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Abstract

This paper takes the reciprocity relation between incident and scattered fields and applies it to the EEM
and SEM terms for the scattered fields. Besides the symmetry relations due to reciprocity there is found a
simple relation relating the backscattering coupling coefficients. Including a symmetry plane in the
scatterer and having directions of incidence and scattering near the symmetry plane, and having suitable
polarizations allows one to separate the scatterer natural frequencies into two sets.



l. Introduction I

In the theory of electromagnetic scattering, reciprocity plays an important role [11, 12]. As long as the
scatterer is perfectly conducting or is comprised of reciprocal media (media characterized by symmetrical
constitutive parameter matrices) there is scattering reciprocity. In this context, reciprocity means the
equivalence between incident and scattered waves, i.e., a wave incident at some direction and polariza-
tion on a scatterer produces a far scattered field at some scattering direction and polarization. The result is
the same upon interchange of the directions of incidence and scattering with the polarizations remaining
unchanged [17 (chap. 2)]. This basic scattering reciprocity is considered via integral equations in sections

2 and 3.

The scattered fields are expanded in terms of eigenmodes of the integral equation (eigenmode
expansion method or EEM) in section 4. Here the reciprocity is evident in terms of the various symmetric
products involving the eigenmodes which decompose the solution into a sum over the eigenmode index
B. In section 5 this is extended to the pole terms in the singularity expansion method (SEM) which further
decompose the solution according to the natural-frequency index a. Considered on a pole-by-pole basis
the residues factor according to terms dependent separately on the various directions (incidence,
scattering, and two polarizations). An important result is that the normalized backscattering coupling
coefficient is the square of the normalized coupling coefficient for the natural current modes.

Section 6 discusses the application of scattering reciprocity to the forward scattering theorem.
Specifically the total scattering (or extinction) of the incident wave is invariant to reversal of the direction of

incidence.

If the scatterer has a symmetry plane P, then the geometrical symmetry combines with the reciprocity
symmetry to give additional symmetries in the results. Section 7 discusses this and introduces the case of
mirror scattering (a special case of bistatic scattering). Further specializing the direction of incidence as
parallel to P, then defining polarizations parallel and perpendicular to P, the backscattered fields have no
cross-polarized components. Furthermore, parallel (or "vertical") polarization only excites one set of
natural modes (the symmetric modes), and the scattered fields only contain the corresponding natural
frequencies sgy . Likewise perpendicular (or horizontal) polarization only excites the remaining set of

natural modes (the antisymmetric modes) and the scattered fields only contain the s;¢ 4.




II.  Surface Current Density on Perfectly Conducting Scatterer

As indicated in Fig. 2.1 let us assume there is some perfectly conducting scatterer with volume V and
boundary surface S. The surface current density Js on the scatterer is related to the incident electric field

g(inc) through the impedance or E-field integral equation [4, 6] as

é(i’m)(Fs,s) = (2,(&,?;;5);3_.,(?;;5))

m
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is(fs)= outward unit normalto S at 7g
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Y= % (propagation constant)

s=Q+jw (complex frequency) '

1
c=(noeo) 2 (speed of light)
1
Mo |2
Zo=|12
(2]

~ = Laplace transform (two-sided)

Note that the delta function at 7 g= 7§ has been removed by the transverse dyads [13]. The formal

solution to the integral equation is, of course,
= =-1 Z(in¢c) .
Jo(Feu8) = <z, (Feue: 8) E r;;s) (2.2)

An important property of this impedance kernel is its symmetry which takes the form of a generalized
transpose as

Z4(isTgs)=2] (FaTsis) (2.3)

i.e, besides taking the matrix (or dyadic) transpose Tg and rg are interchanged. The inverse is defined via

(ZF oo 2 (Tis)) = Tu(F )30 (5 - ) = (3 (o) 24(2. 7o)
85 = surface delta function (2.4)

By taking the generalized transpose of (2.4) one can show that (2.3) also applies to the inverse kernel,
i.e.,

s 4/ -, = T - =
(7. 7s)=27" (RFeis) (2.5)
This strictly applies only where the inverse exists, i.e., for (fs# r¢) and away from natural frequencies s,.

