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THE THEORY OF ELECTROMAGNETIC INTERFERENCE CONTROL
Carl BE. Baum

Weapons Laboratory

ABSTRACT

In order to controt electromagnetic interference in complex electronic systems
one needs some way to organize the problem such that it is tractable. Electromag-
netic topology aflows one to identify (or construct) a set of surfaces which limit the
penetration of this interference. It then organizes the interaction equations in a way
which identifies a set of controlling variables at the subshields. Introducing norms
one can bound the response in terms of transfer functions and special nonlinear
protection devices at the subshields.

1. INTRODUCTION

In considering the problem of electromagnetic interaction with electronic sys-
tems one is often faced with an overwhelming problem of complexity. In dealing with
a wide variety of frequencies and even transient waveforms for the incident electro-
magnetic fields one is often concerned with paths of electromagnetic propagation
into the system that are unintentional, i.e., are not designed to be there to transmit or
receive desired signals. As a resuit one may be confronted with hundreds or thou-
sands of potential signal penetration paths into the system. As a practical matter many
of these paths are not identified in an a priori sense, the number of possibilities being
so large.

So the question is: What can one do fo make this problem of electromagnetic
interference control more tractable? One would fike to have some way to dramatically
reduce the number of things (variables) requiring attention. These variables should
be controlling variables in the sense that appropriate choice of the values of these
controls all the signal levels of concern propagating into the system. Note that such
signals need not be made 1o be of precise amplitudes, but only be bounded as being
less than some values chosen in appropriate senses.

Such a concept is that of electromagnetic topology introduced in [1]. One might
also consider EM topology as a generalized shielding theory. It is based on the
concept that EM fields (and voltages and currents) in a volume are determined
uniquely (for passive, linear media) by the boundary values on the closed surface
surrounding this volume {38]. One can find some of the beginnings of this over a
century ago in the context of protection against lightning [30].

L

9 o
= Ll

- hart .~

K 3

£OR PUBLIC RELEASE
|4 Mar AN

1 CLEAKE
o L LPY
A0, ~Q\QTA




In this paper the basic concepts of EM topology and the associated use of norms
for bounding are summarized. First there is the qualitative (or descriptive) topology
involving the appropriate division of space into volumes and boundary surfaces. This
topology is used to organize the equations of signal propagation (the BLT equation).
This leads to the good-shielding approximation which is in turn simplified in a bound-
ing sense by the use of norms. The important parameters concern the transmission
of signals through the penetrations at subshields, involving both linear and nonlinear
protection elements. The responses at the various penetrations are combined to
give an overall bound for signals in the associated volume (sublayer).

2. QUALITATIVE EM TOPOLOTY

In qualitative EM topology three-dimensional Euclidean space is divided into a
set of volumes. Advancing to a hierarchical EM topology think of a set of nested
surfaces (shields) dividing space into a set of layers with layer index A

/q» = 1, 2,"', Zmax

2= 1 for outside layer
" |Amax for innermost layer

Vi

Ath layer

shield separating V3 and Vj,4

S2: A+1

This is next generalized by the concepts of sublayers and subshields as indicated in
fig. 2.1A. Here one of the layers (A = 3 in the example) is divided into separated
volumes (sublayers) with external subshield (proper subshield) boundaries, this
process is continued as much as desired. The sublayer index is taken as ¢ with A and
¢ indices now appearing on the topological entities. One can also carry the division to
the level of elementary volumes and surfaces by further arbitrary division of sublayers,
but this aspect will not be considered here [7, 21].

Corresponding to the EM topology there is a dual graph: the interaction
sequence diagram. As indicated in fig. 2.1B this keeps track of the signal transport
from one layer to another through the intervening subshields. At the sublayer level of
decomposition this graph is a tree which means that the path from one sublayer to
another is unique. Note that in the graph there are symbols for both sublayers and
subshields which is useful later when we need the scattering matrices for both these
entities. As indicated there are waves travelling in the "1" and *2" directions on each
edge of the graph. Conceptually in each sublayer one can think of coupling (1 = 1) for
saurces in the sublayer, propagation (i = 2) through the sublayer, and penetration (1
= 3) to the next sublayer(s) [3, 21, 40].

