenmodes

- (8.6)
Psp p (Fs5:8) = —VS-J"'Sh , = equivalent-magnetic - charge - density eigenmodes
Noting that
[®en(Forss =0= [ (7,518 (6.7)
s s
together with the low-frequency properties of the eigenmodes in (8.1) and (8.2) we have
= - n_ul3 =
?s.JSh,n(rs,O)—O—Vsd)h’n(rs,O) ©.8)
(Dh,n(;'s’o) =0
With the orthonormalization condition and Green's Theorem we have
<75e,n (?s’o);jse,n (Fs,0)> =l= (Vsée,n(Fs,O);Vs&’e,n(;s 90)>
= (V28,5 (F5, 0, (7, 0))
= <&)e.n(;s ’0)”358,71 (Fs ,O)>
as a Kind of normalization for the electrostatic potential mode. Note also that
V- [TS(;s)xjsh (;'5,0)} =-V-js  (7,0) (8.9)
n en

and is thereby described by the electric potential above.

For general complex frequencies the orthonormalization equations mix the electric and

magnetic potentiais. For both modes of the same type (electric, magnetic) but with different
indices (ny,np) we have
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<J~'se,,,1 (i"s,S);J"se',,2 (Fss S)> = <fs,,, m Ts28h fs,,, ny (s S)> =Ly
= (VB Fr):VsBe my Fss )+ (Ts i) X VB g a9 Ts () X VD my P, 5))
Vo ey oS T5Fs) X V5B o)) = (15 o) X V@ (P8%:V 5@y (5, 9)) (8:10)

{
<Vs&’e,n1 (FsJ);Vs&’e.nz (Fs’5)> + (Vs&’h,nl (F_{,S);Vséh‘nz (Fs,5)>

+

= (De,nl (FS’S);ﬁse,nz (Fs’s)> + <éh.nl (Fs-s);ﬁsh,n_z (Fs’s))

Here we have also used the identities [27] for the divergence of a scalar times a vector and note
that the divergence of TS cross the surface gradient is zero. For a mixture of electric and

magnetic eigenmodes the result is zero instead of the Loy my (Kronecker delta).

Also for each eigenmode the integral of surface divergence and normal surface curt is
zero as

JBse aersy=0 (8.11)
S

Stated another way, mode by mode the net surface charge and equivalent magnetic
charge/meter is zero, i.e. these parameters are conserved.

Besides the division of the eigenmodes into E and H modes, there is the question of
assigning particular values of n to particular modes. One approach concerns the

capacitgnce/inductance associated with the eigenadmittances as s — 0. Noting for the sphere [8]
that Cf,“") decreases with increasing n we might choose

Mz zc{m >, 20
clim - f(in) : (8.12)

& Ho

Similarly the sphere has C,(f") decreasing so we might use

N 2cf 2 > 20

8.13
e e (8.13)
80 Au'O

We may be fortunate in practical problems (or even in general) if these two ways to assign n give
the same results, but this is not cbvious. Cne might also use
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Cp=Cl&) 1 clim (8.14)

or

. \1-1
Ly =L + (") (8.15)

for this purpose. A more traditional approach might count the number of "halfwaves" in the
eigenmodes to assign n, as is the traditional approach for separable geometries of sphere,
circular cylinder, etc. Whether this would exactly correspond to the previous ordering schemes is
not clear. Then, more than one eigenmode may have the same number of "wiggles”, but look
different as a spatial distribution. The case of the sphere illustrates such a situation and the index
is the pair (n,m). Perhaps one should adopt something similar here. Further research, both
analytical and numerical, may help us here. For the present the modal indexing scheme is
perhaps best left at least partly open.




IX. Eigenimpedances with Uniform Sheet Impedance Loading on S

Now it Is appropriate to revisit an earlier result concerning the loading of S by an
impedance sheet of the form

T o): EFe9)=Ts ) B0+ )

= Z1(s)J (Fs,5) (9.1)
Z;(s) = sheet impedance

where this is taken in the simpie scalar and position-independent form. Then the E-field integral
equation is modified to the form [2,15,26]

IgGFy)- EWe) (7, 5y = <Zt (ForFlas)+ Z1(5)1 84 (Fg P10 T (F;,s)> (9.2)
which has eigenmodes and eigenvalues

Jsp For) et s P9
impedance
loading

23 () ———> ZB (s)+2Zi(s)
impedance
loading (9.3)

i.e. the eigenmodes are unchanged, but the new eigenvalues (also being eigenimpedances) are

changed by the simple addition of the loading sheet impedance. As discussed previously one
can use this resutt for synthesizing a Z;(s) which makes Z’g (s)+ Z;(s) have prescribed zeros of

various orders, thereby giving prescribed poles (including higher order poles) in the response of
the scatterer.
With our present results Zﬁ (s) has been decomposed into exterior and interior parts.

