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ABSTRACT

Simple approximate formulas are given for the equivalent polarizabilities of a
narrow slot aperture having depth. The length of the slot is assumed to be much larger
than its width. The special case, where the length is also much larger than the slot
depth, is treated by means of an equivalent antenna radius. This equivalent antenna
radius is shown to be useful in describing not only the dominant axial polarizability but
also the transverse polarizabilities. The equivalent antenna radius is also shown to
generalize éxigtiﬁg polarizability formulas for hatch—type apertures. Approximate
formulas for the slot aperture are also constructed which ;hold for all depths. Simple,
somewhat heuristic, arguments are initially used to derive the approximate polarizability

. formulas. A more rigorous derivation follows along with numerical calculations and

comparisons.



I. INTRODUCTION

Equivalent polarizabilities of apertures in an infinitesimally thin conducting plane

have been widely used in the EMP community to treat aperture penetration problems [1].

The aperture dimensions are assumed to be small compared to the wavelength. The
finite thickness of the conducting plane (aperture depth) has a large effect on these

polarizabilities if it is larger than one of the aperture dimensions. The effect of aperture

depth will be illustrated for slot apertures in this paper.

The paper, for the most part, concentrates on the rectangular slot aperture of

length £ = 2h, depth d, and width w, such that

(>>w . (1)

The Thick case implies that the added condition,
{>>d (2)

also holds. The Thick case can be treated by introducing an equivalent antenna radius of
the slot [2]. The equivalent antenna radius is also useful in describing the transverse
polarizabilities of the slot [3]. A brief derivation of the axial magnetic polarizability, for
the Thick case, is given in Sections II - V.

Sections II and VI give a brief derivation of the transverse polarizabilities.

Section V discusses the use of the equivalent radius in existing hatch aperture

polarizability formulas to incorporate depth for the Thick case.
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Sections VII through X discuss the Deep case
d>>w . (3)

Approximations for the axial magnetic polarizability are constructed which are actually

shown to hold for
0<d<w. (4)

Polarizabilities at both the incident side and transmitted side of the slot are

constructed throughout.



II. HEURISTIC DERIVATION OF POLARIZABILITIES FOR THE THICK CASE

The axial magnetic polarizability is now estimated for the Thick case. Consider.
first, the case where the depth is zero. Figure 1 depicts the electric surface current on the
incident side, y < 0, of the slot. The short circuit fnagnetic field on the surface is

assumed to be polarized in the axial direction H;C. The radius p is defined such that

(1)
~—

5 << p, <<l . (:

An approximate transmission line circuit model can be constructed to describe the

I;SC

K of the short circuit

voltage along the slot as shown in Figure 2. The x component
surface current density,
K*=nxH*, (6)

acts as the distributed source. The distributed inductance per unit length of the slot is

given approximately by

Tt ] @
(g’

L=« 31;
A heuristic explanation of (7) is now given. Figure 1 shows that the short circuit surface
current is diverted by the slot, so that locally (closer than a distance p ) it flows axially
around the slot. From a heuristic point of view, all of the diverted surface current can be
taken to flow axially within a chosen outer radius of the order of the slot length. The
appropriate questions then become: how can the inductance per unit length be

determined, and what is the proper choice of outer radius?
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. Figure 1. Low frequency elec.tric surface current on the incident side of a narrow slot in a

Thin perfectly conducting plane.



Figure 2. Low frequency transmission line model for slot voltage and axial current.
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The inductance per unit length can be found by consideration of Figure 3. The
quantity in brackets in (7) is the capacitance per unit length, with ¢ o~ Ky of a coax of
outer radius £ and inner radius w/4 (see Figure 3). The factor of one quarter in (7) arises
from the relations between the electric and magnetic problems shown in F igure’'3 (this is
of course the usual factor arising in Babinet's principle). Note that the magnetic field
which leaves the slot at position z reenters the slot at position — z. This heuristic picture
takes the magnetic field leaving the slot (magnetic conductor at inner equivalent radius
w/4) at position z to be purely radial, terminating on a perfect magnetic conductor at the
outer radius of order {. The return field is purely radial inward (from this outer magnetic

conductor to the inner equivalent radius) at position — z.

