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Abstract

Self-complementary antennas have long been of interest because of their resistive, frequency-
independent impedanée. Such structures can be generalized to sheet admittances involving other than
specially shaped perfectly conducting sheets. This paper explores these possibilities in the context of
symmetry: the self-complementary rotation group Cu,.. Special results are found for Co, symmetry

involving the symmetry of the fields and special resistive structures.




I Introduction

The Babinet principle is a well-known concept in electromagnetics in which an aperture in a per-
fectly conducting sheet can be replaced by the complementary disk with an interchange of electric and
magnetic fields to give an equivalent boundary value problem [7]. This relies on duality for the electric and
magnetic fields (appendix A} and complementary structures (or more general sheet admittances) on a
plane (appendix B) [3, 7, 9]. One goes from this to find types of self-complementary antennas comprised
of conductors on a plane, these having a frequency-independant input impedance [1, 7, 8, 12].

In the generalized form of the Babinet principle rather general forms of sheet admittances can be
used and their complements found (appendix B) [3, 9]. As shown in the present paper there are various

interesting forms self-complementary sheet admittances can take, including self inverse and self rotated
inverse (section 3). This is fit into the context of Cyy and Cy, symmetry (section 2). ltis noted that, while

one can define Cy, symmetry for the sheet admittance the electromagnetic-field symmetry of interest is
Co. (section 4). Furthermore Cp. symmetry give various special results (section 5). Including an incident
plane wave and the resulting equivalent sources (appendix C) one can also define self-complementary

scattering (section 6).




I Self-Complementary Rotation Group

Now, of course, we consider the case that the screen is self complementary, i.e., the complement

is the same as the original except for a rotation. This has the well-known result that the input impedance of
a self-complementary antenna with two separate conductors (Co symmetry), and hence a single terminal

pair, is just Z, / 2 independent of frequency. This can be generalized to N-conductor self-complementary
antennas with N terminals (Cy symmetry) in which case the various input impedances (in a matrix) are all
frequency independent but of various special values [8]. Note that in [3, 9] and this paper we have a gen-
eralized form of complementarity and hence self complementarity. All previous results concerning the in-
put impedance of self complementary antennas still hold with the use of the generalized self-complemen-
tary structures (e.g. using resistive and/or anisotropic sheets).

Write (B.13) for the complementary admittance (normalized) using cylindrical coordinates on S
(the x, y plane) as

x = ¥cos(¢)

y = ¥sin(¢)

5w, ¢ 5) = 74 - Fo\e 0 s) - 7T (2.1)

Then, imposing the self-complementary condition with self complement at a rotation by ¢¢, we have

ys(\y: 9+ dc; S) =7 - 5’:56)(\{1’ ¢; s) - i

c

. COS(¢c) —Sin(¢c)
e = sin(ge)  cos(g)
Tl =1l (2.2)

Combining these we have

5’-.s(\{'v ¢+ o, S) =T Ty - 3’:;1(\?, ; s) - ?g . fg (2.3)

as the basic self-complementary equation for §‘s.

Note that applying this twice we have




Fs(¥. ¢ + 205 8) = T, - Ty - TP, 9+ s 5) - TL - EL
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which uses the commutativity of the two-dimensional rotation matrices as well as

- 10 |
== (0 1] == (Tm) (2.5)

We also have [5, 6]

SO (o [P

“Td = 7 T
sm(q&c+—2-) cos(¢c+EJ

- cos(2¢.) -sin(2¢.})
- (Sin(2¢c) 008(2%)] = (Crn(20c)

So the self-complementary rotation is like rotation by ¢, +g. However, the twice application of this leads

to rotation by 2¢,, or equivalently by 2¢. + =. (Note that any 2 x 2 matrix is invariant to rotation by & which
is just the negative identity as in (2.5)). Since rotation by 2¢,. reproduces the original object then the
object must have Cy symmetry where

26N = 2m (2.7)
Cy symmetry has [5, 6, 11}
cn ={(en), | £=12., N}
(cn), = (cn )i (2.8)
(Cn)y = (cv)Y = (1) = identity

It has a convenient matrix representation




29, = 2% (2.10)

Note that it is rotation by 2¢., not by ¢., which defines the Cy symmetry.

Turning to rotation by ¢, let us define another group element (CC) corresponding te the trans-
formation in (2.3), i.e. inversion followed by rotation by 7. - 75 or ¢, + n/2. So (C.) does not have a

simple matrix representation as (Cy ) y in (2.9). In a more general operator representation we have

= () O )

(2.11)

2

(Cc) = (CN)1

Here 57‘3 goes in the empty parentheses to produce the rotation as in (CN )t or the self complement as in
(C.) as well as combinations of these. Note that (C;) corresponds to rotation by ¢, (self-complementary

rotation angle) plus z /2 {corresponding to interchange of E and H) as well as inverse (of the sheet admit-
tance dyad).