Together with the impedance loading the new eigenimpedances have the series/paraliel circuit
representation in fig. 9.1. This is an interesting representation of the modal decomposition of the
scattering problem, remembering the modes also come in pairs (electric and magnetic).
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iz(s)

(loading)
Z5(5) + Zy(s)
~ ~(in) -
Zg(s) < 2;(3?:)) Z3(s) (loaded eigenimpedances)
{(unloaded
eigenimpedances)

Fig. 9.1. Eigenimpedance Decomposition
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X. Concluding Remarks

The diagonalization of the impedance (E-field) integral equation has yielded a rich
structure involving mode pairing (electric and magnetic) and decomposition of the
eigenimpedances into internal and external parts. Some similar results can also be found for the
pseudosymmetric H-field integral equation [3,4].

Various extensions of the results can be pursued. Central to the discussion is the closed
surface S dividing Vin from Vout. This has aliowed the separate representation of the
eigenadmittance parts as integrals involving exterior and interior incident waves. If S is opened
this complicates matters. However, one can consider an open S as a limit of a closed S which has
been deformed so that it consists of two surfaces which are some small distance apart and joined
at the edges. Aflternately, think of an open S as having some thickness to separate the two sides
for application of boundary conditions. Finally, of course, one would let the thickness tend to

Zero.

it would be helpful to have more information on the spatiat and frequency properties of
the eigenmodes. By letting s — < in the RHP one may be able to convert the integral equation to
a ditferential equation on S due to the concentration of the contribution from the kernel to
positions where 7 is near ;. Numerical experiments involving various shapes of S should be

able to shed more light on the properties of these modes.



Appendix A. Duality

Duality is the symmetry in the Maxwell equations with respect to interchangihg electric

and magnetic parameters [11]. This is compactly represented by the combined field

Eq(F,ty= E(F.t)+ giZ,HEF D)
g =*l= separation index

and combined current density

Taut)= J(;,:)+é”-im(7,z)
(]
J(F,t)= electric current density
fm(F,t) = magnetic current density, in general fictitious
but useful as an "equivalent" magnetic current
density in various problems

The combined Maxwell equations become

qj d = - o T oz
[Vx %E}Eq(r,z):gzojq(r,t)

which in Laplace form is

(VX = @Y|E4(F.5) = jZ,T 4 (F 5)

Note now that the combined quantities are not conjugate symmetric since the time-domain

quantities are complex. Now we have
Eq(F.s)=EL,(F.9)
and similarly for other parameters.

Dual parameters are found by multiplication by -qj as
EXDF,0=-gEF,0)

EDG0=2,AF.0, BDGH=-2-EF0
0

Dz o DT 7

Ig (r,f)--z;fq(’,t)

FDFn= Zif,,,(F,z), IDFE N =-2,TF0
0
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These satisfy the Maxwell equations just as well as the original (or "undual") parameters. Note
that in transforming to the dual fields the dual current densities are also involved. However, in
regions away from current densities no current densities are involved, and both sets of fields
satisfy the free-space Maxwell equations (and radiation condition where appropriate).
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Appendix B. Decomposition of Tangential Fields on a Surface

The Helmholtz theorem [9,12,19,27] allows one to decompose a volume current density
into a solenoidal (divergenceless) and an irrotational (curlless) part. Less well known is the
analogous decomposition on a surface. In [27] this is worked out for a sphere. Following this
procedure we see that the result applies for a simply connected closed surface and can readily be
extended to a multiply connected closed surface.

Consider a tangential vector field 7(7s) on S (fig. B.1) with suitable smoothness

(differentiability). Then we wish too express F in the form

F(Fs)= VU(Fs)+ Tg (Fs ) x VsV (Fy)

_ (B.1)
U,V = scalar potentials
with the usual definition of the V operator [18,27]. One can impose the condition
JuFs)as=0=[v(F;)as (B.2)
S v

which merely fixes the additive constant. Adding an arbitrary constant to these potentials in no
way affects the surface gradients. To derive this, following [27], form

V- F(7s) = VEU(FS)

- = Periey T e .o (B8.3)
Vs -[F(rs)x IS(rs)}z st(’s)= lS(rs)'[Vs XF(’S)]
using various relations on a surface, here and in the following. Note that
[V2UGyas = [V FRows =~ (j)ﬁ(?s)-Imdz= 0
N S C—0
(B.4)

[V2G)as = [, [FG.)xTs . s = ) FR) Tt =0
N S C-0

which admits constant solutions for U and V (and which are constrained by (B.2)). Note that this
last result assumes that the closed contour on S can be shrunk to a contour of zero radius
(C —0) on S with F not too singular. This we can do provided S is simply connected.

