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I. Introduction

Mutlticonductor transmission-fine theory is one of the basic tools to analyze the interaction of EMP/EMC
with complex modern electronic systems. However, in the vast majority of all cases this theory is applied to
uniform systems, i.e., those systems which can be described by means of non-space-dependent
impedance and admittance matrices. On the other hand, there is an obvious lack of dealing with non-uni-
form systems, probably due to the increasing difficulty of the complex mathematical (differential) equa-
tions. Nevertheless, the more interesting real physical systems are described with the aid of space-
dependent matrices. Therefore it seems worthwhile and necessary to us to investigate nonuniform
multiconductor transmission lines (NMTL) in more detail.

In this paper we start our studies of NMTL restricting ourselves to those systems which permit a represen-
tation in terms of eigenmodes and eigenvalues. A large class of matrices which can be simultaneously
diagonalized is that of pairwise commuting normal matrices. Normal matrices include real symmetric matri-
ces [6] as well as circulant matrices, thereby covering a host of possible physicat applications. The use of
circulants (Appendix A) requires a certain symmetry of our NMTL configurations (e.g. Ciy symmetry). How-
ever, dealing with them has the great advantage that the similarity-transformation matrix does not depend
on the space coordinates and thus can be absorbed by the quantities behind the differential operators.
This is the main reason that we in a first step begin our analysis of NMTL with circulants, trying to deliver a
contribution for the closure of the above mentioned gap between the unequal treatment of MTL and
NMTL.

The organization of our paper is as follows: In Section Il we derive the sourceless NMTL equations and
cast them into a form which makes a diagonalization procedure desirable. In Section Il we perform this
diagonalization and end up with decoupled, quasi-one-dimensional equations for the modal components
of the voltages and currents. Furthermore we explicitly present the eigenvalues of circulants for even and
odd dimensions. The eigenvectors of symmetric circulants are real and constitute an orthonormal matrix.
By introduction of modal reflection coefficients it becomes possible to combine the decoupled second-
order differential equations for the voltages and currents into first order nonlinear differential equations
which in turn may be solved by methods of perturbation theory. Interesting applications are listed at the
end of Section ill.

In Section IV we derive the high-frequency limit of our diagonalized NMTL equations. This is done in close
analogy to [4] and thereby serves as an interesting alternate way to obtain the resuits of [4].

Section V deals with a special unit cell of a wave-launcher array for which we find an exact solution in the
frequency domain. This solution is expanded for both low and high frequencies, and useful transfer func- -
tions are calculated.




In Section VI we demonstrate with the description of two diverging coupled conductors above a conduct-
‘ ing plane another example for the applicability of our general formalism.

We close our paper in Section VII with a few concluding remarks.

Finally, the appendices cover some more of the mathematical details.



. Nonuniform Multiconductor Transmission Line

Consider a single section of a multiconductor-transmission-line tube as displayed in Figure 1. A muiticon-
ductor transmission line is one that consists of N conductors and a reference which may be, e.g., infinity or
ground. lts physical construction and geometry is described by the per-unit-length impedance matrix

(Zom (2. 5)) and the per-unit-length admittance matrix (Tim (2. s)). Due to the reciprocity principle, we

assume these matrices to be symmetric throughout our paper [6].

The equations governing the voltage and current propagation on a single tube of N wires are the telegra-
pher equations

%(‘Z‘(z, s)) = - (I;,{,m (2, s)) . (fn(z, s)) + (‘7(")’(2,' s)) (2.1)
%(i"(z' s)) = - (I;,,"m (z, s)) . (!;,,(z, s)) + (fﬁ"}'(z' S)) (2.2)

Here we have introduced the following quantities:

position along the tube

N
]

Laplace-transform variable (complex frequency} for transform over time (t)

w
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Figure 1. Per-unit-length model of a muiticonductor transmission line.
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(Ism(z.5)) = curentvectoratz

(Z~,’,,m(z,s)) = per-unit-length series impedance matrix

(}7,{,,,1(2, s)) = per-unit-length shunt admittance matrix (2.2')
(l%f”’(z, s)) = per-unit-length series voitage source vector

(i,{s)'(z, s)) = per-unit-length shunt current source vector

Define the propagation matrix (7, z,s)} as a principal-value matrix
n,m

1
(;{cn,m(z,s)) = principal value of [(z’,’,,m(z,s)) : ();,;,,,,(z,s))]E (2.3)
. and derive from this the characteristic impedance matrix and charaéteristic admittance matrix
(Zonn 229)) = (Ve 229))  (Fp 229 = (Fens @) - (2 (25) (2.4
(Fap (2:5)) = (Fom(2:9) - (Top 28] = (22, ) (Foym(2:5)) (2.5)

= (ch,m (z, s))

A reasonable interpretation of (2.3) assumes that the product (Z-; m (z, s)) . (f,,"m(z, s)) is diagonalizable.

2
Then taking the p.r. square roots of the eigenvalues of (?cn m (z, s)) leads to the eigenmode expansion

(o (2)) = Z82:5) (50, (29)) (o5 2.0




where the quantities (13Cn(z, s))5 and (‘cn (z, s)) 5 denote normalized right and left eigenvectors of the

1
2 1
matrix (?cn,m (z, s)) , respectively. The eigenvalues ¥,(z,s) are the principal values of [ﬁ(z, s)]z.

Under the assumption that (2; m (z, s)) and (I;,{,m(z,s)) are pot functions of z compact solutions of (2.1)

and (2.2) are given in [3, 6]. In this paper we are interested in finding solutions of (2.1) and (2.2} letting the
per-unit-length impedance and admittance matrices be functions of z, but assuming there to be no

sources (V*(z, s)) and (I (z, s)) along the tube. The only “excitation” comes from conditions at

some coordinate zg of the tube (e.g. to be taken as zg = 0). In this case (2.1) and (2.2) reduce to

%(?n(z,s)). = - (Z—,;,m(z, s)) . (I-n(z, s)) ) (2.7
%(f,,(z, $)) = = (Fim(z.9) - (Valz.5)) (2.8)

Resolve (2.7) with respect to (7,(z,5)) and replace this quantity in (2.8) giving

2(@ane )™ L(70(2.9) )= (Fns) - (%l 5) 2.9

Applying the chain rule of differentiation on (2.9) we obtain

L)) L00a ) Bon o) - L (Vhle.8) = (Fimlers) - (es)  210)

z

Dot multiply this equation from the left with the matrix (Z’,’,,m(z, s)) and finally get

i) - Z{(Zam(a )" ) 2 {7 (ar5) +

2 (2.11)

) = (i) () (29) - 0

Taking the derivative of the matrix itself instead of its inverse (2.11) becomes




(2.12)

Va(2.9)) = (Zm(29)) - (Bm(2.5)) - (Valz.5) = (00)

For the current vector (i,,(z, s)) we can derive an analogous equation. We obtain this equation from

(2.12) replacing (Z; m(z.5)) by (¥m(zs)) and (Va(z.5)) by (I4(z,5)). This procedure results in

L {0a(e9) = (e ) - LT

dz?
(2.13)

diiz—(l-,,(z,s)) - (};,{,m(z,s)) . (Z-,',,m(z,s)) ' (f,,(z, S)) = (04)

Equations (2.12) and (2.13) are second-order differential equations for the voltage vector and the current
vector, respectively. Since they are of the same mathematical structure it is sufficient to find an analytical
solution of one of them. The solution of the other then results by analogy, of course, with different
boundary conditions. In what follows we deal with equation (2.12).