This concept of symmetry in the kernel is very important, leading to the idea of reciprocity [10, 11,
12] which will be used later. While the formulation here is in terms of a perfectly conducting body it also
applies to any body comprised of reciprocal media, even anisotropic media. One can have sheet
impedances on s or volume distributions of €, [L and G (as long as these dyadic functions of space and



frequency are symmetric, i.e., reciprocal). Inthe volume case the surface integrals are replaced by volume ‘
integrals.

Now diagonalize it (i.e., expand in eigenmodes) via

<2t(?;'Fs,;s);?$B (Fs’,s)> =Zp(s) ?sa (Fs;s)

= <?SB ('r'g,s); 'Z-'t(Fs’,Fs;s)>
Z p(s) = eigenimpedances

is g (7s.s) = eigenmodes

<]Ts By (Fs' : S): ?s B2 (F;,s)) =13, (biorthonormal)

(2.6)
This gives
Z (TSv ;S ) %, (S):j.Sﬂ (?Svs)-]:s,g (Fs"s)
i (rSvrsr ) %‘, S)ISB(rS' )lsB(rs:S)
.1.‘(?'5)8 s(Fs “F§)= %?sﬂ (Fs-s):l:sa (Fg,s) (2.7)
The symmetry (generalized transpose) here is apparent. The surface current density is now
js(Fs, G- §~i1ﬁ(s) (E (i) (7, s);?s 5 (%, s))?sB (Fs.s) (2.8)

The SEM form of the solution is [4, 16]




Jo(Fs8) = Eog‘?(sa)na'j'sa (Fo)[s-50]

+ singularities of f(s)
+ possible entire function

f(s) = incident waveform (Laplace transformed)
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= coupling coefficient
E, = scaling constant (volts / meter) for incident field (2.9)

Note that coupling coefficients here are taken with no s dependence, i.e., class 1.
Now let the incident field be a plane wave with electric field as
= = —y1yF

E)(7,s) = Eof(s)Tpe

—-

1y = direction of incidence
1, = polarization
Ti-1p =0 (2.10)

As in fig. 2.1, phase or arrival time is chosen by the location of coordinate center ¥ = 0, here taken for
general finite sized scatterers as the center of the minimum circumscribing sphere of radius a [6, 14]. The

surface current density is then



Js(%. 8) =Eo ?(s)(i}’ (Fe 7 8) 1, e_ﬁ”s>
=E, 1(s) <§ T(fs s),e_ﬂ1 'Fé>-7p

=Eof(8)7p -(e‘“‘"é 27 (7 s s)>
noting the symmetry of the kernel. In the EEM term this is

Jo(Fs 8)=Eo(8) %j z5! (s)[?p -<e"“'Fé Je |3(Fs',s)ﬂ?sﬂ(rs, s)

The SEM form is

+ singularities of f(s)

+ possible entire function
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Noting that 1, is always orthogonal to 14 we have a transverse dyad 1 with the property

i,=1-1,1, = incident transverse dyad

.1.1 :"P =:|.p,.1.1'-1.1 =6

(2.11)

(2.12)

(2.13)

(2.14)




This transverse dyad can be included wherever 1 p is used. Since it is only a function of 14 then including
it in integrals where 71 is already present it does not complicate matters. It can be thought to simplify
things by removing the components "parallel” to '1'1 which don't enter the answer anyway. Including this

we have alternate forms for (2.11) in regular form

14

Jo(Fer ) = Eo?(s)(i (.7 )y e‘ﬁ“s>.1p

- Eoitep- (e 78,27 (1,74 ))
(2.15)

for (2.12) in EEM form

= = < = — : [e Y113 (o, -
Js(Fs 8) = Eo f(s) % Zg (s)[1p '(11e Y1y rs;lsﬂ(rs’ s)>] 1SB(rs, s) (2.16)

for (2.13) in SEM form

S 217
;isa(r§)> ( )

Note that '1°1 just weights the integral over the surface-current-density modes to remove any ?1

component.