Note that Vg is self adjoint on S and we have the Green's theorems
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Fig. B.1. Simple Closed Surface with Small Portion S Bounded by Simple Closed Contour C
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[[taFe)v20(Fs) - U2 (5) V201 (75 s = 0

S
(B.B)
I{UI(FS)VEUZ(;S)+ [VSUI(;S)]'[VSUZ(FS)H‘E =0
N
So solutions of the eigenvalue equation
V20,(7s) = 21®n(Fs) (B.5)

form a complete orthonormal set with real eigenvalues and real eigenfunctions. These are not
then the same as the modes being considered in this paper, except in special cases

Solutions of the homogeneous equation

V2U,(7s)=0 - (B.7)

must be orthogonal to the forcing function as

JUo (Vs Fo(Fs)as =0 (B.8)
N

Hence we have

[ V5[Uo(Fs)E(75)as] - [[VsUo(Fs)] F(Fs)as =0 (8.9)
s 5

But the first term being zero, we have

J‘[Von(?s)]'ﬁ(?s)dhO (B.10)
S

Now U, does not depend of 7, so chose F arbitrarily, say as 0 outside of some small region
S0, and a constant tangential vector in S,. This requires within S,

an(Fs)db_l-an(Fs) —0
du, hy  dup (B.11)
ug,up = local orthogonal curvilinear coordinates on S

- - 1
Von("s)= la"}r‘
a

However, Sq can be chosen as any smail region of S, so that the gradient must be everyvs}here
zero on S. The only solution is
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U,(7s)=constant (B.12)
which is zero if (B.2) is imposed. The same applies for Vg by using FxIg.

Besides the potentials U and V one needs to know if any other terms are needed to
express a general F (tangential on S). Define

F'(Fs)= F(Fs) - VsU(Fs) - 1s(Fs) x VsV (Fs) (B.13)
which implies
Vs F/(Fg)=0= Vg [F(Fs)x 15(Fs)] (B.14)

However, we have

0= [ V5 UF(7s) < Ts (7 s = [1F(75) < Ts (o)1 T Fidas

¢ (B.15)

SC
= [F(Fe) Ti(F,)as
C
which implies that F” is the surface gradient of some scalar function [18], say U’, but then
V2U'(Fs)= Vs F/(7s) =0 (B.16)

with the only solution

U’(F;)= constant

VU'(7s)= F/(75) =0 G0
implying that the solution {(B.1) is unique.

The problem is then reduced to finding the solution to problems of the form

Vo ()= £(Fs) (8.18)
which can be done via the eigenvalue equation (B.6) with

(@4 (Fs) @1 (7)) =T (B.19)

A Green's function can be formed
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8(Fs 75)= D 2 (s )@u(73)
{
) (B.20)
V2g(Fs.Fe) = Ts (7o )85 s —79) = 3, @475 )@ (75)
!

by which (B.18) is solved as

O(Fs)= 3 27 {(@i(FE ) E(7) @i (7 ) (B.21)
!

Note for all eigenfunctions by (B.2) that

jcb,(?;)=o (B.22)
S

It has also been shown [13] that

=7

= =7 1 ’FS B rS
F)y=——n| L5l
8757 27 n(

ll
I’ = reference length

Jas?;—ﬁs (8.23)

which is a logarithmic singularity as one would expect for a scalar problem in two dimensions.

If one considers a multiply connected surface as in fig. B.2, some new characteristics
enter for tangential vector fields on S. Now we have contours, such as C,; which are closed but

cannot be shrunk to a point without leaving S. As such the conditions of (B.4) springing from

C — 0 are perhaps not fulfilled. At a minimum we can consider a term in the potential given by a
jump U2 in crossing the contour Cy; as one goes around C,;. This corresponds to a vector

F,1 parallel to the orientation of C,; with

$ FuGydi= §VUAG)-d =UF
Cal Ca

ﬁal(?s) =V Ua () (B.24)

A simple example of this is the static current flowing in a simple perfectly conducting loop
driven from a source at a gap, or immersed in a magnetic field. Then one can have cases with

Vs Fa1(Fs)=0= VU, (Fs) (B.25)
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Fig. B.2. Muiltiply-Connected Closed Surface
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so that the potential satisfies a homogeneous (i.e. Laplace) equation, subject to the jump
boundary condition at Cp;. In fact we can also have

Vs[5 (Fs) X Fa1(Fs)1 = =15 (F5) (Vs X F 41 (Fs)] (B.26)

i.e. the tangential vector field can have both zero surface divergence and zero normal surface
curl. Physically this corresponds to a circulating current with no charge, as in the case of the
perfectly conducting ring in an incident static magnetic field.