The inner radius w/4 is, of course, the usual equivalent radius of a slot aperture in
a Thin plane (or a conducting strip of width w). The outer radius ¢ is of correct order
but is nevertheless somewhat arbitrary. This choice of outer radius corresponds to the
zero order Hallén solution of the integral equation for the slot [2] (As is well known, and
will be seen in section V, this choice of outer radius is somewhat too large, giving too

small an inductance (7) and thus too small a polarizability.).

If the slot is shorted at its center, the Norton equivalent current in the x direction

is
sc _ sC _ _ sc
1 —th— th . ‘ (8)
The Norton equivalent inductance of the slot at its center is

_ 1
Ly =Lb} . ©)
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Figure 3. Transverse electrostatic field in a coax and approximate complementary
magnetostatic field in the slot cross section with heuristic outer magnetic conductor.
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where the factor of one half accounts for the parallel combination of the two inductances

(inductance from — h < z < 0 and inductance from h > z > 0).

L —fut
The center voltage is given by (time convention e is used throughout)

V(0) = - iwLy, I° . (10)

Note that by use of Faraday's law, V(0)/(— iw) equals the total magnetic flux passing

through half the slot (h > z > 0) in the positive y direction@tot.

The slot inductance per unit length (7) can be written as the parallel combination

1
L= , (11)
1/ Ldist + 1/ Lnea,r :

where

and

Laist * £ o 75 (13)

are the inductances per unit length of the near or local region (inside p_) and the distant
or nonlocal region (outside p_). Note that the heuristic nature of (7) results from the
heuristic nature of (13). The local contribution (12) is rigorously meaningful because the

current is flowing axially when p_ is sufficiently small compared to £.



When the depth is not zero, the radius p_ is introduced in each half space as shown
in the cross section of Figure 4. Figure 5 illustrates the added parallel interior branch for

current flow. The slot inductance per unit length now becomes

1
L= . , {14)
Ulgisy + ULpear * Ulinte
where the interior inductance per unit length is
~ w -
Lintr ®q ¥ (15)

The interior inductance (15) has been taken as approximately the uniform field result.

The exterior contributions (12) and (13) have been taken as approximately the Thin slot

values.

The result (14) may also be written as

: 1 27y,
SHECOIR 19
where
az{’—e W (17)

Note that the heuristic quantity L dist does not influence the choice of the equivalent
radius (17), and because of this, (17) is rigorous. The approximate symbol in (17) has
been used to denote the fact that the small fringing corrections near the edges of the slot,

for d > 0, have not been included.
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. Figure 4. Cross section of a narrow slot in a Thick plane. The quantity pj >> d,w

defines the boundary between the local and nonlocal regions.
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J

Figure 5. Low frequency electric surface current on the incident side (and interior) of a .

narrow slot in a Thick perfectly conducting plane.
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The magnetic field of the aperture can be determined from

where for a magnetic dipole (in the far zone of the aperture r >> h) the magnetic scalar

potential is given by

m.r

Q= 5 - (19)
m 47:1"3
The magnetic dipole moment m is given in terms of the magnetic polarizability by

D (20)

where ESC is the short circuit magnetic field at the aperture. The relation (20) is used on
the shadow or transmitted side of the aperture. The minus sign in (20} is dropped on the

illuminated or incident side of the aperture.

The magnetic dipole moment can be found from the magnetic charge density p m &8

_1 .
Q—u—ispde ) (21)

where r is the position vector and the volume V contains the magnetic charge. Applying

(21) to the transmitted or shadow side of the slot it becomes
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m, = ;17: lz.q;(z) dz , (22)

where q;;(z) is the equivalent magnetic charge per unit length on the y = + d/2'side of
the aperture. This magnetic charge can be determined from the voltage along the slot
V(z) by means of

v _ . 1
dz =939y >

+

(23)

where the factor of one half arises from the fact that q;‘; is defined so as to include the
image charge in the ground plane at y = + d/2. Equation (23) can be found by applying

Faraday's law to a closed contour of length dz and width w on the y = + d/2 face of the

slot. The voltage distribution from Figure 2 is given by
2,2
V(z) = V(0)(1 -z°/h%) . (24)
Using (20), (22), (23), and (24) we obtain