Let us assume that we can diagonalize the matrix product (Z;, (2, s)) - (¥,(z. s)) with the aid of a so-far

not-further-specialized similarity-transformation matrix (U,,,,,,), ie.,

2 7 . 3
('?f;i,)m (Z» S)) = (Un,m) ! (Zr,z,m(z! S)) : (Yr;,m(zrs)) ) (Un,m) (2.14)
Then we may left-multiply (2.12) by (U,,,,,,)_I and get

- 2 - - - - —
(Un,m) ! ' fzf(vn(z's)) - (Un,m) ! ' (Z:,z,m(zv s)) ' (%(Zr,z,m(zis))) ' (Un,m) ' (Un,m) !

(2.15)

(09 - (19,69 () (o) = 04)

dz

where we two times have inserted the identity matrix (1, ,,) = (Uy,) - (U,,,,,,)_I. Looking at (2.15), it

becomes desirable to diagonalize as well the matrix product (Z;, ((z, s))_l - (di(z';,,m(z, s))j with the
¥4



same similarity transformation matrix (U,,,m). In order to realize this requirement we consult appropriate

mathematical textbooks. There we find a very useful answer to our problem [16].

Theorem:

Let there be given a set (finite or infinite) of pairwise commuting normal matrices

{(42). (a). (a22). -} - @19)

where normal means that

(G5 (4l = (42) - (a20) @17
(i=1,2,3,...)

holds, then all these matrices can be transformed into diagonal form by one and the same
unitary matdx (U, ,, ).

Applying this theorem to our situation we then have to demand that our set of matrices

{@me o)™, L Eamters), (Zim). (FimCz5)]} 219

consists of normal, pairwise commuting matrices. Of course, such a requirement means a severe restric-
tion of the class of physical permissible matrices. On the other hand; however, it is of special interest to
find out which physical configurations can still be described by those matrices.

10




IIl, Eigenmode Expansion for Commuting Nonuniform Tubes

A special class of commuting normal matrices is given by girculant matrices (see Appendix A). The set of all
non-singular circutant N X N matrices forms a commutative group (having even a far richer structure) with

respect to matrix multiplication (Appendix A). Thus all elements of this group can be simultaneously diag-
onalized with the aid of one and the same unitary matrix (Uc,, m) (sometimes also called the Fourier matrix

[19]) which columns

R

are the orthonormal eigenvectors of the circulant matrices. The last components of these eigenvectors
are all equal to one, i.e.

uCN.B = ejZnﬁ =1 (3'2)
The eigenvalues of a circuiant matrix

(Cam) = circ (Cp. Cz2, C3, ..or C) (3.3)

are found to be {Appendix B2)

g = % Criy e {'ZRE} (3.4)
B P k+]1 €XD \J N .

( Cn+1=C1)

A closer inspection of (3.1) reveals the fact that the eigenvectors (ucn )B are related to each other via the

equations

11




1,2, 3,...,%-1 ifN is even

B = j (3.6)
1,2,3,...,3'2—1 it N is odd
and

(=1
+1

(vc. )*g = le)y = 77 | 87)

\*+!)

for an even N. These relations can easily be seen recalling that the complex components of the vectors in
(3.1) all lie on the unit circle in the complex plane. They appear in complex conjugate pairs and constitute
multiplication groups of complex numbers of magnitude 1.

Now let us assume that the set (2.18) consists of circulant matrices, i.e., we have for example

(Z,’z,m(z,s)) = circ (Zj(z, s), Z5(z, 8), e, Zh(z, s)) (3.8)

(I;,,’,m(z, s)) = circ (fl’(z,s), Y3(z,8), «o.r Tz, s)) (3.9)

Assuming reciprocity these matrices have to be symmetric, too (cf. [3]), but we will discuss this additional

symmetry property and its consequences later. The eigenvalue expansion for those matrices we have to
deal with reads:

*

(2,’,,,,,(2, s)) = Bg:}ié(z, 5) (uc,, )13 (ucn )B (3.10)

*

(Fom(.5)) = B)j:}y'é(a ) (e, )y (e ),

(3.11)

12




*

(z.5) (ucn )B (ucn )B

*

(Tepn@) = 2769 (i), (e,

*

) Bngé(z' ) 58(2.9) (uc,)y (v, )y

-] *

(Z-"'n,m (z s))z - Bgz % (= s)(jé(z, S)) (uc" )B (uc" )B

(3.12)

(3.13)

(3.14)

(3.15)

In the basis of these eigenvectors the field equations (2.7) and (2.8), and (2.12) and (2.13) scalarize as

follows (Appendix C):

d

‘ Z\')B(z,s) = - %(2,5) i3(z,9)

d - -y -
EEZB(Z' s) = = J3(z.5) Dp(z.5)

d2

) d, . d - ) ]
?Dﬁ(z,s) - an 2§(z,5) Zuﬁ(z,s) - ‘yg(z,s) vg(z.5) = 0

2 K - -
:i—ziﬁ(zrs) - ‘;—Zf’l ja(z.5) %ig(z.S) - ‘?g(z,s) ig(z.5) =0

Here we have used the definitions
- * -
Vg(z.5) = (uc,, )B . (V,,(z,s)) ,

* ~

i3(z.5) = (“C,,)B ' ( ,,(z,s))

' B=12..,N)

13

(3.16)

(8.17)

(3.18)

(3.19)

{3.20)

(3.21)




for the components of the modal voltage and current vectors, respectively. The structure of the above
equations (3.16) through (3.19) remind us of the analogous equations in the usual one-dimensional

(N = 1) transmission line theory. So we may borrow all the techniques and methods to find solutions of
(3.16) - (3.19) from this theory, being aware, however, of the fact that the modal vector components have
to fulfill quite different boundary conditions than the scalar voltage and current in the N = 1 transmission
line theory.