. Scattered Fields

The far scattered electric field is calculated from the surface current density as [1]

1r'1m=-1.m.:ir'-1.r=6 (3.1)

Note again as in fig. 2.1 that the coordinate center has to be specified, here as the center of the minimum
circumscribing sphere. Note that (3.1) is for the far field, i.e., the leading r -1termas r— o with the

property that
1,-E¢(f,s)= 0 (3.2)

As indicated in fig. 2.1 we have

1, = scattering direction
?m = direction for measuring (sampling) scattered electric field
i,-im=0 (constrainton 1) (3.3)

Note that we also then have

s £ - LA R T S
Tm - E¢(F, s)=il43—:r—1m-<1,eﬂ' rS;J_,,('r’s,s)> L

-spoe Y - Tpfs 5 (=
~THo® 1m.<e71' rs,Js(rs,s)>
Amr (3.4)

Combining the far field results with (2.15) for the surface current density gives

10



: B (¢ o). ~Eof RL LY S S VU Sy 25 g
Tm-E¢(.8) = E°f(si:tl°e 1m‘<1rey rTs 2 (Fs T s)Tie T 's>-1p

~Eof(S)So€ ¥ = /o e Fe Zqre o = vieTe\ =
S (;nt“ 1p-<1re Yirte 2 (Fe Tai )i Tre” 's>-1m (3.5)

Note the symmetry (reciprocity) in this formula where we have used the generalized transpose resuit in
(2.5) for the inverse kernel. Here we have the result that the interchange

(i T) o (-7, m) ' (3.6)

leaves the result unchanged. Referring to fig. 2.1, the scattering reciprocity resutlt is that an incident plane

wave characterized by ("i1, Tp) giving a scattered by (7,, Tm) at a distance r implies that a second incident

wave characterized by (—'1',, '1',,,) gives the same scattered field with directions (—?1, ?p) at the same

distance r.

Note that this symmetry is merely a result of reciprocity, the generalized transpose symmetry of the

operator, including any reciprocal loading of the scatterer. While the foregoing consider scattering of a
plane wave, the result is even more general. One could have any two (reciprocal) antennas at distances rq

and ro from the scattering coordinate center. The ratio of received (open-circuit) voltage at one antenna to

source current into the other antenna is independent of interchange of roles of transmitting and receiving
antennas. This is one form of the reciprocity theorem and is often termed reaction {10].

A special case of (3.5) is that of backscattering with backscattered electric field measured in the
same direction as the incident field so that

IS B At @7
In this case (3.5) becomes

- o=, Eof(S)SHo = [+ —yitFe Z_1/= = v= v\ =
Tp-By(fs) = — 5 —=Tp (T " *: 27 (Fa T s e 70 ), (3.8)

which might be termed self-reciprocity, i.e., the incident-to-scattered-field transfer function is not only the

same on interchange of incident and scattered (reciprocity), but also in the case of (3.7) in effect these are
in some sense the same thing, (i.e., which is called incident and which is called scattered). Note that since

11



this reciprocity applies to all frequencies, then by inverse Laplace (2-sided) or Fourier transformation it
applies to arbitrary transient waveforms as well, the scattering taking the form of a convolution operator.

Another special case of (3.5) is cross-polarized backscattering so that

Tp=-1y, 1p-1,=0 (3.9)

In this case we have from (3.5) that incident with polarization 1, into backscattering with polarization 1, is

the same as with ?p and ?m interchanged. This can be interpreted as a_symmetric backscattering matrix.

While the reciprocity here is stated in terms of electric fields and currents, one could consider
source currents at one antenna producing magnetic fields at the other. With a sign interchange there is a
similar reciprocity relation (or "magnetic reaction") as discussed in [8]. Furthermore, while these results
have been stated in terms of (complex) frequency domain, since they apply for all frequencies they apply
for time-domain waveforms as well (i.e., consider the inverse Laplace transform).

12




IV. EEM Scattered Fields

Applying (3.5) in the context of EEM as in (2.8) and (2.16) gives

-

EH(S)SHo®Y . = = e
s)=_——2 ° 2"2,3‘(s)1,,,-cfﬂ(1,,11;s)-1p
B

4nr

- <°1'mey1"r'S ;?SB (7. s)><7pe—y11'F§ ;?SB(FS'. s)>

(4.1)

Note in this form how 7m and '1'p factor out (in dot-product sense) with factors depending separately on T,

and 71 , o that the four unit vectors all appear in separate tactors. In this form reciprocity is apparent as

im- Crg(Tr718) Tp =Ty Cry(-Tr=Tri ) Tnm (4.2)

Note that ér B and éb are simply related via
C’B(1" s)=CB(—1,,s) - (4.3)

so there is really only one vector function to consider. In the dyadic then we have

13



which is scattering reciprocity in terms of only the directions of incidence and scattering.