2 3

where (9) and (16) have been used to define Ly

The axial polarizability in the Thick case can also be determined from existing
formulas for the Thin (d = 0) case. For example, an approximation for the axial

polarizability component L due to a slot aperture in a Thin plane (d = 0) can be .

found (1] as

14



53

~ 7r r)
“mzz Y24 W(dlw) = 1 ° (26)

To obtain a slightly more accurate approximation than (25) for the axial polarizability of

a slot in a Thick plane we simply replace w/4 in (26) by the eduivalent radius -(17).

yielding

~ D
m,zz * 27 a) — 1 ° (27)

The axial polarizability, (25) or (27), holds approximately on both sides of the aperture

in the Thick case.
. The electric field of the aperture can be determined from
E=-Vp, (29)

where for an electric dipole (in the far zone of the aperture r >> h) the electric scalar

potential is given by

p=—. (29)

The electric dipole moment p is given in terms of the electric polarizability by

sc
R:Qeoge.]_*]_ , (30)

where ESC is the short circuit electric field at the aperture. The relation (30) is used on
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the shadow or transmitted side of the aperture. A minus sign is introduced on the right

of the equals sign in (30) on the illuminated or incident side of the aperture.

The transverse components of the polarizability tensors Q0
?

slot will now be estimated. The transverse components for a Thin plane (d = 0) are

and ae,yy for the

given {1] by

2

m,Xx e,vy

The result (31) may be viewed on a per unit length basis. The end effects may be ignored
and the problem treated as two dimensional in the slot cross section. The polarizability

b‘)
per unit length of the slot (or line polarizability) is % w~. The magnetic and electric

scalar potentials satisfy Laplace's equation
V2 —_— B)
(c,am,ga) =0 . (32)

Interior to the slot (—g <y< %—) the potentials satisfy the boundary conditions

%wé:O,x:i%, (33)
%<{7<= ’x=_-|_-_¥- y (34)

where cp;1 and (,o< denote the potentials interior to the slot. "The appropriate solutions

thus take the form

® tar,
<=V a costx + w/2)e % (35)
L."'n w
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® Tar,
oS = z B, sinI—I%(x +w/2)e W
n=1

- (36)

(Actually only the n odd terms will be present due to the symmetry of the slot and the
short circuit fields about x = 0). The interior solutions (“’;1 = Ay and ¢S =B Jxare
excluded at every z location by the transverse nature of the incident fields and the
symmetry of the slot about x = 0 (this symmetry is needed to rule out end
contributions). The transverse polarizabilities are therefore expected to exhibit an

-™
exponential decay e " on the shadow or transmitted side of the slot relative to the

illuminated or incident side. Furthermore, if a sketch is made of the transverse field lines

near the incident face of the slot, it is clear that presence of the depth gives rise to only a

slight decrease in the scattered fields or the dipole moments (contrary to the axial or
. longitudinal case where there is a large decrease in the axial dipole moment). The

following approximate formulas thus appear reasonable

- - W2, .- . ~
Ymxx = Y yy ¥ T (7)°¢ , incident side , (37)
_rdy2
+ _ .+ ~ w 2w . )
%mxx = ae,yy BT [1- e } ¢ , transmitted side . (38)

The formula (38) is, perhaps, better justified by the rigorous relation [3] between
the equivalent antenna radius and -the transverse dipole moments of a narrow slot

aperture having depth

+ _ .+ .2
. am,xx—ae’yy—fratf , (39)

where the polarizabilities in (39) are those on the transmitted side of the aperture, and
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the approximate result (17) can be used for a. The approximation (37), on the incident

side, and (38), on the transmitted side, will be rigorously justified later in this paper.
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[II. INTEGRAL EQUATION FOR MAGNETIC CHARGE PER UNIT LENGTH IN
THICK CASE

A somewhat more general derivation [2] of the integral equation, for the magnetic

charge per unit length at the faces of a slot in a Thick plane, is now given.