Imposing symmetry (reciprocity) on our physical matrices(Z; (2. 5)) , (¥;,(z 5)) and (ch'm (z, s)) , will
not change the field equations (3.16) through (3.19). It has, however, an impact on the number of inde-
pendent matrix elements of the above mattices and on their eigenvectors. Symmetry for (ig,m(z, S)),

e.g., implies that
Z-,-’(z, 5) = Z‘m_z_;(z. 5) (8.22)

(i=2..N)

and therefore a symmetric circutant matrix has at most (-]g—-+ I] different elements if N is even, and (N;' I)

different elements if N is odd. In accord with these numbers, the number of different eigenvalues reduces
as well. Inthe case that N is even we find from (3.4) (and Appendix B)

by =by_y by =by_z, ..., bﬁ—} = bﬁ_,_l (3.23)
2 2

by = By -2B, + 2B; = 2By + e + 2¢By - gBn (3.24)

z z 2

+1if (—Af-+1] is even
g = fv (3.25)
-Iif (74—1) is odd

by = By + 2[324‘ B; + oo + BN] + By P (3.26)
= =+
2 2

and thus have {at most) %+ 1 different eigenvalues. For an odd number N we obtain a similar relation:

14




by = by-y ,» by = by_2 » .., DN41 = DNy (3.27)

by = By + 2 (Bg + B3 + ... +BN+1J (3.28)
B

N+1

and count (at most) different eigenvalues.

The property (3.5) of the eigenvectors together with the properties (3.23) through (3.28) for the
uc, 8

eigenvalues of symmetric circulant matrices now suggest that one introduce a real representation of the

similarity fransformation by virtue of new (real) eigenvectors (w,,)B (see Appendix B).

This new set (W")B of eigenvectors constitutes a new (reai) orthonormal matrix(W,,,m) which transforms

symmetric circulant matrices into diagonal form, still having the (e.g. complex) eigenvalues (3.23) through
(8.28) depending on whether N is even or odd, respectively. Equations (3.10) through (3.15), and (3.20)

and (3.21) may now be rewritten in terms of the new eigenvectors (W,,)B , but without any * indication since

we deal with real eigenvectors.

A few remarks with respect to the fundamental differential equations (3.18) and (3.19) are in order. Due to

the eigenvalue relations (3.23) through (3.28) we only have to solve (3.18) or (3.19) for the first (%['”)

voltage or current components Bg(z,s) or ig(z,s) if Nis even and for the first (N—;—I) voltage or current

components if N is odd. The remaining components are contained in the former solutions (up to possibly

different boundary conditions). Once we have obtained the voltage vector (,(z, 5)) or the current vector
(i',,(z, s)) by the solutions of (3.18) or (3.19), respectively, we can easily compute the original voltage vec-

tor (V,,(z,5)) or the original current vector(7,(z, s)) as

(Va(2.5)) = (W) - (Balz.)) (3.29)
(fn(z,s)) = (Wn,m) . (i-,,(z,s)) (3.30)

15




and finally impose on these vectors the appropriate boundary conditions (and thereby fixing the so-far
undetermined integration constants, see, e.g., Section V). e

Since the per-unit-length impedance and admittance matrices are depending on the position along the
fines the linear second-order differential equations (3.18) and (3.19) for the modal voltage and current
vectors become difficult to be solved. There are, however, some special cases -- as the exponential lines
[8, 9] and the Bessel lines [ﬂ - where one can find exact analytical solutions for (3.18) and (3.19).

A promising ansatz to find other solutions of (3.16) and (3.17) may lie in the application of Lie algebraic
theory to nonuniform transmission lines [18].

Since our modal voltage and current field equations are very similar to those known from one-dimensional
(N = 1) transmission-line theory one may expect to apply all the experiences from this theory to our situa-
tion. Going along these lines, it is possible to transform (3.16) and (3.17) into a first order non-linear difer-
ential equation involving modal reflection coefficients pB(z, s) . These coefficients are defined by

2,8)= EB(Z—'S)—E z,§ M Z.. (28
pa(z )'[fﬁ(z,s) o (2 )] ({B(z’s) + g (2, )J (3.31)

By proper substitution of these quantities into (3.16), (3.17) we obtain, after some manipulation [10]

dpg(z, 3 3 ) )
PBCSZ 5) - 2?3(2,3) pB(z, s) + %(Z - pg(z,s)) Edz- ln(zc[3 (=, s)) =0 (3.32)

Note that this expression is exact and no restrictions have been imposed onit. Equation (3.32) can be

reduced to a first order linear differential equation assuming I ﬁﬁ | << 1 for all modal wave reflections.

Thinking of a matching section between two (different) uniform transmission-line tubes one should

assume that the modal reflections due to any mismatch are small. Insofar as the above assumption for f)ﬁ

is acceptable, then equation (3.32) reduces to

dpg(z, s ; . ,
—-—Z(:—)- - 2¥(z.s) pg(z5) + é g;ln(zcﬁ (=, s)) =0 (3.33)

Now, this equation can be solved exactly, and solutions describing different non-uniform transmission
lines are published in the literature [11, 12, 13, 14]. Even perturbation solutions of the equivalent to the

16




full equation (3.32) can be found in the literature [15]. In this paper it is not our main intention to find exact
solutions for (3.32) (see, however, Section V). This will be the subject of a forthcoming paper.

Here, we rather wanted to estabiish the general aspects and results of the theory for commuting nonuni-

formtubes, to derive the important field equations for the modai quantities {)B, zﬁ and F.’B and to give

some examples for their application.

An interesting application might be the investigation of twisted cables (even with space-dependent pitch
angle) inside of braided or non-braided shields. In Figure 2 we display two twisted cables inside a shield.
A rotation of 2r at one end of the twisted cable-pair removes them into their uniform arrangement.

Another field of application is the description of antennas with rotationally-symmetric cross sections with
the aid of diverging identical conical multiconductor fines (see Figure 3). We will deal with those applica-
tions in another forthcoming paper.

Figure 2. Two twisted cables inside a shield.
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V. The High-Frequency Limit of the Nonuniform Tube

Let us consider a tube configuration where the symmetric circulant per-unit-length impedance-and admit-
tance-matrices have the property that their product (which defines the square of the propagation matrix) is
proportional to the identity matrix

(Tonm 215" = (Zam(25)) - (Bom(z5)) = S (10m) (.1

<

(i.e., all modes have the same speed of propagation).