From the interaction sequence diagram it is easy to see that one can relabel
sublayers so that any particular one is "outside”. This corresponds to inversion of
coordinates about an origin within that particular sublayer. With this in mind the later
use of the good-shielding approximation will apply to signal transport from any
sublayer to any other sublayer. This points out an important use of the sublayer
concept in that it applies not only to protection from external sources, but from
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internal ones as well. For qualitative EM topology one can define a relative shielding
order as [9]

Raq, 4540, £ = X = positive integer
Pit, t1: 22, 22

= relative shielding order between V;, 4, and V3, 4,
Pii £4; A0, £, = Path from V. 4 to Vi, 4,

RAq 24 A0, 2o = Ris, £o;44, 4y (Path reversal symmetry)

Defining a set of primary sublayers (as say those containing noise sources or equip-
ment to be protected from interference), one can attempt to synthesize an EM topol-
ogy with a desired set of relative shielding orders (a symmetric matrix of non-negative
integers). This leads to some interesting resuits such as the uniform-relative-shield-
ing-order theorem which states that if we have three or more distinct primary sublayers
with uniform relative shielding order R among all pairs of these, then R = even and the
smallest non-trivial R = 2. These results are generalized in [26] to various relative-
shielding-order matrices and the various possible EM topologies of this type are
exhibited up to a maximum relative shielding order (Rmax} of 5.

frequency shielding [10]. Here the issue is the single or multiple connectedness of
the surface, single connected subshields being better under these circumstances.
The definition of proper grounding schemes is also formalized by EM topology [6, 10,
23]

One can also find implications of the topology of subshields relevant {o low- .

3. "BLT EQUATION AND GOOD-SHIELDING APPROXIMATION

The original form of the BLT equation for transmission-line networks includes
delay terms for propagation along the tubes {multiconductor transmission iines) as
well as distributed sources along the tubes [5]. In applying this the tube lengths are
shrunk to zero and now represent the transmission of signals from one volume to
another. The junctions (e.g., electronic boxes) now become the volumes (in N-port
representation). The BLT equation for EM topology becomes [7, 21].

((!'n,mm)u,v) o) ((ms))u) = ((17,5s)<s>)u)
(9, ) = (), ) - ((mmio),, )

interaction supermatrix

]

”

(Snmts),, )

scattering supermatrix




n

((79),) = ((5nmt),,) © ((7,09),)

equivalent source supervector

The combined voltage is a linear combination of voltage and current as

(o)) =((71%0), )+ (Zmmta, ) @ ((7%00), )

(3.2)
= combined voltage supervector
where the voltage and current supervectors are combined by a convenient
impedance supermatrix. As discussed in [15] a useful and convenient choice is
((Z-n,m(s»u,v) = Z((1nvm)u,v)
((1"»”’);; v) = identity supermatrix (3.3)

Z = constant resistance > 0

where Z may be chosen based on some typical impedance in the system (e.g. 50 Q).
Note that currents are taken as positive in the wave directions (as in fig. 2.1B) so that
there are two directions on each graphical edge for the two directions of propagation.

At this point note that supermatrices and supervectors are partitioned matrices
and vectors (i.e. matrices of matrices, etc.). This partitioning can be accomplished to
any number of levels of partition. For this purpose we have [21]

® = generalized dot product (contraction)

[(( ) ...]m,m‘ ] ° [(-"(an,mv - '")mm }

Ny Ny(n,n2,004ny.1)

Crymypesnmy = Any, 1y sning Bty my e snt,my
ni=1 ny=1



which is just the successive application of the dot product to second indices of the
blocks of the first supermatrix and first indices of blocks of the second supermatrix.
For this to be meaningful the columns of the first must be partitioned the same as
rows of the second. For addition the partitioning must be the same for both matrices.
Partitioning rows and columns the same way (for square matrices) gives what is
termed symmetric compatible order. By simple extension the above applies to
supervectors as well. As discussed in [21] one even can represent the supermatrix
inverse in terms of the blocks resulting from the partitioning.

Note that the u, v indices (dummy variables) when in matrix or vector paren-
theses) represent the various topological indices, such as introduced in section 2.
These have been introduced as [7, 21]

A =layerindex , u=12,3 = layer part index
L =12, Lmax{A) = sublayer index

T =12, Tmax{4, £) = elementary volume index (3.5)
{not used here)

o = 1,2 = dual-wave index

So that in general we might have five matrix partitions corresponding to these indices.
Then we have

u = {0, 7,41, A} = topological index set (3.6)

Concentrating our attention on the layer index write

w={o, 7,4 u} (8.7

so the BLT equation is now written

(,.0), ) o (@00, ) - (((%0),),) .

To obtain an approximate solution of the BLT equation note the interaction
supermatrix is block tridiagonal, i.e., the topology {(as in fig. 2.1) does not allow
propagation directly from A to A +2 (or greater) without first going through A + 1. Then
let us assume that the off-diagonal blocks (corresponding to signal passage through
shields) are small (or otherwise the shields are not very good at attenuating signals
which is not very useful). Furthermore let

((Vés)(s))wjl = ((05),) for 4 =1 (3.9)




(all sources on outside)

Then by Gaussian elimination with matrix coefficients and vector unknowns one can
obtain the good-shielding approximation [7, 21]

((V,isus))wL {@[((sn,m(s))w’w,)l_& H_J} o ((V'£S)(S))wj1 6.10)

L=0

This form requires that the penetrations have an impedance as in (3.3) {i.e. .
terminated) so that "reflections" (a special generalized sense) do not occur in the
sublayers (which are also assumed passive). Other forms of (3.10) are also possible
(involving inverse of diagonal blocks of the interaction matrix inthe (A - L, A - L)
position in the running product above) if the reflection condition is not met [7, 21].