The static magnetic field can be determined from the Maxwell equations

VxH=0, (40)
V.B=p, , (41)

. and the constitutive relation
B=u H, (42)

where p  is again the magnetic volume charge density. Equation (40) implies that the
magnetic field can be determined from a scalar potential (18). Substituting (18) into (41)

and (42) yields a Poisson equation for ¢, With solution

Pr(r’)

1 | gy
m(D =i |an| - 1|

(43)

The slot facesat y = + % can be shorted provided that the appropriate amount of

. surface magnetic charge 0., is placed on the conductors by means of
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o,=n.(H,~H) . (44)

The unit vector n is normal to the surface between regions 1 and 2 and points from 1 to

2.

The boundary g shown in Figure 4 partitions the region surrounding the metal
into local (p < p,) and nonlocal (p > p,) regions. The magnetic scalar potential in the

nonlocal exterior region is given approximately by

h
ti,.
> 1 9@z
SDm(P,Z)—Z 7R 9z sy 2t

CT=9
—~~~
e
(1]
S

where R = 1 p"‘T + (z - z')2 , p and z are the usual cylindrical coordinates measured
from the center of each slot face (x =0,y = + g—), q—r'% is the total magnetic charge per
unit length at each of the two slot faces (note that qI-'% is assumed to include the image
magnetic charge in the conducting plane at y = + %), and 4,9; denotes the exterior

nonlocal potential.

An axial magnetic field H;nc is assumed to impinge on the slot from the half space
y < ‘% . If the slot is shorted, the short circuit field in the incident half space y < — c—} is

given by
HC = 2 HIPC (46)

The integral form of (40) is
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cf—e—

Jau
IQ-

(3N

il

[e=]
e
3

Applying (47) to the contour C shown in Figure 6 yields

[HZ (p",2) + B3] dz - H>(p'§,z) dz+dl_ =0 . (48)
z \Po z z p

o

The quantity dz is a differential of axial length and dI P is a differential of local axial
Q

current

I = j H.d{, (49)
P LT T
Cch ’

in the axial direction (the contour C_, is the cross—section part of C with the largest z

value in Figure 6). The quantity H; is the nonlocal exterior axial magnetic field
Ky =5 ¢ (50
and the notation p% indicates which particular half space, y 2t g— , is being considered.
The Thick case (¢ >> w,d) imposes the approximate condition
a(z) v —q(2) - (51)

Using (51) in (45), from (50) we obtain the relation
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Tigure 6. Portion of a Thick slot defining contour C for application of Ampere's law.
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>, + > = =:
Hz(p°7z)=—Hz(po7z) * (02)

Inserting (52) into (48), and integrating with respect to z, we obtain

>

o (pg2) = %.I =- Lprilnc(z) =z H;HC . (53)

Po

where the integration constant has been dropped because each term in (53) is odd with

respect to z (note q—;%(—z) =- q%(z)).

The total magnetic flux per unit length in the positive y direction is denoted by 7§ .

where

B(z) = £ 3a1(2) - (54)

The local current I p_can be related to the magnetic charge per unit length q;n— by means
(o}

of the relation

where Lp is the local inductance per unit length.
o

The local inductance per unit length is taken to have the form

T,

Ly = TG ¢ (56)
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where a is a constant (the equivalent antenna radius) to be determined.

Let us define

(1]
-1
~—

2 N2
R0=Jpo+(z—z) . (:

If we exclude the small regions near the ends of the slot (h - |z| >> p_), then the

following approximations in cp;l( p,»z) can be made:

h h b
(2" 4n(z7) = dp(2) dz
d ‘N d ‘ -+ y 58
TR, ¢ v
h
%Z_'gfn[zi(hz—zQ)]—?.fn o, - (59)

o]

Inserting (58), (59), (54), (45), (55), and (56) into (53) gives Hallén's integral equation

h
1 qm(z’) , inc inc
™y m;dz =-y¢, (z)=zH ", (60)

where q;(z) = qm(z) and R, = Jaz + (z - z’)2 .
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IV. EQUIVALENT RADIUS FOR THICK CASE

The equivalent antenna radius will now be evaluated by means of the solution of
the magnetostatic field problem in the cross section by conformal mapping. The
Schwarz;Christoffel transformation will be used to map the region surrounding the
conductors in the z = x + iy plane of Figure 4 to the upper half of a 2, = X, + iy, plane.