Here we have assumed that the tube consists of N perfect conductors immersed in a uniform isotropic

medium and that (Z',’,,m) and (i,,’,m) are frequency-independent real matrices times functions of the con-

stitutive parameters of the medium. These parameters in turn are taken as independent of z. In many
practical cases we may approximate the medium by real constants € and p with ¢ = 0 . With this form

(3.18) becomes

v

[Zz" - (i)zj Op(z,5) - 5—2- in (Eé(z,s)) . %65(2“9) =0 (4.2)

Now we try the ansatz (appropriate for forward travelling waves)

Op(z,5) = exp(~ s2/v) ¢p(z,5) 93(0,5) (4.3)
(¢B(O, S) = 1)
giving
d? s d d ., d s
e B rnll | Bl (za(z.s))-{z 9 —;¢B}=o (4.4)

Taking the limit s — < in (4.4) and neglecting di% with respect to (s/v)¢g we get (see also [4])
¥4

= () = 2 L 1 (502) 6502) (45)

I.e., a simple first order differential equation.

19




In (4.5) we dropped the s dependence from ¢ and Z3. Equation (4.5j can easily be solved giving e

op(z) = g +/2(2) (4.6)

where the ¢3 denote the integration constants. They are fixed by the condition

0(0) = 1 = cg +[7(0) (4.7)

resulting in

1

- (@8)
0

Thus for s ~ o= (in the right half-plane} we have

Bg(z,8) = exp (= s2/v) J;—g% 9g(0, 3) (4.9)

This result was obtained in close analogy to procedures known in quantum mechanics. There it is referred 6
to as the W K B approximation.
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V. A Special Unit Cell of Wave-Launcher Array

In recent papers [1, 2] one of us (C. E Baum) studied (among others) a special case of a unit cell of a peri-
odic array of wave launchers, based on a two-wire (plus reference) transmission-line model. See Figure 4
for the equivalent circuit of the unit cell of the wave-launcher array.) In this section we rely on special parts
of these papers and derive (decoupled) non-uniform transmission line equations which are valid for the
entire frequency domain, thus going beyond the cited papers which present solutions for the high-fre-
quency (early time) domain. In what follows the reader is referred to [1, 2] as far as notation and more de-
tailed explanation is concerned. Here, for convenience, we take I7 , and Iz as the currents and V7 and V2
as the voltages (instead of 2V and 2V as appropriate for differential systems).

“A‘-'.'l;
N
O

-+——
C=O I1+12 £ =1

Figure 4. Equivalent circuit for the unit-cell
of the wave-launcher array.

Our considerations in this section is restricted to simple per-unit-length impedance and admittance matri-
ces of the form

) fa1,1(2)  f81,2(2)
Z; , = S, ' ,
(Znm(z.5)) = sn (fgz,z(Z) fgz,z(z))

(I;r;,m(zr S)) = §E, (fgn,m)_]

52 (ﬁMﬂ-mmq (5.2)
der{(2(2)) \~ Fo12(2) fova(2)

The eigenvalues and eigenvectors of the matrix (fg,, ,,,) are easily computed giving

f1(2) = fer1(2) = fer2(z)  (differential mode) - (63)
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folz) = fg,ll(_z) + fg12(2) {common mode) (5.4)

o = () ¢ ool = () | 55

The modal voltage components are from (3.20)

1

V4(z,5) = T (—- Vi(z,s) + %(z,s)) (5.6)
Sa(2.9) = 75 (Vle.s) + Va(a.s) (5.7)

where V; and V, denote the two components of the original voltage vector (I?n(z,s)). Inversion of (5.6)

and (5.7) leads to

Vi(z,s) = :[% (- sz, 5) + D3(z 5)) (5.8)
Vy(z,s) = % (31(z.5) + B2(z5)) (5.9)

In what follows we specify the characteristic impedance matrix to be

(Zopu (0) = Zo{f2nn0) = zc[lf(c)f (?) (5.10)

with
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z, = Eo _ characteristic impedance of free space

e0
2a = width of unit cell
2b = height of unit cell

b
Zc = Z Zo
£ = % + 1, ¢ = length of wave launcher (5.10)
(0s¢=<1

f(§) = monotonic function of § with

£(0) = 0 and f(I) = L

Before we deal with the exact field equations we first derive the high frequency solutions. These read
(from (4.9))

1
R 2 :
vd@{ﬁo—q v5(0) (5.11)

with the initial conditionat £ = 0

(Va(0)) = V@ (5.12)
i.e.,
v3(0) = -j?vo(é] | (5.13)

Equation (5.11) represents the solutions in time domain for lossless, dispensionless transmission lines
where the factor exp(-sz/v) was removed since the above result is taken in retarded time.

The modal voltages are

1

v;(8) = [1 - £(Q)]7 »,(0) | (5.14)

1

02() = [7 + F(Q]7 v2(0) ‘ (5.15) |
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and therefore (apply (5.8} and (5.9) the components of the original voltage vector are

v 1 1 '
Vi(¢) = % {(1 + Q)2 + (1 - f(:;))z} . (5.16)
v, Ed 1
AGERE {(z + A2 - (1 - f(§))2} (5.17)
At £ = I this gives
V(D) = 2 = V2(1) (5.18)

2

consistent with the fact that the wave launcher plates meet the electiic boundaries {(see [1]}or+zbat{ = 1.

The results (5.16) and (5.17) agree with the corresponding ones of [1].

In the next step we have a closer look at the exact voltage field equations. They are obtained from (3.18)
and (3.37). We derive from (3.18)

)2 - =)
(-;z—zé' - (?l) ] {)1( ,S) + -(Td—CTC)) —:—ré' {)I(C,S) =0 (5.19)
d
2 2 — f(€)
£ - () ) oate - oy vt = 520
(saua =c¢?; c= speed of light)

introducing the dimensionless quantity ' = (s¢£/¢) and the sign factor

={—1 for =1 (5.21)

+1forB=1"

and choosing f({} = ¢ , the above field equations can be compactly written as
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p(C I) - 7 +XxC d% Y6 I)=0 (5.22)

/TN
"0,
-P,gl“.:,
|
-
o

~—

[o]}

In anology to the solution procedures performed in [7] we find the solutions of (5.22) in terms of modified
Bessel functions 7, and K,(v = 0,1).

B (LT) = (1+%8) [Aﬁ(r) I,(T(1+%8)) + By(T) Kl(r‘(1+x§))] | (5.23)

Here the functions AB(F) and EB(F) (B = 1,2) arethe four "integration constants" emerging by the in-

tegration of (5.22). The modal current vector components are derived from (5.23) by using (3.16).

ZHE T =-5ENRE D= 2(2) 1+ 0 b T) (5.24)
We obtain
B T) = - 2 [A(0) L,(T(H10) - By(D) K,(T(1 + Q) (5.25)

Z. =(bla) Z,

Equations (5.23) and (5.25) are the (exact) solution of the problem in terms of the four (so-far) arbitrary

integration-functions AB and EB - Note that these functions occur (due to (5.24) in the modal voltages as
well as in the corresponding currents. They will be fixed through appropriate boundary conditions which

have to be imposed on the original vectors (V, (. T)) and (7,(¢,T)) .