So now define the self-complementary rotation group (order éN) by




Cye = {(n)p (Cw), (C) [ £= 120 N} (2.12)

This has Cy (order N) as a subgroup of index 2. ltis isomorphic to (has the same group structure as)
rotation-reflection symmetry Spx [11] where the operation (C. ) is replaced by (R;) which is reflection
through a plane transverse (perpendicular) to the symmetry axis. Note that all the elements of Cp

commute, i.€.,

(cn),, (Cn)y, = (CN)y, (CN)y,

(ew), (Ce) = (Cc) (cw), (2.13)

so that the group is commutative (or abelian}.




i Acceptable Kinds of Sheet Admittances
A. Scalar sheet admittance

Let us first choose a scalar form for the sheet admittance as

Fs(®, 5 5) = 5:(% ¢ 5) %

(3.1)
1 =1 % + 1, 7, = transverse identity
Then we have the required properties of j; as
~(C) \P . = '—'1 .
yS ( ’¢!S)—ys (\P:¢vs)
SO, 0+ 0035) =571 (%, 0:9)= 57 (¥, 01 ) 6:2)

35 (¥, ¢ + 29, s) =55 (¥, ¢; s)

Here the rotation matrices are not required (except on the coordinates to rotate ¢ ). Clearly Cy, symmetry
can be realized with j, meeting (3.2). Note that a realizable admittance can be any p.r. (positive real) func-

tion of s and the reciprocal of a p.r. function is itself p.r. [10].

As indicated in Fig. 3.1A, if the sheet admittance is j; at some angle ¢, then the self-comple-
mentary pattern has values j; and 5:;1 alternating for each increase of ¢ by ¢. = n/N. Asindicatedin
o

fig. 3.1B, there is a special case defined by

Fs(¥, 6 + 0ci 5) = F5(¥, ¢ 5) = 1 (3.3)
This is more than self complementary since now

55(®, 65 5) = 572, g5 5) =1 (3.4)

If there is some region of the z = 0 plane with this normalized admittance, it repeats on rotation by ¢, fora

total of 2N such regions. This is a special kind of self complementarity which we can call self inverse.




A. Self complementary

B. Self inverse

Fig. 3.1. Scalar Sheet Admittance




B. Dyadic sheet admittance

A more general form for the sheet admittance is found by a diagonal form as

-

Fs(®, 01 5) = 35, (¥, 05 5) Ta(0) (@) = s, (%, 65 5) B(9) (9) (3.5)

where '1'a and 71, are assumed real. As eigenvectors we have

Being at right angles in the (x, y) plane let us take

(0) = [Cn,m(g)j +(9) = (? 31) =R 0 (3.7)

This assumed form has a convenient approximate realization as a grid of admittance elements, s, con-

ducting currents in the ?a direction and ¥s, conducting currents in the -1'1, direction.

Noting that the inverse takes the form

-

T2 915) = 510, 01 9) (o) Tlo) + 5%, 65 5) (6) (o) (8.9

then the complementary sheet admittance in (2.1) takes the form

FOw, gi5) = 70 - 57U 45 5) - £

T (8, 61 5)Ta - 0) Wle) - 7 + 57)(%. 65 9)Ea - H(9) B(0) - 1]

-1 3 3

= 55, (%, 6. 5)%(0) B(9) + 55, Tul9) Tul9) (3.9)

Observe the interchange of the eigenvectors along with the inverse of the eigenvalues. From (2.2) the
self-complementary condition gives




Fs(¥, ¢+ 0 5) = T, - §'§C)(‘P, $; s) - %f

= 502 65 )% - B(9) B(9) - F + TN 0 9)E - al9) ule) - T
= 5;:(‘P: 8 5) B(o+0c) Bb(o+0c) + 5;;(‘1‘: ¢ 5) (¢ +¢c) L(d+¢c) (3.10)
where we have also required the eigenvectors to rotate by ¢¢ in going from ¢ to ¢¢ as
o+ o) =% - L(9) . B0+ 0c) = T - B(9) (3.11)

Writing out the sheet admittance at ¢ + ¢¢ gives

Fs(2 0 + 03 sy = T (P, 0 + 0ci 8) Lo+ 0c) Lo + o)

+ Js, (¥, ¢ + 0 15) B(0 + ¢c) (8 + o) (3.12)

Comparing this to 3.10) gives

S, (20 + 9cis) = T i)

fsb(\yl ¢+ ¢ .S)

5 (¥, 9; 3) (3.13)

Since fsa and jsb are assumed to be realizable p.r. admittances, then so are their reciprocals. Then the

self-complementary dyadic admittance in (3.10) is also realizable, giving Cy, symmetry.