For backscattering we have in dyadic form

(4.4)

(4.5)

(4.6)

which is a way of saying that for each eigenmode the coupling to the target is the same as the coupling of

the target currents to the backscattered fields, at least in terms of angular dependence, i.e., '1°1 and ?p.

Note that in (4.1) there is a sum over P for arbitrary frequencies, so this factorization by ?p and '1'1 does not

apply to arbitrary frequencies for the scattered or backscattered fields.

14




V. SEM Pole Scattered Fields

Applying (3.5) in the context of SEM poles as in (2.9) and (2.17) gives

Eo

-'l.m . Ef(?, S)= anr

e_yrz?(sa) Tlfa (?11-1.p; :‘.ru-im)[s-' Su']_1
[+ 2

+ singularities of f(s)

+ possible entire function

-

Tlfa(.ih:ip; 1r-1m)= na(11jp)nra (:ir--im)

far coupling coefficient (class 1)

n
Q
o
C

o
=5
(o]
[}

o]
[]
=
0,
[+
3
—t

°
I
7]
7]
=

recoupling coefficient (class 1) (5.1)

The coupling coefficient gives the coupling of the incident field to the natural mode. The recoupling
coefficient couples the natural mode to the far scattered field.

It is convenient to normalize these coupling coefficients so that they have peak magnitude of 1 over
all angles concemed and assume the value +1 (real) at the angles concerned (or one set of these angle

combinations). For n, let this angle combination be ?1 o and ?p o giving

15



‘““(71 o’ :iPo )

sup Ina(.i1, -“.p» =
15,9,

-

(7.7 ) = na (i1, 7p)
e (11,1p) naﬁ’o'-ipo)
e 2 5] 1= 9 o)

+p (5.2)

In another form, noting that the 3-term symmetric product that is the denominator of 14, is not a function of
1, or 7,, we have

= fe ~vol1F§ T (=,

1p'<11e Yolt silsa(rs)>

(3 3 \ 7
n 1,1, = —
’ ( p) ?Po ’ <:'.1o e-7a11°-fs;'j‘5a(-|:£)>

(oo™ il 5)

yE Yo, 75 T -\
1 e (o) ,] rl >
p s s
< o a( ) 59

For nr,, we have a maximum magnitude at angles 1,, and 1, giving

16



1 Y i Ts 3 r 14
<1m°e «irg s:lsa(fs)> (5.4)

Comparing (5.4) to (5.3) we have the simple result (for at least one choice of angles)

— -

Tmo =Tpor Tre = ~hg

0 (3, 3,) = 0 (1,7, ) (55)

Mo
which is found by simply substituting 3, — —1; and i, — T in (5.4) giving a formula identical to (5.3).

Except then for an appropriate interchange of direction vectors the normalized recoupling and
coupling coefficients are the same. So, knowing one we know the other. In a general form we can
normalize the far coupling coefficient in (5.1) as

-

2T ) < 25 ) ) o

One symmetry to observe is the basic reciprocity relation

17



uli ( i, 1m- 11,1 ) Mty (11. p 1rv1m) (5.7)

Noting also

T]a(-ih _:ip) = _na(:ih:ip) ' ﬂf,)(h, _:ip) = "ﬂg')(:ih:ip)
g (Trs Tm) = —n,aﬁ,,?m) , nﬁ")(1,, —?m) = n(")(1,,-1.m) (5.8)
we can note that there are at least two choices each for :iPo and 1, o Which results from

ng)(“o’_-ip )= -'1151?)(110'_1.90)___".|

nﬁ';)( -—-1.m )= —‘152)( "o’—if“o):;I (5-9)

which are of course now both of magnitude 1 on inversion of 1, and 1, . Applying (5.8) in (5.7) we also

have the symmetry
Tl(n)( r 1m;_-1.1r _ip) = ngz)(?h:ipﬁr:—{m) {5.10)