In matrix notation the solutions (5.23) and (5.25) read
- cfﬁ(c' F)

(5.26)

) [Io(r(”XC)) -Ko(F(1+xC))] _ [Asmj
%G D) | (L(TE+x8) Ki(r(z+x0) ) | Be(r)
(1+%¢)

This representation suits best for a resolution with respect to AB(I‘) and EB(I“) by matrix inversion.

A simple calculation which observes the Wronskian relation [17]
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fo(z2)  =K,(2) I(z) =K,(z)
W {I,(2), - K,(2)} = det (%Io(z) %_Kom] = det (11(2) Khm)
(5.27)
= I,(z) Ki(2) + K,(z) I;(z) = 1/z
yields
A(D)) K (T(1+x8)) K, (F(1+x8)) . ~Z D(1+ %8} (L T)
[5’3(1")) - KI(F(HXC))(—Q(F(“‘XC)) L(r(2+x%)) r %I (5.28)

Since we finally have to deal with the original quantities we represent them as well in a very condensed
form,

(her) = 75 é:} (1+10) [A(r) L{T(+18)) + By(T) Kz(r(1+xC)_)] (’j] )
(em) = 75 7 £ % [0 L{ren) - &) Ku(r0)] () (5.30)

Now we are ready to determine the “"constants” AB(I‘) and éﬁ(r‘) by the boundary conditions. These

conditions are:

For {=1 V,(1,T) = %»(1,T) (5.31)
Vi(1.T) = Z([{(1.T) + L,(1,T)) (5.32)
For {=0 V,(0, T) = Z,,(T) I,(0.T) (5.33)
V20, T) = = Z,(T") I,(0,T) (5.34)

Equation (5.31) implies that
9;(2.,T) = 0 and 9,(L,T) = ¥2 V(1 T) (5.35)
and from (5.28) we obtainfor B = 7 and { — 1 the simple relations:

A(T) = - Z, {(1,T) (5.36)
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Br)=0 (5.37)
For B = 2 and { — 1 we derive under observation of (5.32)

l[xz(r) = +2 T (K,(2D) - K;(21)) V;(1,T) (5.38)

By(T) = V2 T (1,(2T) + I,(2T)) V;(L,T) (5.39)
which in furn combines A,(T") and B,(I') as

Ay(T) = Q(2r) By(T) (5.40)

where we have defined the function Q(2I") as the following ratio

K,(2r) - K,(2r)

o(r) = 7,(2T) + I,(2T)

(5.41)

Application of the boundary condition (5.34) on the components V, and I, in (5.29) and (5.30), respec-

tively, reveals another expression for

Io(r) — II(F)
L,(T) + Iy(T)

K,(T) + K,(T)

A = 1,(0) + (D)

AT - By(T) (5.42)

Thus, together with (5.38) through (5.40), the integration functions can be expressed in terms of modified
Bessel functions and the voltage components V;(1,T).

More desirable than expressing the functions A;, A,, and B, in proportionality to V;(Z,T) is expressing

these quantities in terms proportional to the initially impressed voltage V;(0,T") . In other words we are

interested in calculating the transfer function 7, (') defined by

Vi(1,T)
T.(T') = = 5.43
+( ) J(Oyr) ( )
In addition to this transfer function it is very informative to find expfessions for the following ratios:
" /5(0,T)
T.(T) = 200, 5.44) -
O =300 (5.44)
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5 - ‘;1(0, 1") :
Z,(T) = 70T (5.45)

The input impedance function Z,,(I') occurred already in (5.33).

In order to compute explicit expressions for (5.43) through (5.45) we use equations (5.29), (5.30), (5,40),
(5.41), and (5.42) and finally obtain:

T (T) = Ia( F) + I;(T) 1
¥ 1,(2r) + L,(20) [1+2r (1) (1,(D)Q(2r) + K;(T))] (5.46)

1,(T) (20(21) 1,(T) + K,(T)) — K,(T) I4(T)

o : (5.47)
20T (Q@2r) (r) + K1) + =

- f: + 21(T) (Q(2r) I1(T) + Ky(I))

Zll) = % 7 (5.48)

= = 2,(T) (Q(2F) Ip(T) = Ko(T)

In deriving the above formuiae we again used the special Wronskian (5.27).

As expected, the two transfer functions 7,.(I') and 7_(I'), and the input impedance function Z;,(I") can

entirely be expressed in terms of modified Bessel functions. These expressions are, of course, valid for
the whole frequency domain, o < ® < «. Therefore we can especially investigate the high- and low-fre-

quency limits of equations (5.46) through (5.48). For this purpose we need to know the corresponding

limits of the modified Bessel functions. In the high-frequency limit we have

e {1 ! } (T = + o) (5.49)

I(T) ~ —— + —
o(T) 2nl 8T

el 3
L) ~ = {z - E:} | (5.50)

K,(T) ~ EﬁF e T {1 - 'SIF} (5.51)
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‘ K;(T) ~ \[;-’% e T {1 + sir} (5.52)

For the dc limit (i.e. (T — 0)) we approach the Bessel functions by

I,(r) ~ 1 (5.53)
1) - é _— (5.54)
K,(T) ~ - £n(T) (5.55)
K,(T) ~ % (5.56)

On the basis of the above approximate formulae we easily derive:

For the high-frequency limit (T — + o) :

‘ £.(r) = % e+ o(%) ¢ T (5.57)
() = % N 0[;]2—) (5.58)
Z.(T) = Z, + o(é) (5.59)

For the low frequency limit (T' — 0) :

T.(I) =1+ 0(I) (5.60)
T (T) = 1+ 0O(T) (5.61)
Zyu(D) = % Z, + o) (5.62)

These results confirm our exact solutions. The high-frequency results agree with those obtained at the

beginning of this section (cf. equations (5.12) and (5.18)). In the dc limit the results are obvious. The fac- -
. tor (1/2) in (5.62) is due to the parallel connection of the two loads Z, (see Figure 4).
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Finally we would like to transform our results into the time domain. Analytically this becomes extremely
difficult. However, starting with the high-frequency solution, one might consider forward and backward e
{reflected) running waves step by step on the basis of a kind of perturbation analysis. This will.become the

subject of forthcoming investigations.
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V. Coupled Two-Conductor Lines Above a Conducting Plane

‘ In this section we demonstrate with another example-the applicability of our general formalism. In [5] we
studied two straight diverging wires above a perfectly conducting plane. Here we would like to show that
the equations which were used are those which result from (3.18) with the appropriate eigenvalues. For
the problem in [5] we had to deal with the following per-unit-length matrices:

(Z,’,,m(z, s)) = s(Lym(2)) = U fep4 (K(ZI, 8) K(zz’ 9)]

_ sufg“[K i e);inz(mj | (6.1
(Fin(215)) = (Com(@)) = & (Fip ) 62
with
(onm(2) = fgl’I(K(z], 0) K(zf e)] (6.3)
‘ and
x(2,0) = (fa1,2(2) f21,1) (6.4)

The matrices (Z; ) and (¥;,,) are symmetric circulant matrices. Therefore our theory applies, and we

only need to calculate the eigenvalues of the matrices given by (6.1) and (6.2). This is not a difficult task.