The appropriate transformation is [4]

21
2 2 2
J(l _Zl)(l - P 7 w .d
Z=CIJ > dz) + 7 -i3 , (61)
1 1

where the principal branch of each linear factor in the square root is to be taken. The

constant p is evaluated by solving the transcendental equation

_2E(p") - (1 + pIK(p*) , (62)

Y 2 E(p) - (1 — pIK(p)

where the complete elliptic integrals of the first and second kinds are defined by

T/2
K0 = | (63)
’ _OJI—psinH,
T/2
E(p) = “1 — psinZ0dd | (64)
0

and
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Figure 7 shows a plot [4] of p and -C; /w. The asymptotic result,
p~dfel2t md/w) % >> 1, (67)

is also shown. The parameter p is unity when d/w = 0. The quantity —C1 /w ranges

between 1/4 when d/w =0 and 1/7 when d/w = » .

The magnetostatic field may be determined from (18) and the magnetostatic

potential

where Re denotes the real part and the complex potential W is given by

W = gln(zl/al) , (69)

where @ is the magnetic flux per unit length passing through the slot in the positive y
direction and a) is an arbitrary real constant. Figure 8 shows the local magnetic field

distribution.
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Figure 7. Thick slot conformal mapping parameters p and —Cl/ w. The solid curves are

numerical solutions of the transcendental equation.
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From (18), the local current (49) can be written as

Ip°=—{¢m(z=-po+i%)-wm(z=-po—i%)1 : (70)

Using (68) and (69), this becomes

_ : d
_ 2 e’n[zl( bo ¥ l%) . (71)
g

Z]_("‘ Py — 1

Expanding (61) for p, >> w we obtain the asymptotic forms

P . -
zl~58I,z=—po+1g-, (72)
C
zl~7)l,z=—po—ig-. (73)
o
Inserting (72) and (73) into (71) gives
2
% [rs
I, ==l . (74)
P HoT Clp

Comparison of (74) with (55) yields the local inductance per unit length (56) with

equivalent radius

a=—ClJf)' . (75)
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The limiting forms for p and —C1 /w yield the limiting forms for a

a-¥ 4.0, (76)

rd

(1+ 5
avZwje 2V 455y (77)

The approximate form (17) can be obtained by taking the parallel combination of the

Thin limit (d = 0, a = w/4) of (36) and the uniform field interior result (15)

ax VZV- e “V . (78)
Figure 9 shows a comparison between the Very Thick slot (d >> w) field lines and the .

composite Thin slot exterior field — uniform interior field lines.
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very thick
slot

thin slot
. uniform

Figure 9. The local magnetostatic field in the cross section of a Very Thick slot (solid

curves), Thin slot (dotted curves), and uniform field (dashed curves), when excited by a

longitudinal magnetic field. 31



V. AXIAL POLARIZABILITY FOR THICK CASE
The derivation of the first order.Hallén results for the axial polarizability given in
(2] (for the complementary conducting tube see [5]) will now be briefly reviewed. Figure

10 illustrates the axial magnetic dipole moments of the slot in a Thick plane.

Replacing p_ by a in the approximations (58) and (59), equation (60) becomes

2
—,]q (z) +

where the antenna fatness parameter is
Q=2m(2h/a) . , (80)

The approximate antenna fatness parameter, when (78) is used for a, has the

simple form
Qa.p =2 m(4/w) + rd/w . (81)

Figure 11 shows the ratio of (81) to (80) with the true equivalent radius (75). The error

in using (81) is thus quite small. In fact, using the asymptotic result (77) in (80) yields

d
Q—nap~2zn(£§) =013 ,&>>1 . (82)
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Taking Q as a large parameter in (79), the equation may be iterated to vield the

first order (away from the end points) solution

dwpy 2 1
Expanding (45) in the far zone r >> h gives
h
> z ey s s d 2
P~ T 3 | Qplz)zrdz sy 2 £ 35 (34)
dTp,r _y -
Inserting (83) for q, in (84) gives
h3H2c z d (35)
(p ~N — 5 — 9 y > i'_ :7 v 85
m +6-r_3(g-+ln2—%-) <=

where terms of order 1/ in the parentheses have been dropped. Comparison of (83)
with (19) and (20) yields the axial polarizability
£3

o N — s . (86)
M 94 (3 + 02 - D)

The difference between the first order result (86) and the approximation (27) is the first

order constant %— 2= g in the denominator of (86) versus unity in (27). The

expansion parameter () — 2, in the denominator of (27), is consistent with the use of
. Schelkunoff's average biconical admittance (impedance in the case of an antenna [6]).