The first benefit of the good-shielding approximation is the reduction in the
matrix order to that of the blocks at A level. Note now that the signals in the Ath layer
are represented by a product of matrices corresponding to the layers and shields in
the topology, i.e. different factors correspond to different physical entities in the real
system. Taking norms (special bounding procedure to be discussed later) gives a
scalar equation as

5., ]|

(3.11)

((5""n(s)) w, W’ )}L—L, A-L ((S,,,,,,(s))w’w, )A—L, A—t-L

((V£S)<s))w)1ﬂ

In this form if we take s as jo this gives frequency-domain bounds. Including norms of
convolution operators the above applies to time domain as well. One can often
assume that the transmission through a layer is bounded in norm sense by 1

(especially for 2-norm [15]), in which case we have
s (s)
V(s )”S (5‘ s ,) ((VSS)J
“(( ), A }:Ij] (S ))wsw A-LA-1-L » O, 1
This is an ideal form to have the result in that the signals in the Ath layer are bounded
by the norm of the exterior excitation times a product of transmission factors, one for

each shield. This is a logical quantitative form from which to define shielding
effectiveness.

(3.12)

Since, by topological inversion, any sublayer:can be transformed to the outside
layer (an improper sublayer) these formulas can be applied to the attenuation of
signals from any sublayer to any other sublayer. One merely consults the
corresponding path in the interaction sequence diagram to find the subshields and
corresponding subshield scattering matrices. The product of the norms of these
gives a bound on the transmission between the two sublayers.




4. NORMS FOR BOUNDING RESPCNSE

First consider vector norms, which are anything with the properties

[(ea) = 0 4 (2) = (00)

lee(xa)] = led ()] » @ @ complex scalar

[Gn)] + () < ()] + (vn)

l(xx)| depends continuously on (i)

Matrix norms have the above properties with the addition of a product inequality

[(#nm) - (Bum)] < fnm)] (2o )] - (2)

For our purposes matrix norms are defined as associated matrix norms with

)l = 55 | —“(""'ﬁz‘l;nfx":ﬂ )

so that the product inequality applies in a tight sense to matrix/vector products as well.

A commonly used norm is the p-ncrm which for N-component vectors is

. 1
ﬂ(xn)"p = {%Ixnlp}p for p 21

Nzl = max %]

The associated matrix p-norms for special cases of interest are for N x M matrices

N
el =ty Zhnl = iy ot

M
mml. = 2, D] = maimum row




1

[l = [mae((4em)T - ()

-r

with X max as the maximum eigenvalue of the Hermitian matrix argument.

*T (conjugate transpose)

While the vector and matrix norms are appropriate for the frequency-domain
parameters in the previous section, we need similar quantities for time-domain
waveforms and associated convolution operators. The function norm is defined with
the properties [28]

L =0 if f(¢) =0 or has zero "measure"
f >0 otherwise

los @) = lef | (4.6)

LA+ 20| < |A@] + |20

Operator norms have these properties as well as

® Fa()] < A0 [YO] )

Again for our purposes we define these as associated operator norms with

sup [ AUF@) ]

= | A | 4.
1AOE= g0 e e
The p-norm for time-domain waveforms is
= ?
b, = {J‘If(t)lpdt} o Mol = sup [£0) (4.9)

where isolated values of (t) are excluded b? considering limits from both sides of
points of concern. The important operator of concem is convolution designated g(t)o
where

oo

) = g0 ft)) = [ gte=1) 1 = [ge) fe-1) v (4.10)

)




Note that convolution in time domain corresponds to muitiplication in frequency
domain (as in the good-shielding approximation in section 3). So the convolution
norm is now

sup  fa()o F(1)}
le(2)o] = Fel=0 170 (4.11)

Assuming g(t)o is causal we have the remarkable results [28]

[|g(t)oﬂp <fetelfy for 1< p<e
(4.12)

ls(2) olly = llg(e) o, = [t

so that the convolution operator g(t)o p-norm is simply related to the 1-norm of the
associated time-domain function g(f). The 2-norm has the special result (Parseval
theorem)

lrl, = —J;=z e,
(4.13)

le(t)oly = 18(io)max = |E8(iomax)] < e

Here the 2-norm in frequency domain merely replaces t by  in the integration. The
convolution operator norm is just the maximum value of the frequency-domain
function (on the jo axis of the s plane).