Applying (3.10) twice (or (2.4) and (3.5)) gives

- - T
Fs(B, 0+200 5y = % - T 0+ geis) - B = B2 F(, 45 9) - (72

s c

Vsa (¥, 00 )Ta(0+20c) (0 +200) + 5, (¥, 65 5) (6 +26c) Fo(6+26)

Ta(8+20c) = 22 - T,(0) . Tp(0+20:) = 72 - G (9)
(3.14)

_This is just the required Cy symmetry.
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As indicated in fig. 3.2A, if the sheet admittance has 551 and ys, for ys, and J, respectively

at some angle ¢, then the self complementary pattern has j;, and Js, alternating with ys‘; and y;‘:

respectively parallel to the directions 1, and 7, respectively. The directions, of course, rotate by ¢¢ at

each step in the sequence.

As indicated in fig. 3.2B there is a special case defined by
Fo(W, 0+ 6c) = B - (¥, g s) - B (3.15)

c

Accounting for rotation in going from ¢ to ¢ + ¢¢ this is a requirement of periodicity on rotation by ¢¢
instead of only rotation by 2¢¢. With the self-complementary condition (2.2) we now have

iﬁc)(‘f’, #;5) = 55(%, ¢; 5) (3.16)
With (2.1) this becomes
Fs(¥, ¢rs) = B4 52 91 5) 7L (3.17)

Applying this to the diagonal forms (3.5) and (3.8) gives

- —

55, (¥, 3 5) Ta(9) Tl9) + 35, (¥, 5 5) (0) b(9)
= 5%, 915) B(9) () + (%, 01 5) Talp) Tu(0) (3.18)

where the interchange of the unit vectors is given by the 7, rotation in (3.7). The eigenvalues are then

related as

5, (B, 035) = 55 (%, 93 9) (3.19)
giving

det(35(¥, 9: 5)) = 35, (¥, 5 5) Fs, (¥, 67 5) = 1 (3.20)

If there is some region of the z=0 plane with this special form of dyadic sheet admittance, it repeats on
rotation by ¢¢ for a total of 2N such regions. This is a special kind of self complementarity which we can call
a self rotated (by n/2) inverse.

11




B. Self rotated inverse

Fig. 3.2. Dyadic Sheet Admittance
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As indicated in fig. 3.2B, if the sheet admittance has 5, and 5;11 for §5, and J5, respectively

at some angle ¢, then this pattern repeats at each rotation by ¢g. An example of this kind of admittance

sheet is a uniconducting sheet specified by
s, (95 s) =, Fg (¥ 4:5)=0 (3.21)

So a uniconducting sheet is its own complement. This is approximately realized by a set of parallel highly
conducting wires or strips oriented in the L direction on the z=0 plane. The spacing between the con-

ductors prevents currents (except for a small capacitive term related to wire or strip width) from flowing in
the 7 direction.

13



v, Complementary Sources and Fields

From (B.14) the surface-current-density sources on S are

TENw, i) =2 5 - B, 60) = -2 5 B2, 000)
o
TN, ¢ ey=2%; - Hy(®, ¢:0) = —Zz— 7y - E(%, ¢; 1) (4.1)
o

Now for a self-complementary structure as in section 3, the sources need not have the same detailed
symmetry, but may be more arbitrarily specified.

For general Cy, symimetry we may design an antenna with N currents (sum zero) going into N

conductors near W=0 [8]. There are various choices of the currents one may wish to choose including
various subgroups of Cy. However, one may ask if sources and associated fields in (4.1) can be self

complementary.

fmpoéing the self-complementary condition rotate the fields and surface current density at ¢, by
¢¢ and equate to the dual fields at ¢ + ¢, giving

TEN 0+ 0 0) = % - T, 611)
E.E'd)(\P’ ¢+ @bty =T és(‘{‘, ¢; 1)

A, 9+ 900y =% B0, ;1)

. [coswé) —sm(cvé)J

fe sin(¢z)}  cos(¢f)

Here ¢¢ can be chosen as ¢¢ or any other angle (such as 3¢¢, 5¢¢, etc.) for which the self-

complementary condition for the structure (sheet admittance) holds as in sections 2 and 3.

From (4.1) we also have the additional relation for the electric field (with (4.2) applied for the str-
face current density)

ED(w, ¢+ g 0) = -7 - ED(w, ;1) J (4.3)

This also takes the form

14




ED(w, ¢;0) = =271 E(W, ¢ + 941 1)

B2 0-0ci0) = -7 Bo(%, 45 4) e

[o4
which can be interpreted as negative rotation (-¢g and ’Eﬁ) , but with a sign inversion.