For the special case of backscattering with measurement parallel to the incident field we have

3
o3
=
p—
- i
iy
=
°
h —
I
=3
—
E)
=
—
-
=
—r
©
|
—!
=
&}
©
S

[ng‘)(i1,ip)]2 (5.11)

18



Got that? The normalized backscattering coupling coefficient is exactly the square of the normalized

coupling coefficient (a complex function of 1; and '1°p). Furthermore we have

sup [nf (i1 7p)| = sup n(in3p)|
i, i,
=1
= nﬁ,"&(ﬂoﬁpo) (5.12)

From the symmetry concerning inversion of '1'p in (5.8) we also have
™ (3, 3= [n™(3, 7
(0 p) = [0 ()

- [0 ()]

Tl(bn()l (110' —1po) =n(bn[)1 (110'1p°) = 1 (5.13)

So what this says is that measurements on the scatterer to obtain the normalized coupling

coefficient for the natural-mode surface current density as a function of 71 and Tp are simply related to
backscatter coupling coefficients (normalized) by a simple square. Notethat f = 0 needs to be maintained
while rotating ?1 and -1',, (or equivalently the scatterer orientation) for these results to apply. The reference

time for the backscatter signal is not taken from the first backscatter signal to arrive from a backscatter
pulse, but the time for the backscatter signal to arrive from some reference position on the scatterer, such
as the center of the minimum circumscribing sphere in fig. 2.1. Of course one could use the time of the

first backscatter signal provided an angular-dependent correction is made.

The backscattered electric field can be considered as having two components, one parallel to 7p,

and one paralle to 11 x 1,. Defining

—-

10 = -1.1x-1.p (514)

19



then we can have the cross polarized backscattering coupling coefficient as

ngTaiple) = ary (vl Aue)

= g (1 To) nrg{ Fee)

[+

=- ﬂg‘)(iv -1.p) ﬂff)(iv “?c)

= 03y -7,) n{Ts -1e) (5.15)

This gives the symmetries

(147, 7c) = (1,76 7,) =

o o

T]E:n();(_{v ——ip’ ——ic) = nf:n)(_iv e, _?P) -

o

—

O, T, 3) = ~n0({ T, o) =

o o

—nS:n)(Tvch jp) = ““(n)(ﬂ' _?C'?P) (5.16)

o C o

Note that in general we have the inequality

20
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)Ty 3o - (R

T\g‘)ﬁh?p)l

(i3} {svp [T e}

1c

< {sup
1o

- {oup (55}

1p

ﬂg’;(ihipﬂ (5.17)

= sup

1o
which holds for all "ic for every choice of -1.1. So the cross polarized backscattering coupling coefficient is
bounded in magnitude by the maximum of the backscattering (parallel polarized) coupling coefficient for
every 1.
One can also express the far coupling coefficient in dyadic terms, anaolgous to the EEM formin

section 4, as

+ singularities of f(s)

+ possible entire function

21



= <.1.meY alr Fs:is u(?5)> <.1.pe_7 alt Fé;_j.s a(Fé)> (5.18)

Note that the natural modes are not necessarily normalized in the same manner as the orthonormalized

eigenmodes in section 4. In current form, however, the various pole terms (class 1) are not functions of

the complex frequency.

Note that C rq @nd c « are simplyrelated via

Cro(ir) = Ca 1) (5.19)

In dyadic form then we have
6 fo (:ir».{i) = éra (-ir) 60:(-1.1)

—

IETNES

I
O\

Ch, (-4 ) (5.20)

which is again reciprocity in terms of only the directions of incidence and scattering.

The present analysis is related to the earlier concept of far natural modes [1]. Except for a constant
scaling factor these are the same as the C,a(ir). In the present analysis the relation of these to the

recoupling coefficient is interesting due to the exhibition of various symmetries.