We find the eigenvalues for (Z;, (2, s)) as
Z3(z2,5) = sp fe;; (] - ¥(z,0) cosz(e)) (6.5)
Z5(z,8) = s1 fg1; (1 + %(z,6) casz(e)) (6.6)
The eigenvalues for (¥, (2, s)) tumn out to be

se
fa1,1 (1 - x(z,0))

Ji(z.s) =

31




5€

5’2(2!3) = fgI,I (] " K(Z, e)) (6.8)
With the modal current components

fi(zs) = —J% (i) + Bes)) (6.9)

ir(z,8) = :/% (fl(z, s) + fz(z,s)) (6.10)

we derive from (3.19) the final current equations for the differential and the common mode, respectively:

d
2, —-%(29) ] 1+ (z, 8) cos?(8)) .
-{% ig(z,5) +% ———-—-(1‘_’;_ D) Edz- ig(z.s) - stu( o K(:Z)) ) ig(z,5) =0 (6.11)

-1 for the differential mode, ie., B = I
% = (6.12)
+] for the common mode, i.e., B = 2

As expected, equation (6.11) coincides with the corresponding equation in [5]. There we solved (6.11)
by application of perturbation theory.
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VIL Discussion and Concluding Remarks

In this paper we dealt with a certain class of solutions of the homogeneous (sourceless) NMTL equations.
These solutions were obtained under the restrictive assumption that the physicél matrices which enter the
NMTL equations are circulants. Of course, circulahts require a relatively high symmetry of the NMTL con-
figurations, like, e.g., Cy symmetry, but on the other hand they permit an eigenmode expansion which
decouples the original NMTL equations and simplifies them considerably. Moreover, despite the above
restriction, a host of applications are still possible. These applications include antennas, twisted conduc-
tor lines, and cables above ground, to name only a few.

It is worth mentioning that in the framework of an NMTL-eigenmode-expansion approach all appearing
eigenvalues are in general functions of frequency and position. However, it is significant and useful that
for our usual case of symmetric impedance and admittance matrices (reciprocity) the assumed circulant
matrices (e.g. from Cy rotation symmetry) are bicirculant and therefore the eigenvalues are in general

doubly degenerate. In particular we have

—1;-[-+1 for N even

largest number of distinct eigenvalues =

N+l for N odd

largest number of distinct ?B (s)

largest number of distinct modal speeds (7.1)

This roughly cuts in half the number of propagating modes to be considered. Furthermore, if the
impedance- and admittance-matrices are real and frequency independent (the typical lossless case), then
all the eigenvalues of these matrices are real as well as satisfying (7.1), and the propagation matrix is s
times a real matrix.

We did not investigate the resonance behavior of our solutions for the wave-launcher unit cell. For such
an investigation it is advantagous to express the solutions in terms of Bessel functions of the first and
second kind and then look for the zeros in the common denominator.

We understand the present paper as a first, more formal step, towards powerful analytical solutions for
interesting real systems. This will be the subject for forthcoming papers.

33




Appendix A. Some Properties of Circulant Matrices
By a circulagnt matrix of order N, or circulant for short, we mean a square matrix of the form

(Com) = circ (C1.C2,C3...,Cy)

i

C1,C5,C3,..., Cy
Cn.C1,Coy.ee, Cyyg

C3,C3,C4,....C;

A circulant has at most N differeht elements occurring already in one of its rows (or columns). We observe
that the circulant results if we cyclically permute the elements of the first row, beginning with Cy in the

second row, Cy-7 inthe third row, etc.

Circulants can easily be identified with the aid of the generic permutation matrix (I1, ), defined by
0 10 00
0 01 00
(Do) =| . .. . ,|=crc(0 10 .. 0 (A.2)

L

I 00 00
Theorem Af: Let (4nm) beanN XN matrix. Then (4,,,) is acirculant if and only if
(A"xm) ' (Hﬂ.m) = (Hn.m) . (An,m) (A.S)

Inwords: The circulants comprise all the (square) matrices that commute with (H,,‘m), or are invariant

under the simularity transformation

(Anm) = (M) * (Anm) * ()™ (A.4)
Proof: See [19].

rollary Al (A,,,) isacirculant if and only if

(A,,,m)r is a circulant.

Proof: Consider the conjugate transpose of the product
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(4m) * o)) = (o) * (An))

and evaluate both sides of (A.5)

(o) (Aem) = (Aam) ()]

Since we obviously have

Multiplying (A.8) with (T1, ,) from the left we get in conclusion of the proof

() (Cam) = (Tam) - (A0,m)

roll : (An,m) is circulant if and only if

(A,,,,,,)T is a dirculant.

Proof: Analogous to the proof of corollary Af.

(A.5)

In order to show that circulants form a special class of normal matrices we still have to prove some more

properties.

(1) t (Asm) and (B,,) arecirculants, then (A, ) - (B,x) is acirculant.
(@  K(4,,) isaciculant and ks a non-negative integer, then (A,,,m)k is a circulant.

3) It (Ax,) is a non-singular circulant, then (A,,,,,,)_I

Proof For the proof one has mainly to use Theorem A1,
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To _(1): We have to show

(M) - (Anim) - (Brim) = ((4nm) - (Bam)) + (Tnim)
We know that
(M) + (4nm) = (Anm) - (Tha,m)

(M) - (Buim) = (Bum) - (Thnm)

holds. This in turnimplies

or

Left multiplication of (A.14) with (11, ,)” yields statement (1).

To (2): From (1) we know that (A,,‘m)z is a circulant. The rest follows by induction.