The asymptotically correct result (86) is expected to give better results for the large Qs
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associated with Thick slots.

To give some feel for the accuracy of (86) versus (27) we will give a numerical
solution of (60). It is more convenient to work with a quantity v m related to the

magnetic charge per unit length by means of

% Ym = 9m - (87)
where we require ym(z) to satisfy the boundary conditions

Ym(Eh) =0 . (33)
Note that y m S proportioﬁal to the axial magnetic current of the slot (voltage). .

Integration by parts in (60), followed by application of the operator % , yields the

integro—differential equation

h
82 ym(z') inc
i R, dz’ = dmp H, (89)

The quantity Ym is now expanded as

7 (@) =nz_Nyan<z) , (90)

where Yn € coefficients to be determined, and the basis functions are
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_ n—1
Fn(z) z2, =%’ Zp1 S22 <7
z -z
_ “n-1
—Zn+1 zn,zn5z<zn+1 ’

=0 , otherwise .

Inserting (90) into (89), and applying the operator

_ inc
g Ymn Gjn = 47ruoHZ HJ

where

h h

& ,y dz”
Gp= | Fi(@ 2 F (2 )Ra— :

The axial magnetic polarizability is determined from

37

., j=-N,.,0, ..

(93)




h
_ 1
am’zz = —W lym(Z) dz . | (95)

Inserting (90) into (95) yields

1 S’
afm,zz— 41‘0H;ncj=—Nymj HJ . (96)

Integration by parts in (93) yields

o - An(zj_l) - An(zi) N An(zl-l-l) - An(zj)

jn Z.— 2. z: - Z. ! (97)
i Tl J+1 ]

where

h
F ’
A (2) = —néZ—)dz'. (98)

Integration of (98) and (94) can be carried out in closed form by elementary means.

Because ym(—z) =y rn(z) , if the points z  are chosen symmetrically, such that z_

=-1z , then Ym-n=¥mn " The system (92) thus becomes

)

€
n
n___oymn ?—fj(Gjn + Gj,—n)

ine ‘
= 47r,uoH;n fjHj ,j=1,...,N, (99)
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where e, =1 ifn=1, and €, =2 ifn>1. 'Noting then that F_J.(—z) = Fj(z) , and

therefore H_j =H i the polarizability becomes

: o g . .
am,zz - 4/‘OH;HC j=06j ij HJ . (100)
Because Gjn = an , and furthermore with Z_p =2y G—j,-—n = Gjn , the system

in (99) is symmetrical. We will use uniform spacing
z_.=nA ,n=-N,.,0,..,.N , (101)
where A =h/(N + 1).

Figures 12 — 14 show the polarizabilities determined from the Galerkin method
(100) (solid curve), the approximation using 2 — 2 (27) (dotted curve), and the Hallén
zero order result (25) (dashed curve), all normalized by the first order result (86),
FO
denoted by %m 2z
constrained so that the basis function length A >> a (Note that the approximation of

When viewing these curves, note that the parameter N should be

taking the charge to reside along a zero radius filament, (45) and (60), breaks down if too
high an accuracy solution A - 0 is attempted for a fixed value of a.). From a practical
point of view, if say A > 4a, the filament approximation is reasonable. Thus, similar to
asymptotic expansions, only a certain amount of accuracy in the magnetic charge per
unit length, for-a given (O, can be expected. It is clear from Figures 13 and 14 that the
first order asymptotic result is very accurate for > 20. Furthermore, Figure 12
indicates that the first order result is more accurate than the  — 2 approximation or the
zero order asymtotic result for > 10. Thus the first order result appears to be useful

for Thick slots. Indeed, Vainshtein [7] has shown, by considering the solution of a
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Figure 12. Polarizabilities determined from the solution of Hallén's integral eqﬁation by

the Galerkin solution with N = 10 (solid curve), first order Hallén solution (widely

spaced dotted curve), zero order Hallén solution (dashed curve), and an approximation

based on the expansion parameter  — 2. All curves are normalized by the first order

Hallén result.
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Figure 14. Same as Figure 12 except N = 50 in the Galerkin solution.
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tubular cylinder via a global Chebyshev basis set, that the first order result for the
polarizability is accurate for Q@ > 6. Note that the difference between the numerical or
Galerkin value and the first order value (unity) at the left end of Figures 12 and 13 (2 =
10) is in agreement with the numerical data given in [7].