F or backscattering we have in dyadic form

22
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=
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Il

Cra(Fnr) = Ca(h1)Cali)
&1 (1) (5.21)

In scalar form we have for in-line or parallel polarization

- -

Im = 1p.7r = -1

il
—
- §
o
O
R
—
-}
=
g
[ S
N

(5.22)

In contradistinction to the EEM results in section 4, the SEM results here when considered pole by pole at

‘ each natural frequency s, do allow the factorization by 71 and -1'p.
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Vi. Application to Forward Scattering

For forward scattering with measurement parallel to the incident field we have

1=T,0n =1,

(6.1)
In this case (3.5) becomes
> = _Eo?(s)suo —-yr3 < 711'Fs S1{= = bt —711'}'& 1
1o+ E ,s)=—4_e - (14e 27 (rs,rs;s);1,e 1,
nr
~Eof(S)SHo _yr= [ —¥T1Fs Eoqpe - \ = I1TI\ =

which is invariant to inversion of 71 (i.e., to interchanging coming and going). In EEM form the terms in

(4.1) become

éB(11’S) = érﬁ( ys)

Cry(T4Ti8) = Cry(ins) Cp(iys) = g ys) Co(ins)

CT (1 iis)

g (6.3)
In SEM form we have 5a results as in (6.3) and for the coupling coefficients
ma(-{h-ipﬁh?p) = na(.{b:ip) nra(:“h:‘.p)
= Mg (G To) ma( 075
- R ) o

For the normalized coupling coefficients this is
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(6.5)

Now in what is known as the forward-scattering theorem [7, 9, 15}, the forward-scattered fields are
related to the absorption and scattering cross sections, i.e. the total power removed from the incident

wave (extinction cross section). Here we have found that forward scattering is invariant to inversion of '1'1.

Therefore, the extinction cross section (sum of absorption and scattering cross sections) is also invariant

to inversion of '1'1.

In [7] the forward-scattering theorem is extended into time domain for arbitrary incident transient
waveforms with some limitations concerning boundedness and late-time behavior. [t was observed that
for a step-function incident wave one had to be careful concerning the order of takingr to infinity and t to

infinity. The result was (in present notation)

. W+ W) = absorbed plus scattered energy

It

%eoeg{ip. Po-Tpt [1rxTp] - M- [TyxT,]}

E

[}

o = magnitude of incident step —function electric field

o

low —frequency electric polarizability of scatterer

Mo

low — frequency electric polarizability of scatterer

+ & r— oo before t »

— & t— o beforer—» e (6.6)

The thing to note here is that this formula is also invariant to inversion of 31. In any event due to the fact
that forward scattering is invariant to inversion of ﬂ and applies to all frequencies (and hence transients)
then time-domain absorbed plus scattered energy is invariant to inversion of 71. Note that if the scatterer is

lossless then scattered energy is also invariant to inversion of -1.1.
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VII. Inclusion ot Reflection Symmetry in Scatterer

Besides the symmetries inherent in reciprocal scattering one can have geometric symmetries in the
scatterer. A common such symmetry is reflection symmetry with respect to a symmetry plane P as in fig.
7.1. Here atypical aircraft is (at least approximately) such a symmetrical scatterer. As discussed in [3,5] all
electromagnetic parameters (including incident and scattered fields, currents on the scatterer, etc.) can be
divided into two separate parts which do not couple to each other; these two parts are designated

symmetric (sy) and antisymmetric (as).

Defining the coordinate center (f = 5) as the center of the minimum circumscribing sphere (radius a)

let there be a cartesian coordinate system as indicated. With

- —-

1, = p = unit normal vector to P

Texty 7.1)

we have areflection dyad

100
R=|0 1 0|=1,d+11,-1,1, (7.2)
00 -1

which associates with every position

r=x1y+yly+z1, (7.3)

a mirror position

Fm

R-F=xT,+yi, 21, (7.4)

For a perfectly conducting object with surface S this means that for every position T €S then also T ,€ S.

This applies to non-perfectly-conducting objects as well by applying the symmetry requirement to the
constitutive parameters g,1, and o, and even if they take the form of 3 x3 matrices (tensors) [3,5].

The fields, currents, etc., are decomposed into symmetric and antisymmetric parts, some examples

of which are [3,5]

Egy(7.t)=2{E(F.)+R-E

as

(7))
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as (7.5)

where k is the equivalent magnetic charge density on S [2]. Note “sy” takes the upper sign and “as” takes

the lower sign.