To (3): We have to show

T (M) = (M) - (dnm)”

(4r.m)
Starting with
(4nm) * (Tam) = (Tam) - (An.m)

we arrive at
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by a twofold muitiplication with (A,,,,,,)'J , once from the left and once from the right. Combining the results

’ Nk
{2) and (3) we conclude that also ((A,,,m) 1) is circulant. Theorem A2 among others states that non-sin-

gular circulants form a group with respect to matrix muitiplication.
What we still need to show is the commutativity of circulants. This can most easily be done by virtue of a
second representation of circulants. This can be obtained with the aid of the permutation matrices

(o), k=0,1,2,...,N-1. We have

(Cn,m) = circ (C, Cauenns Cy) =C; (1, m) + C2 (T m)

(A.18)
TV S AN S

Therefore (C, ) is a circulant if and only if
(Cn,m) = p((Hn,m)) for some polynomial p(z). Associating with the N-tuple

1 =(Cp G, .y Cy) (A.19)
the polynomial

P(z)=C; +C; 2z + ...+ Cy NI (A.20)
the so-called representer of the circulant, we may write

(Ca,m) = circ (v) = PY((H,,,,,,)) (A.21)

Now, having two circulants (C{2) ) and (C{2)) of the same order, they can be represented with the help
of their corresponding representers PYI and PYz . Then, inasmuch as polynomials in the same matrix
commute, it follows that all circulants of the same order commute. Therefore, since with

(Com) also (C,,,,,,)T is a circulant (see (A5), (C,,,) and (C,,,,,,)T commute and hence all girculants are

_horm ri
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Appendix B: Diagonalization of Circulants i ) i

B1: Introduction of the Fourier Matrix (Uc,, m )

We start with the definition of the Fourier matrix.

Define the quantity

In a good deal of what follows, u might be taken as any primitive Nth root of unity, but we prefer to
standardize the selection as above. First we list some properties of u.

@ WV =1

(b) wu' =1 (+ complex conjugate)

(©) ut = u!
(d) *k = u—k - uN-k
(€) u+ + vl =0

(Closed vector chain along the unit circle in the complex plane).

With the aid of the quantity u we establish the Fourier matrix as

( ul woo w1 ]\
; u? o w2 N-1) 1
(Ucnm) == : ; :
N
‘/_ uN—I uZ(N—I) i, u(N—I)(N—I) 1
L I ) 1 1 ) (B.3)

The sequence u*, k= 1, 2, 3, ..., N, ... is periodic; hence there are only N distinct elements in (Ucn,m).

Therefore (Ucn,m) can artemativély be written as
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u U™ seeeen u
u? uwt uv-? g
(Uerm) = 7 : : (B.4)
N uh-1 N2 .. u 1
L 1 . 1 1 J
From (B.4) we easily derive that (Ucn,m) and (Ucn’m)f are symmetric, i.e.
T
Uenm) = (U‘-'n,m) (B.5)

T

(Ucn,m)f = ((Ucn,m)f) = (Uc,,,,,,)* (B.6)

Another important property of (U,:’l m) is its unitarity.

Cn,

Theorem B1: The Fourier matrix (U m) is unitary, i.e.,

Venm) - (Ucn,m)% = (Uc,,,m)f NVepm) = (nm) (B.7)

or (Ucn,m>—l = (Ucn,m)r (B.8)
-] N

or (U] = ((Ucm) ) (8.9)

Proof: The unitarity of (Uc,, . ) is a result of the geometric series identity

= . (B.10)
Oif L#k

N r=0 ) N ]" ul_k

39




t t
Consider (Ucmm) . (Ucn,m) and take the product of the 1k row of (U‘-'n,m) with the £ column of

h
(Uc,, m) to calculate the (k"‘, tt ) element of the above product matrix. The resultis (B.10), and thus

concludes our proof.
B2: Eigenvalues of Circulants

In this subsection we show that the Fourier matrix diagonalizes circulants, and at the same time we calcu-
late the eigenvalues of circulants. We again formulate a theorem.

Theorem B2:

Let N be a fixed integer 2 1. Let u = exp (2rjiN) and define the matrix (Z,,,,) by

(Enm) = diag (u, &%, &, ..; w2, 1) (B.11)
noting that
(E.,,',m)k = diag (u", w?k, W3k, ., uk N0 1) . {B.12)
Then
-1
(Hn.m) = (Ucn‘m) ) (En,m) ) (Ucn,m) (8.13)

Proof:  From (B.4) we read off that the £ row of (Ucnm) is
1 (ue_ w2t .. uN-Dt um) (B.14)
Hence the £% row of (Ucnm)  (EBnm) i

7_-%_ (ut u, u2£ u2, m,u(N—I)t u(N—I), uNl uN)

_ iv ( W ) F=123 N (B.15) -
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-1
The &% column of (Uc,, m) s

7!_]7 (u*k’ Wk, HN-DE N u*Nk)
(B.16)

Thus the (£k) — th element of (Ucn,m) (Zam) - (U )-1 is

Sn.m

(ul+1—k + u2(l-k)+2 Fo+ uNl+N—Nk)

2 [

(B.17)

M=

ur(!—k«!—]) _ 1 if £=k—]
i Oif Lz2k-1

=z~
I

r

which finishes our proof.

Now, another appropriate expression for circulants can be derived from (A.21) and B(.13). We get

(Ca) = 2 | (one) * Eam) * (Ver) ]

_ -1
= (Verm) * By (Enm)) - (Uer,m) (B.18)
[(En'm) . (Hn,mv) * e (Hn'm), = (Ucn,m) * (En,m)k ' (Ucn,m)_l}
k—factors
with
P(Znm)) = Cillnm) + Co(Znm) + Ca(Enm)’
+ v + Cy (E,,,m)N"l (B.19)
= diag (P.{(u) B (?), ..., B(uM~) Py(]))
Recall that
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P@)=Cr+Cyu+Czul +..+Cy u¥ i, _ (B.20)

With the above intermediate results we arrive at the fundamental theorerﬁ:

Theorem B3:

It (Cp,m) is acirculant, it may be diagonalized by the Fourier matrix (Uc,, m) . More explicitly,

(€0 = () (62) - ) pan
where

(ci) = diag (Py(u), Py(2) ..., B(w¥~1), By(u)) (B.22)
The.eigenvalues of (Cpa) are therefore

¢ = Py(uB)= é} Cres €XP (21:; %)

(B.23)

(CN+1 = C}) 9

Proof: Use (B.13) and (B.18).

Since the simularity transformation performed with the aid of (U,_.n ) diagonalizes circulants the column

m

vectors of (U

en m) are the (right) eigenvectors which correspond to the eigenvalues (B.23), and the row

vectors are the left eigenvectors.
If a circulant matrix (C,, ) is a symmetric circulant, or bicirculant matrix we have

C; = Cnyaei (i = é. 3 .., N) (B.24)
We denote such a matrix with

(By,m) = bicitc (By, By, ..., By) = bicirc (B;, By, ..., B3, B;) (B.25)

In this case the eigenvalues reduce to
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= By + B (4 + u¥UB) 4 By (P 4 uNIP) 4

Q
k)
I

By + B (uB + (uﬁ)*) + B (uzﬁ + (uzB)*) + ree | (B.26)

By + 2B; Re (uP) + 2B; Re (u?®) + ..