Combining the resulits for the electric field from (4.2) and (4.3) gives
E(W, ¢10) = -%2 - E(¥, 91 1) (4.5)
For arbitrary orientation of E; we then have

-2
TC

-% rotation by =«

Sy
l
H

.
1
+

rotation by = z/2

¢, =t x/2 (4.6)

This restricts the case of seif-complementary sources and fields to the case of Co, symmetry.

Now a self-complementary structure has in general Cy, symmetry. For certain cases Cy, symme-
try in the structure allows Cop,, fields. In particular for

9c = ¢cy 3P¢, Sy = (2M+1) Pe
=7/2 (4.7)
then
6o = = = T
€N 22M+1)
M=012..
N=4M+2 =2, 6, 10,-- (4.8)

gives the only possibilities for self-complementary fields. While one can have self-complementary sources
and fields as above, other distributions of sources and fields are also possible.

15




To see this point consider the examples in figs. 4.1 and 4.2. A simple case of Cp, symmetry is
illustrated in fig. 4.1. In this case the Cp. applies to the fields as shown by transforming the original
sources and fields in fig. 4.1A to their duals in fig. 4.1B. This transformation is equivalent {o rotating both
the structure and fields by +/2. A similar case of C3, symmetry is illustrated in fig. 4.2. Inthis case the
Ca. does not apply to the fields as seen in the transformation of the original sources and fields in fig.
4.2A to their duals in fig. 4.2B. Noting that more than one field pattern is possible on such a structure, the
example has one that is symmetric [2, 4] with respect to the y, z plane while the complementary fields are
antisymmetric with respect to this plane (noting the interchange of E and H ). Inthe original problem
(fig. 4.2A) equal currents are collected from two of the three conducting arms and delivered to the third
arm. In the complementary problem (fig. 4.2B) current is collected from one conducting arm and passed to
a second, while the third conducting arm has no net current. Clearly these two sets of currents are not
self-complementary.

Another interesting feature of Co, symmetry concerns the fields on the z axis. The complemen-

tary coordinate is

e =7Tg - r
0-10

T; =1 0 0| (three dimensional sense} (4.9)
0 01

The complementary fields at 7. are set equal to the original fields at 7 rotated by =n/2 giving the self-com-

plementary relation

% - E(F 1) = BN 1) = 2, A7 1)

7 - (7 1) = B9 1) = - B 1) (4.10)

o
In cylindrical coordinates this is

%y - E(¥, ¢, z; t) = B9y, ¢+%, zt) = Z, A(Y, ¢+%, z 1)

Ty - H(P, ¢,z 1) = Ay, ¢+§, 5 1) = —— E(P, ¢+-§-, 7 1) (4.11)

2
Zo
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B. Self-complementary structure, sources, and fields

Fig. 4.1. Exampie of CZc Structure, Sources, and Fields

17




B. Seif-complementary structure, and complementary sources and fields

Fig. 4.2. Example of CacStructure with Complementary Sources and Fields
18




This exhibits the C5, symmetry between the electric and magnetic fields. This applies for z>0, there

being a sign reversal on the magnetic field for z<0.

Now (4.11) can combined in a way to give separate equations for electric and magnetic fields as

E(Y, ¢p+m zt) = —%’3 CE(Y, ¢, z 1)
H(Y, ¢+7, 2 t) = —%5 CH(®, ¢, 2 1)
10 O
-2 =01 0
d (4.12)
00 -

This exhibits the Co> symmetry of the fields. Note that rotation by = is equivalent to two-dimensional

inversion through the z axis. The transverse fields (x and y components) are invariant to this transforma-
tion while the z component is multiplied by -1. Note that if one considers the components with respect to

W and ¢ (instead of x and y) these components do not change sign because ?\y and T¢ reverse direction

under rotation by .
As a special case consider fields on the z axis so that

r=z1,="r

(¥, ¢,2) = (0, ¢, 2) (4.13)
with the value of ¢ irrelevant. Then (4.11) reduces to

T; - E(0, ¢,z 1) = Z, H(O, ¢, z 1) (4.14)
;/vhile (4.12) gives

E, 0,6,z ¢)=0 , Hy0, ¢, z)=0 ' (4.15)

Thus on the z axis the fields are purely transverse, and the electric and magnetic field are mutually orthog-

onal, related by the free-space wave impedance. This is the usual relation for an outward propagating
TEM wave.