Let us consider the various terms that appear in the modal expansions. The eigenmodes have the
symmetries as in (7.5) so that the modes in (2.6) can be divided as

as’ as
(7.6)
B= { zg,B’} = partitioned index set for eigenmodes
and similarly for the natural modes in (2.9) as
-j.ssy ’(?s)=iﬁ-_fss ,(Fsm )
as'® ag'“
(7.7)

o= {;g,a’} = partitioned index set for natural modes

Referring to fig. 7.2 let the incident wave be characterized by the incidence direction 71 with two

orthogonal polarization vectors 1, and -1.h with
14/ /(y,2) plane

ip-i,=0, p-74=0

(7.8)
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horizontal polarization

-t
=
1]

"vertical" polarization - not exactly vertical, but perpendicular to 1

-
<
U

Here the term vertical is used loosely, and is defined as above. Note that there is a set of mirror unit

vectors (using the “electric” reflection rule in (7.5)) as

11m-=—R'11 ' 11VER'1V ’ 1hmER'1h (79)
Note that this is a left-handed system due to the reflection as
TeX =~ Thyn + WX thy="1y 0 Ty X 11p="Tv, (7.10)
The transverse dyadsreflect as
Ty,=1-1y_Tq,= 1—(R-11)(R-11)
=1-R.1,i,R
=R-1;:R (7.11)
The other previously used general polarization vectors ?p and im alsoreflect as
1o, =R-1p , 1m =R-1n (7.42)

Now let us apply the bistatic scattering formulae for the SEM coupling coefficients in section 5 to the

case that

—- o - ~ - -

i=-1; =-R-1;, Ip=-1, =R,

(7.13)

i.e., with scattering direction such that the receiver is in a mirror position to the transmitter and the receiver
polarization is mirror to the transmitter polarization. This case can bereferred to as mirror scattering. Then

let us define a mirror coupling coefficient as
Mg (T17p) =1 (T1Tpi=T1,00 7o)
—nalTnTo) e o (Tt Tom)
1T Tpp Jr(~T1.7p )

=N (Tim-Tom) (7.14)
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This result follows on the simple interchange of the roles of ?1 “ ?1m and "ip © -1.Pm in (5.1) with the

choices in (7.13). ltis also just a statement of reciprocity for the chosen directions. In normalized form this

is

-}

o0, 7)) T )
(n)(11» )(n)(11m'1pm)

=™ (7. 3
=N 11m Tom) (7.15)
This better exhibits the symmetry between coupling and recoupling coefficients.

Now consider the symmetry in the coupling coefficients because of the symmetry of the natural

modes in (7.7). Consider the recoupling coefficient in (5.1) applied to the present case giving
- - -y 11 S -
n’a(—11m'1pm)= (1”'01 <11 e *m (s’)>
1 —‘Ya1 1m-’. i
==SqMo|\ 1p & s (%)

1 Rt

= -SqMof 1, Re ]ssya(?’ )

as’

- - _‘Y(I11'Fém_'.° (-r-/ )
'1Ssy o Sm

as' (7.16)

Regarding the variable of integration over S as Fs’m then this is proportional to + the numerator for the

coupling coefficient 1 1,1, ). Noting that the three-term symmetric-product denominator is just a
1 9

complex number we now have

-1
;-J:sa(Fs,)>

33 ) KN NR RN S CRE
n:ia'(1,,1p)-in,:§'w( 1'm'1pm)—sauo <Jsa(l’s)-aszt(r,rs.s)s=sa

=£Msy a,(-i‘m':ipm)

as (7.17)

In normalized form this is just
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(") (1 )_ +n(")
=4q{" )Ql (71mjpm)
as’ (7.18)

These results are just the obvious extension of those for the natural modes in (7.7). Noting from (5.8) a

symmeftry on inversion of the polarization we also have

n(sr;') (* 1 ) g;f) '(i‘m'iipm)
as’® as’® (7.19)

Thus an alternate way to look at coupling to antisymmetric modes is to reverse -1.Pm

Applying these results to (7.15) gives

ng:)sy (11' ) nr('r?)sy (T1m':ipm)

as’™ as™™
r 2
™ (3.3
=4 My ,(1 -1p)
| as’
2
—+a™ (3
=% nsya ( 1Pm)
L as’ (7.20)

So the mirror coupling coefficient is also expressible as the square of a coupling coefficient, reminiscent of
the result in (5.11) for the backscattering coupling coefficient. There is a difference in the signs, however,
depending on whether symmetric or antisymmetric modes are being considered. In terms of the

backscattering coupling coefficient in (5.11) the mirror coupling coefficient is

ng:sya'(-ﬂJ) +n£2:y (-1-1’-1.p)=i7]§>nzy (i1mjpm)

as' as as

(7.21)
This shows that mirror scattering is simply related to backscattering with a sign dependent on mode type.