. . N .
l.e., for an even number N we find 7 + 1 eigenvalues

by = by-g by = by—z, o by_ =Dy (B.27)
2 2z
by = B; = 2B; + 2By = 2By + = ...+ 24By ~ 4By (B.28)
- — —+
2 2 2

+ 1if (—};-H) is even
qg= (B.29)
_ 1 (i;-u) is odd

by = By +2[Bz + B3 +'"+BN]+BN ; (830)
- —+
2 2

For an off number N we derive N+1

eigenvalues
by = by-p» b2 = ON_2) ooy BN—] = BNy (B.31)
2 Tz
by =By + 2(32 + B3 +...+BN+1J (B.32)
=z

Observe that symmetric circulants of even order N and those of order N + 1 have the same number of
eigenvalues. This number as well corresponds to the number of different elements in a symmetric circu-
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lant. Thus the configurations of those physical systems which can be described by bicirculants exhibit a
relatively high symmetry. Furthermore for real bicirculants (B,, real) the eigenvalues by are all real.

Now, formula (3.5} together with (B.26) through (B.32) suggest that one introduce a real representation of
the similarity transforration matrix using the following real eigenvectors of bicirculants:

() = 7 ((hen)y + (b hyg ) = V7 Re ([t )y

co_s ( Z;B) \ (B.33)

i

2|~

cos (Zn(N-I)B)
N

\ 1 /

1, 2, ..., % — 1if N is even

B - (B.34)
12 .. 5’2—1 if N is odd

(uf-‘n ).B B (u"‘n )B-N) =2 Im ((ucn )ﬁ)

S":( KB) | (B.35)

2 :
N sm(Zﬂ:(N—I)B)
N

03

E)

S
=

(]
Sl ~
L%
~

i

\ 0 J

f’_,]\
+1

~I
Wy )N = L . for N even (B.386)
2 ‘\/N H

-7
\+1)
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~

(B.37)

)
N
2
1]
.~

L I

The above eigenvectors (w")B constitute a real, orthonormal matrix (W,,,m) which transforms bicirculants

into diagonal form

(bl

bz.. O

W)™+ (Bam) - (W) = ' (B.38)

Note that in this form we have cos for the eigenvectors for the lower B (7,2, ... ) and sin for the upper

B (N,N-1,...), butthis could just as easily be the reverse. Since there are at most —];1 + 1 eigenvalues for
‘ even N and N—;i for odd N, what we really have is modal degeneracy so that or a particular eigenvalue

(exceptfor§ = N ,and (for Neven) B = % )} one needs in general a linear combination of the two

eigenvectors for each independent eigenvalue in solving general problems.
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Appendix C: Diagonal Form of the Telegrapher Equations

Consider the telegrapher equations without source terms

L a5 = = (Zamlz9) - (fulz.5)) 1
£ (1(a9) = = (m(29)) - (Va(z.5) . (c2)

and assume that the impedance and admittance matrices are circulants. In this case they can simultane-

ously be diagonalized by (Uc,, m), ie.,

(.’2,’1{3:)(2,3)) = (Ucn,;n )_I . (Z-,’,,m(z, s)) . (Ucn‘m) (C.3)
(#9)(a,9)) = (ve,,, )‘1 (Zhm(z5)) - (Ucy,n) (C.4)

-1
Multiply equations (C.1) and (C.2) from the left with (Uc,, m) and observe (C.3) and (C.4), then one

obtains the (coupled) equations for the modal voltage and current vectors ({),,(z, s)) and (z’,,(z. s)),

respectively.

-:; (Ba(z.5) = = (2@(2.5)) - (l2.5)) (C.5)

-‘% (02 9) = - (F42(a.9) - (8alz.5)) (C.6)

In terms of the components (2, 5) and #(z,s) of the modal vectors the last two equations read:

= Og(z.5) = - #(z.9) Bz ) (C.7)
d - -, .
prn i{z,5) = = Fa(z,5) Vg(zs) (C.8)

B=12..N)
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‘ Here the functions Z3(z,5) and j3(z,s) denote the eigenvalue functions of the corresponding matrices

(Z,’,,m(z, s)) and (f,,',m(z, s))
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Appendix D: General Integral Solution for the Telegrapher Equations

The combined telegrapher equations (C.7) and (C.8) read in terms of the modal reflection coefiicients

f’fs(z: 5):

:id; pp(z.5) — 2 ¥a(z.5) pplz.s) + é (I - ﬁg(z,s)) % tn(z'CB (z, s)) =0

B=12..N)

Here the reflection-coefficient functions are defined by

s (s = Op(z,5) ; zs)
pB(')—(zB(zs zﬁzs)

Defining the complex modal "phase" angles éﬁ(z, s) by means of the relation isee [1on

S8 pp(z.s)

equation (D.1) "simplifies" to

+ ch z, s)]

= 8(2.5) = 2 (2. 5) + 2 Eg(z.5) sinh (By(z,5))

where we introduced the quantity

Ep(a.s) = 5 = tn (i (a9))

The solution of (D.4) can easily be obtained in integral form:

z

ég’)(z, s) = 0g(0.5)  + 2 [ Fp(z.s) a7’

[

+ 2 f ég(é', 5) sinh (éB(z’,s)) dz’

(D.3)

(D.4)

(D.6)

Here 65(0, s) denotes some initial value function which we arbitrariiy have chosen at z = 0. Of course,

every other value z, could have been taken.
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One way to solve the integral equations (D.6) ‘may be the method of iteration. Applying this method we
get for the n*% order approximation

ég’)(z,s) = éB(O’ s) +2 j‘ Ya(2's) dz’

o

(D.7)
i , : A(n—1) " ’
+ 2 [ &(z',s) sinh (95 (z ,s)) dz
o
The lowest order approximation is given by
5(0) 5 s ,
05 (z,5) = 63(0,5) +2 ,{ Ya(2',s) dz (D.8)
and the first-order approximation by
- - 2 . .
Gél)(z,s) = 9‘(3")(17, s) + 2 i &g(z’,5) sinh (eéo)(z,s)) dz’ (D.9)

As soon as we know an approximate solution éé”) (z,s), we then obtain the corresponding approximation

for 5(z, s) via equation (D.3). In a further step we find approximate solutions for z'B or b with the aid of

equations {C.7) and (C.8), observing that

v = (7 - &B)'I : ECB(I + Gy 7 (D.10)

holds.
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