It is well known that two or more conical perfect conductors with a common apex propagate one or
more TEM modes [13]. The example geometry in fig. 4.1 consists of two flat-plate cones in which case the

19




fields are everywhere TEM, propagating radially outward. However symmetry is not restricted to conicat e
shapes or perfect conductors. Various strange shapes (scimitars, saw-toothed shapes, etc.) are also
allowed [8, 12]. In this case we still have the TEM result on the z axis, even in the near field.

20




V. Implications of Cp, Symmetry
A. Self-Complementary Antenna

There is already the well-known result of a self-complementary antenna [7, 8]. As indicated in fig.
5.1 this is typically taken as two perfectly conducting sheets with nothing on the complementary portions
of S. Derivations can be found in various references {1, 3].

For the present the use of complementary sources as in section 4 and appendix B makes the

derivation straightforward. In fig. 5.1 the region near ¥=0 is taken as a source region which is traversed by
contours C, for voltage and C, for current giving sources driving the antenna as

Ce Ce

() = — 7=2 (5D .3

1 2 [A, - df 7 JED . dE (5.1)
Ch Ch

Note the factor of 2 in the current expression accounting for the closed contour integral surrounding the
source region (z=0+ and z=0-). Note from (4.1) the current can also be expressed directly in terms of a
source surface current density as

1 = ”%d : fs(s)] cdi == [T 5y - dE (5.2)
Ca Ch

Next, take the complementary problem interchanging the position of conducting sheets with the
empty portions of S. Now note that C, and C;, are defined such that rotating C, by w2 (or by 7,) gives

Cy exactly. Inthis complementary problem we have voltage and current as

V'(c,s) - J'E’ﬁd) . df = -Z, fﬁs - df

Cy Cy

) oo (@ . G-_2[FE .5

1) =2 (A4 df = 7 B -t (5.3)
Ce Ce

Note the reversal of roles of C, and C;, and the reversal of sense of direction for integration on C, for

now finding the current. From (4.1) the complementary current can also be expressed in terms of the
complementary source surface current density

21
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(69 = [[7g - 759 di = [759) . 5, - i 54

Note that the complementary problem is the same as the original except for the rotation (i.e. self
complementarity). Further note that this source region has Es X I?S pointing outward (z positive) with A

then a positive rotation from E;. This allows us to equate (with +sign)
ples) - yls) - fles) o fls) (5.5)

[dentifying common terms in (5.1) and (5.3) gives

v(s) = 229_ [es)  yles) 2 22_ (9 : (5.6)
Thus we have

. {7(3) 7

Zin = o T = (5.7)

which the usual result for the input impedance of a Cp, self-complementary antenna.
B. Self-Complementary Antenna with Exterior Resistive Termination

Extending the usual concept of a self complementary antenna allow more general self-comple-
mentary admittances as discussed in section 3. One case of this is illustrated in fig. 5.2. Here we begin
with the usual two conductors near z=0 with ¢¢ = n/2. After going out some distance, say roughly ¥,
define a boundary with C4 symmetry, beyond which we have a sheet impedance of Zo/2 (corresponding
to s =1).

One of the problems with a real self-complementary antenna concerns the requirement to extend
to infinite radius (W =) inthe z=0 plane. At low frequencies the scheme in fig. 5.1 with conductors only

has Z;, - as s— 0 if the conductors are truncated. The scheme in fig. 5.2 might have the resistive-

sheet terminator truncated at some large radius \¥1. In this case Z;, is resistive for low frequencies and

23
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Fig. 5.2. Self-Complementary Antenna with Exterior Resistive Termination
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with approximate equality for ¥1 >> ¥g.

Practically this means that in terms of input impedance a "finite-size" self-complementary antenna
can be built with the frequency-independent Z;, in (5.7) extending down to D.C. Finite ¥4 means the

value at D.C. is not exactly Zo/2, but by modifying the resistive termination value and/or shape in its outer
portions a value of Zy/2 at D.C. may be realized.

Note that many other kinds of self-complementary sheets as discussed in section 4 can be
included in this antenna design.

C. Seli-Complementary Resistor

A related structure is the self-complementary resistor with Co, symmetry as illustrated in fig. 5.3.
As we approach W=0 on the z=0 plane there is some ambiguity due to the self-complementary

requirement in rotation at this point. This can be resolved by noting that the scalar self inverse described
by s = 1(or Z; = Z,/2) as discussed in section 3 is an acceptable choice at a point. Considering the

dyadic self-rotated inverse we find that ¥s; = Js, so that the only self-complementary choice at z=0 is

is(ov ¢; 5) = .1‘:
3s(0, ¢; 5) = 1
Z,(0, ¢; ) = 520- (5.9)

So let us consider some such region near z=0 characterized by this choice. Considering the case of Co,
symmetry let this region have the Co, and C4 symmetry as in fig. 5.3 with connection to conductors and
free space with Co, symmetry outside this region. Let this outside region contain any source regions as
well, but the detailed exterior location is unimportant. It is, however, important that there be two each elec-
tric and magnetic boundaries alternating around the resistive region.