To understand this a little better consider the orientation of the polarization ?p in fig. 7.2. This can
be taken successively as one of two orthogonal polarizations 1\, and Th. Consider the case that ?1 is

parallel to P asin fig. 7.3, i.e.,

32




m - (7.22)

noting the opposite ways that -1'\, and -1.h reflect. From (7.18), (7.19) and (5.8) we have

0

n(ar;),a’(-i P -1. v) =-T (ans),a'(-i 1’:i v)
(7.23)
o 11T) = 1T 7n) =0

So vertical only couples to symmetric (and only scatters symmetric) and horizontal only couples to
antisymmetric (and only scatters antisymmefric) provided 71/ /P. Thisis summarized in the backscattering

formulae (asin (5.11))

(7.24)

Note that in the various pairs of symbols the upper symbols go together as do the lower symbols.

Consider for -1'1/ /P that first one uses vertical polarization. The backscattered field is not only

vertically polarized, it also has only symmetric natural frequencies sy o-. Now second use horizontal
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polarization. The backscattered field is not only horizontally polarized, it also has only antisymmetric
natural frequencies s, o-. This gives a technique for separating the natural frequencies of a scatterer into

two separate sets in the complex frequency plane. |n an experimental configuration this can be used to
more accurately determine the s, and help identify the scatterer by having two separate pole patterns at

which to look.

Now there is the question of accuracy of alignment of 1,//P and 1;,LP. To the extent that there is
some rotation of these unit vectors with '1'1 as the axis of rotation, this can be detected in the
backscattered signals by cross polarization, i.e., 1, transmission scattering into '1'h reception, and
conversely. Suppose this angle of rotation is ¢ then from (7.23) we have the definition of ¢ = 0 by the
angle require to make the cross coupling zero. Since the coupling coefficients are proportional to the dot
product of 1, and -1.h with a vector then we have sin(¢) and cos(¢) variation of the various ng'). The
vertical and horizontal (in-line) backscattering goes like cos2(¢) while the cross polarized part goes like
cos(q>)sin(¢); or to first order like 9. So one could correct the data by numerically adjust ¢ to rotate the

coordinates to make the cross-polarized part zero and separate out the symmetric and antisymmetric parts
and thereby the s¢ - and s 55 4.

Concerning deviations of _1°1 from being parallel to P let § be the angle between '1°1 and P. Assuming
that the coupling coefficients have bounded derivatives with respect to _1.1 variation, then the deviations
away from the nulls in (7.23) are at most first order in §. This means that cross polarized backscattering is
first order in &. Furthermore, in-line backscattering (for both vertical and horizontal polarizations) deviates

from the & = O result by an error which is of order £2 (due to the square for the backscattering coupling

coefficient ng') in (7.24)).
So for deviations of both direction of incidence and polarization that are small with respect to their

ideal orientations with respect to P as in fig. 7.3, the efrors are also small. This experimental configuration

may then prove of practical significance.
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Viil. Concluding Remarks

Symmetry then is a powerful concept in simplifying otherwise (more) complex problems. Reciprocity is a
fundamental symmetry in the Maxwell equations for the case of suitably simple media (symmetric constitutive
matrices). This leads to symmetry between incident and scattered far fields with special results for backscattering
and forward scattering. Geometrical symmetry in a scatterer gives additional simplification to scattering, such as for

the case that incidence and scattering directions are parallel to a symmetry plane.

These results can be used to guide scattering experiments. For SEM poles the coupling coefficients for
surface currents are simply related to backscattering coupling coefficients. Furthermore a symmetry planein a

scatterer can be used to separate the natural frequencies into two sets in the backscattering.
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