We can also have a tangential vector field Fp; parallel to Cp; and crossing C,p. If one

wishes this can be identified with a U or V potential in (B.1). If one uses
Fp1(Fs) = VsUp1 (Fs) . (B27)

one can also think of this vector field as orthogonal (complementary) to F,;, but with potential

jump Vz(;?) across C,1. This is like the current in a toroidal coil, bringing current into and out of

the page in fig. B.2, instead of parallel to the page. So associated with a handle in a multiply
connected surface one has these two homogeneous solutions (harmonic functions) to include.

One can also have a closed surface which is not connected (not ail in one piece) as in fig.
B.3. In this case the closed contour C can exist on only one of the closed pieces. Physically
these correspond to electrostatic modes with perhaps various potentials and total charges on
each piece. Tangential vector fields on each piece can be treated by the regular procedures
here. See also [1(App. A)].




Fig. B.3. Unconnected Closed Surface
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Appendix C. Decomposition of Surface Current Density

Apply the decomposition procedure in Appendix B to a general surface current density on
Sas

z . - . 1 - . -
Js(’s’s)=Svsd)e(rs’s)":t_lé'(rs)xVsq’h(rs,s)
0

- - 7] - 1 - = .
Js(rs,t)=E?Vsd’e(rs,f)-L—ls(rs)XVsd’h(rs,t)
0

Then we have

V2@, (75,0) = —py(Fs.t) = surface charge density

| {dimension Coulombs/ meterz)
Vg Js(Fgt) = —-%ps(Fs,t) (electric continuity equation)
@, (rs,t) = surface - charge - density potential

(dimension Coulombs)
Vfcbh(r‘s,z) =—pp(Fs,t) = equivalent magnetic- charge - density
" (dimension Webers/metera) / (C.2)

Vs [Ig (Fs) X Ty (s, 0)] = —;%ph (Fs.t) (magnetic continuity equation)

@, (7s,t) = eqivalent- magnetic - charge - density potential
(dimension Webers / meter)

Note that these potentials are defined on the two-dimensional space of S, and are not the usual
scalar and vector potentials, They are not formulated in a retarded time, but are static like. While
they are defined via the surface Laplacian, and have real solutions for real forcing functions, the
more general complex forcing functions give complex potentials. The electric potential is
associated wit the usual surface charge density. The magnetic potential is associated with the
equivalent magnetic charge density [5,10] which is related to the normal derivative of the normal
magnetic field at S. With dimensions Webers/m3 its integral over any portion of S has dimension
of Webers/m, not Webers corresponding to magnetic charge.

Note that both potentials satisfy the same equation

V2D(F,, 1) = —u(Fy, 1) (C.3)
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with, of course, their respective electric and magnetic sources specifying u. The solutions for the
electric and magnetic potentials then take the same form with the same Green's function as in
{B.20) and (B.21).

A consequence of (B.2) is the convenient result

[@eFenas=0
S

(C.4)
J' @, (Fs,1)dS = 0
S
although a constant shift in potential is not important. Of greater significance (B.4) implies
o= J. pirs,0)dS = 0 (electric charge with zero initial conditions)
S (C.5)
J'vs T (Fs,t)dS =0
s
which is just conservation of charge. Similarly we have
gr()= J-Ph(’-'s")ds = '#oj \FE [TS(FS) X fs(Fsa‘)]dS =0
S s {C.6)
(equivalent magnetic charge / meter)
This magnetic parameter is then conserved just like electric charge.
Defining the complement of the surface current density we have
= - - > . ]_ - - - -~ -
TG, 5)= Ty x Iy (Fsus) = —Vs@a 5.9+ T ) x Be o) (C.7)
(73
Here note the interchange of the role of the electric and magnetic potentials as
I(Fs.s) ——— JOG,,s)
- 1 - .
Sd’e(;s,é') _——‘» _(Dh(rSas)
Ky
- —I—(i),, (Fs,5) D¢ (. 5)
Ho
(C.8)

corresponding to the interchange of the roles of surface divergence and normal component of
surface curl.
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As discussed in Appendix B, multiply connected bodies as in fig. B.2 need special
consideration. One can have surface-current -density distributions on S with both zero surface
divergence and zero normal surface curl. Such can be described by the surface gradient of a
scalar with a jump condition in going around a closed path which cannot be shrunk to zero on S.
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