Another way to look at this case is to take the geometry in fig. 5.2 and perform an inversion of
¥ — w1, This does not change any angles and such transformations with respect to the cylindrical

25




-]t

Fig. 5.3. Seif-Complementary Resistor
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radius ¥ leave Cn: Symmetry unchanged. Ininversion the exterior resistive termination (5, = 1) maps

into the region near ¥=0.

Considering the C, and Cj, contours in fig. 5.3 note that C, goes into C;, upon rotation by n/2,

just as in fig. 5.1. The boundaries of the resistive region (two electric and two magnetic) need not be

straight but only need to rotate into each other on successive r/2 rotation.

Now evaluate voltage and current for the resistive region as

Ve-[E di=2z [0 d

CG Ce
o (g .di=2 (5. g 5.10
1 =2 dz_za_[Es d (5.10)
Ch Ch

Note that this differs from (5.1) in the reversal of sign for the current since this is a resistive region with

- - -

Js=—ZzzEs=2“d-Hs (5.11)

i.e. with surface current density parallel to £, instead of opposite to it as in a source region.

For the complementary problem there is the choice of sense of rotation in defining voltage and
current. For the source problem the rotation sense has been taken as +m/2 (orincreasing ¢). In (5.1) and
(5.3) this gives the source voltages and currents the same sign. For the complementary resistor problem
let us take the rotation sense as -w/2 giving

o) = jﬁﬁd) . dE =7, [H - d

Ch o
1) = 2]?1&’) - dE = -Zi '[ES . df (5.12)
C, °c,

Of course, C, should rotate into C;, in this -n/2 rotation. Note that we have kept the same orientation for
C, and Cy infigs. 5.1 and 5.3. Again the surface current density and electric field are parallel in this self-

complementary resistive region as

7o) 2 Zo Bld) _ 5, . 7(4) (5.13)
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Now the resistive region has E, x H, pointing inward with #; then a negative rotation from Ej.

Consistent with the conventions in (5.10) and (5.12) we can equate

vl =y, &) = (5.14)

Identifying common terms in (5.10) and (5.12) gives
V4 VA
V = _OI(C) {c}) - 0 5.15
> % > ! (5.15)

Thus we have the impedance of the resistive region as

N
1]
"‘ﬂl <h

Zy
= Lo 16
2 (5.16)

which we can regard as the resistance of a self-complementary resistor. Note that, strictly speaking, to
consider this resistive region to have a uniquely defined impedance in the circuit-element sense, this
region should be electrically smali for frequencies of interest. Then the electric boundaries can be taken
as constant potentials. In this case the rest of the structure outside the self-complementary resistor
(including its electric and magnetic boundaries} can in general be neglecied.

A special case of such a self-complementary resistor has the shape of a square with conducting
contacts along two opposite sides. This evidently has the resistance equal to the sheet resistance (ohms

per square for any size square), consistent with (5.16). The more interesting thing is that this result holds
forany C4 shape with Co. boundaries (alternating electric and magnetic).

D. C4 Geometry for Lumped Impedances

Extending the results of the previous subsection replace the Zg/2 sheet impedance by an arbi-
trary (uniform) Z, as indicated in fig. 5.4. Assuming the sheet is sufficiently electrically small (so that one
can neglect parasitic capacitances and inductances) and has a C4 shape with four alternating identical

electric and magnetic boundaries, its impedance is found by scaling (quasistatic, multiplying alt elementary
pieces of the sheet resistance by the same constant) as just

7 =17 (5.17)

This permits a host of shapes (four pointed stars, circles, etc.), all of which can be simply calculated.
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Fig. 5.4. C4 Impedance Sheet with Alternating Electric and Magnetic Boundaries
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LR Complementary Incident and Scattered Fields

Consider an incident plane wave as

£z, ) - £, f[r_g]@ A - B f(t_lu]ag

E:(i"c)(F, 5} = E, f'(s)e_ﬁ";.-ig , Hz(im)(F, 5) = g‘-’- f(s)e_y-ﬂ'?_fg

Q

-

X:1.2=-{3,12X-%=T1,?3X-1.1=:1-2 ’ (8.1)

ey

5 .
y== propagation constant
[

Y= direction of incidence

Just as in (4.10) the rotated incident fields are set equal to the complementary fields at 7. as

7y - ENFg) = B9z = 2, AU

3, - BONF ) = Gz gy o oL gl
(7]

- -

. =Ty .r (62)

with 74 taken in the three-dimensional sense of (4.2). Note that the n/2 (or - n/2) rotation is the only

possible rotation for self complementary fields as discussed in section 4. For a plane wave this is simply
related to the right-angle relationship of the fieids.