5. BOUNDS ASSOCIATED WITH SUBSHIELDS

Now consider an aggregate of signals passing through the various parts of a

subshield such as characterized by a scattering matrixfor S, 4,; 4 + 1, £5 - In section

3 these appear in the good-shielding approximation in (3.10) through (3.12). The
general form is

(749409)) = (Fam(s)) - (7506)) o (W0)) = (Tumts) © (VP10 (5.1)

where we now have-matrix canvolution operators in time domain. Here "in"
designates the input to the subshield and "out" designates the output from the
subshield into the sublayer, the signals being in the form of combined voltages
(waves). In this linear form with transfer-function matrices we have in time domain

[(70) | < | Gumt) o] Jri ) 52)

Taking the norms in p-no::m sense we have the results for vectors [25]
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n(Vn([)) "p = | (Va(®) "pv"pf = H("Vn(t)"pf)u (5.3)

pv

where subscript v denotes vector (4.4) or associated matrix sense and subscript f
denotes function (4.9) or associated convolution operator sense. So here the norm
can be taken in the sense of a norm of norms. For the associated convolution
operator this is

|Gl < | (imnti,, |

pv
(5.4)
| Zm)] < [ Tm@) ],

For the special case that the transfer-function matrix is diagonal (and hence square N
x N) we have :

|(am@)o | = mex | Zunr o] .

< m:x u Tont) H1f

This linear case corresponds to a set of penetrations (localized) through an
otherwise good shield (an important case). Diffusion through the shielding material
(often less important) can be included as a distributed term, but this complicates mat-
ters considerably. For the discrete penetrations the most important are conductors
{wires) with protective filters at the shield. The transfer-function matrix elements can
be appropriately defined and measured as in [13]. Similarly apertures (electrically
small) can be characterized by appropriate experimental configurations involving
transmission and reception wires and/or bowls as in [13]. Specifying a shielding re-
quirement in frequency or time domains corresponding to the transfer-function ma-
trix, then one can measure the individual transfer functions of the various penetra-
tions and combine them in the norm sense as above to determine if the required
shielding is obtained.

Extending the norm concept to include nonlinear protection devices (clamps,
fuses, spark gaps, etc.) at the subshield one can introduce the concept of a norm
limiter [22, 27]. For this consider the nth signal reaching the inside of the shield and
require

v,ﬁ"“‘)(z)u < X, » (5.6)

no matter what the incoming signal Vf") is. This is the simple case corresponding to a
diagonal transfer-function matrix. An ideal norm limiter would not affect the v{out)
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waveform until such time as Xy, is reached, at least in a p-norm sense as defined by a
time integral. The X, might correspond to the peak signal allowed through (e - norm)

or the energy allowed through (related 1o 2-norm). As discussed in [22, 27] it is desir-
able that there be terminating filters on both sides of the nonlinear element to
minimize the effect of reflections from this element. For the p-norm of a vector of
signals (5.6) becomes .

1

a(v,ﬁ”“‘)(z)) ” = [ﬂv'sm)(’)npf] < | (x,) ﬂpv = {gxg’}; (5.7)

The norm limiters ¢an be combined with filters on both sides. Consider the

pv

simple (but common) case of a diagonal filter/limiter combination so that V,SO“’) is only
influenced by Vpﬁ""). Let there be a first filter Tﬂ, the norm limiter X, and a second

filter Tﬁ) Then as in [25] we have the combined result

ﬁv,g""f)(z) pr < Tfn)(t)o ﬁpf{lesser of[Xn»HTrgr)z(‘)o pr" V") of }}

IN

@) [Lf{iesser ofi—XmﬂTS)z(’) lL f

o)

1
—

of | (5.8)

], - (e,

This gives a bound in terms of any p-nom (with X, defined for that norm). This allows
for both linear attenuation (filters) and nonlinear attenuation (norm limiters).

pv

6. CONCLUDING REMARKS

This has been a brief summary of the basic aspects of quantitative and qualitative
EM topology, this forming a general theory of électromagnetic interference control by
controlling unwanted signal propagation in complex electronic systems. For more
details one can consult various items in the bibliography, the present paper only
touching the highlights. Nevertheless, one can now see a thread running through
the whole scheme. Beginning with the qualitative or descriptive aspects one orga-
nizes the problem. In turn this orders the interaction equations (BLT equation) from
which one obtains the good-shielding approximation with a product formula in which
the transfer-function matrices for the subshields can control unwanted
electromagnetic signals. In...ducing norms, bounds are obtained on such signals in
both frequency and time domains including the effects of special limiting nonlinear
devices.
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The basic pieces are now in place, but various aspects of the theory will likely be

expanded. Perhaps more important there is much to be done to implement various
aspects of this in test procedures and associated specifications.
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