First noting the phase on a constant z plane, and making it the same for 7 and 7. in accordance
with (6.1) and (6.2) gives

WeF=W R=th-i F=z (6.3)
consistent with 7; being a rotation for constant z. This establishes
=1 (6.4)

as the propagation constant. {One could have —1, for -r/2 rotation.} Furthermore (6.2) gives for the other

unit vectors
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ot
>
o

so that
T; =% x (6.6)
with only a right-angle relationship allowed.

As discussed in appendix C the incident field gives an equivalent source as

T, ¢;5) = T(2, 9; 5) - BN, 45 5) (6.7)

N

The source for the complementary problem is just
Fc.s) C ) = 7o) . 7(d,inc) .
I ¢ s) = YO 65 5) - E (¥, ¢; ) (6.8)

Asin (4.2) the self-com'plementary condition equates the complementary sources and fields at ¢* + ¢; to
the original quantities at ¢ rotated by ¢/. Asin (4.6) this angle can be only £w/2.

So we set (two-dimensional sense)

}:’.S(C)(‘P, ¢ + g; s) . E:§d’["c)(‘f’, o + g; sj =T - f:;(‘P, ¢; s5) - g([m)(T, ¢; 5) (6.9)
Replacing égd""‘c) from (4.2) gives
i‘”(‘fﬂ 0+ 3 ) Ry B0, 615) = B - (% 65 5) - BTN, 05 9) (6.10)

Rotating Elinc) by rotating 72 (parallel to the x, y plane) then gives

?:(C)(‘P,¢+£;s)=? T, ¢ 5) - 2T
’ 2 R (6.11)

This is the same as the self-complementary condition for the sheet admittance in (2.2) except that ¢¢ is
limited to n/2 (or also -w/2). Thisis Co, symmetry for the sheet admittance. Asin (4.7) and (4.8) Cp is

consistent with this for certain values of N (2, 6, 10, - - +).
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Within the above constraints a normally incident plane wave gives a set of self-complementary
equivalent sources. Then the results of section 4 apply and the scattered fields are TEM on the z axis as
in (4.14) and (4.15). Note that the scattered fields are symmetric with respect to the x, y plane so this
result applies to both +z and -z, i.e. forward scattering and backscattering.

A special case has -

5e=1, Z, =52°- (6.12)

uniformly over S. The normally incident plane wave ('1'2 direction) scaiters from S in a very simple form for
positive z as

E(Sc)(;'., I) = —% E(‘nc)(;’,t) — _% Eof(f _ 12 F] '1'2
c

;I(SC)(F’ f) = _% H(EIIC)(F,I) = _l & f{z + ?Z'F) -1‘3 (613)

and for negative z as

Sz ) - ot Eo RAF 14
HYOF, 1) *3 Z) f{t+ )13 (6.14)

Note that besides being TEM the polarization (except for sign) coincides with the incident field. Note that

the form in (6.12), besides being seif complementary is self inverse in the sense of section 3A. Being
independent of ¢ this form of sheet admittance has C.. symmetry and hence C... symmetry, of which
Co. s a subgroup.
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Vil. Concluding Remarks

As should be clear now the self-complementary character of planar structures has some subtle
characteristics. There is the distinction between the general Cy, symmetry of the admittance sheet (or

screen on S) and the Cp, symmetry of the sources and fields. Noting the special properties of the Cy
and Cy, symmetries of various electromagnetic structures, particularly as N-terminal networks, further

investigation should be helpful for such cases.
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Appendix A. Duality and Combined Fields

Including magnetic as well as electric sources the Maxwell equations in free space are

—

- P -
VxE=—uo§H—Jm
Vx§=60%}§+f , (A1)

These are cast in combined form as

E; = E-+quaﬁ
- = qj -
g =T+ L, (A.2)
(7]
zZ, = ’ﬁ = wave impedance of free space
€o
= 377Q
q =  separation index
=
These satisfy the combined Maxwell equation
vxU 95 gz T (A.3)
c o] 9 24 ‘ '

1

= speed of light
vHo €o

3x108 m/s

n

Duality refers to the symmetry between the electric and magnetic quantities. This is expressedin
combined form by

B = - qj By =dual combined field

féd) = —qj Jg =dual combined current density (A.4)
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‘ Note that the dual quantities also solve the combined Maxwell equation (A.3). Interms of separate electric

and magnetic parameters we have

AN
g - _1LE
ZO
- 1 -
o 17
z, ™
+(d
74 - 7,7

This dual set also satisfy the Maxwell equations (A.1)
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Appendix B. Complementary Sheet Admittances and Surface-Current-Density Sources

Now let us restrict currents to a plane S, the z=0 plane, as in fig. B.1. Let there be an electric sur-
face current density on this plane with boundary conditions

JS=Y-§+§'(‘)

n

-1 x [m - 1?_] (B.1)
fﬁs) = source electric surface current density
Y, = dyadic sheet admittance on plane

1
"

Laplace transform (2 sided) from time { to complex frequency s

Here + refers to z=04, or just adjacent to S on the indicated side. Note that the tangential magnetic field is

discontinuous in passing through the plane (as is the normal electric field).

Consider the case that S (and its complement} correspond to an antenna in transmission (and by
reciprocity in reception). Then there is no incident field and the fields are symmetric with respect to S.

With no incident field the wave propagates outward on both sides of S giving symmetric fields
[2,4]

=3 -1,1, = reflection dyad

et
H

H—l
+
—}

3, = 1-1,1, = transverse dyad

-—
i

identity dyad

Note on S it is only the tangential fields of concern in (B.1) for which we can take
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S with sheet &
admittance Yg

X 4
— d
Eq Jg
H.Q® H,

Fig. B.1. Boundary Conditions on Plane
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n
'.‘.L
o511

Ay=7%-A,=-1- A (B.3)

Then (B.1} becomes

Js =Y - Eg + ) =27, x H, = 2%, - H,

0-10
Tg4=1100
0 01

Considering now only the tangential fields we can deal with only 2 x 2 matrices without ambiguity
as

Syx = Lsxy (reciprocity)
- 10
o
- 0 -1 .
Tg = (1 0) = x/2 rotation (B.5)

Then the two forms of fs in (B.4) can be considered as two dimensional, only involving x and y compo-

nents on or immediately adjacent tci S. Note that in this two-dimensional case

.._1 _ o
=3
=3 =-%, (B.6)

Now consider the complementary problem. For z>0 let us have the dual fields as in (A.5).
However, do not introduce a magnetic surface current density on S, but let there be some equivalent
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electric surface current density satisfying the boundary conditions (B.4). Let this surface current density

and the sheet admittance be designated as complementary (not dual) quantities with superscript ¢ giving
Fe) - Flo) . gld) | Fles) o3  Gld) 2 oz . 7(d)
JE =Y EY + T =2 x HY = 2%, - H| (B.7)

Note that this distinction between complementary and dual avoids magnetic currents, but changes signs
of tangential fields in passing through S. For convenience we consider z=0+ for these results.

Now replace the quantities in (B.4) by the dual quantities (z = 0+) from (A.5) giving

=3 i s
2
Z - - -
Zo = v . gld - zd)
o td T HY = E (B.9)
which can be combined to give
2
A - - = -
Loz .90 =2 ¥ . 5ld) 2 5ld)
: a Y Ty Yo HY = H (B.10)
For arbitrary A this implies
2
Z = -
o = .y, = v - _13
> fa Y Ta T =t
= 4 . a_ - 4 . > -
Y(C)=—— -7 1 Ty =—— 1y Y‘1.7;T (B.11)
s ZOZ s Zo2 s d

This is the basic complementary admittance relationship derived in [3]. Normalizing the admittance as

5t (B.12)

_2 = :(C)
ys=E;Ys’ys Y

=—2-
_Zo p

we have
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(B.13)

=T
. Td

© gy 570 7= 7 5
Second, assume we are on some region of S with only sources, i.e., let both fs and ?S(C) be

zero (no conduction surface current density). This is then a source region. Then (B.7) and (B.8) become

e sog, B9 -2 g,k
Zo
7o =2 %, A, = -2 7, B (B.14)
Z, $
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A Appendix C. Inclusion of Incident Fields

. Consider that there are some incident fields to be included in the formalism. Then (B.1) is modi-
fied in the form

E = EWme) 4 Elsc) = E_ (on z = 04)

2, x 509 =2 7, - £ ©.1)

As we can see from this by comparison to (B.1), the previous results (without incident fields) are extend-
able to this case by the identification
j_ES) = f’; . E(‘m) . (C.2)

where the scattered fields correspond {0 the previous fields. These scattered fields are symmetric with
respect to S inthe sense of (B.2).

An alternate formuiation is in terms of the total field for z=0+ in which case we have

=4 _'.(

Fo=t E=2% ., - JO

-2 74 f:?(inc) short - circuit surface current density (C.3)

So one has a source in terms of the incident electric field in (C.2) or the incident magnetic field in (C.3).
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