Figure 15 shows the result from the first order formula (86), normalized by (86)

evaluated for zero depth (denoted by a°

m.zz) OF various parameters. Because of the
ki

small errors introduced by the approximation (81) for the fatness parameter, the
approximate equivalent radius (78) will be used in all these curves. The strong influence
of the depth on the polarizabilities in the Thick case is clearly illustrated. Note that the

polarizability formula (86) holds on both sides of the slot for the Thick case (¢ >> d,w).

Figure 16, taken from [1], shows various types of hatch apertures in Thin (d = 0)
planes. Figure 17 gives a table, from [1], showing approximations for the polarizabilites.
Figure 18 shows the same table with the formulas now generalized to include depth. To
be consistent with the notation in {1], g is the hatch aperture width and A denotes plane
thickness (this should not be confused with the basis function length in (101)). Note that
the hinges on the hatch aperture are taken to be unmodified by the thickness of the plane
(Furthermore, the approximate Thin hinge inductance, contained in the formulas of the
table, was assumed to be unmodified by the thickness of the plane. A more rigorous
treatment of the hinges, and experimental determination of hinge properties, would be
very useful.). Thus the concept of an equivalent radius, (75) or approximately (78), for
the Thick slot, yields simple generalizations for existing Thin slot hatch aperture

polarizability formulas.:
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Figure 15. Longitudinal magnetic polarizabilities for the Thick case determined from the

first order solution. The curves are normalized by the first order solution for zero depth, .
and thus depend only on the parameters ¢/w and d/w.
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Fig. 106. Hatch apertures.

Figure 16. Examples of various hatch apertures in Thin conducting planes taken from
[1].
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examples in Figure 16.
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Figure 18. Simple generalization of these formulas to the Thick case using equivalent
radius a. Note, to conform with notation in [1], g is the hatch aperture width and A is

the plane thickness.
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VI. TRANSVERSE POLARIZABILITIES FOR THICK CASE

Following Kaden (4] the conformal mapping solution of Section IV will be used to
derive the transverse polarizabilities. The three dimensional character of the problem
will be considered after the line polarizabilities (or polarizabilities per unit length) have

been obtained.

Two expansions of the transformation (61) are needed. The first is related to (73).
and involves {z| ~ o, Im z < —d/2 (where z = x + iy). Expansion of (61) for 121{ -0
yields

Cl
zl~—z—,|z|-’m,1mzs—-d/2. (102)

The second result is related to (72), and involves |z| - o, Im z > d/2. Expansion of (61)

for |z, | - o yields

~—E 4 C +pCl(1+1)
21 pC; "2 T 2z P?"
2| 20, Imz>d/2, (103)

where the constant 02 is given by

a0 5 D)
J(zlf- 1)@ - 1/p?) - 22 .
C2=—' 9 dZ1+§+-%-CI—. (104)

1/p
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To be consistent with Kaden [4] the incident wave in this section will be taken to
impinge on the slot from the y > d/2 half space, contrary to the previous sections. The

final results will be independent of this choice.
The short circuit transverse magnetic field is x directed and constant Hic. The
magnetic field can be determined from a magnetic scalar potential by means of (18).

This scalar potential can be found from a complex potential W by means. of

Re W . (105)

The complex potential representé a uniform field in the Z plane
W=Az , (106)
where the constant A can be found by using the first term of (103) as
A=-pHC, . (107)

The third term of (103) gives the contribution from the magnetic line dipole moment of

the slot on the incident side

m.p (108)
Cn=""7 > 108
m 27p
. . . . — sc :
whe_re p is the position vector in the cross section, and from m, = 2 % xx Hx , see (20),

the incident magnetic line polarizability is given by
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— 1 22 .
O ex = (1 +p%) nCj , incident side . (109)

The expansion (102) when inserted into (106) gives the magnetic line dipole moment on

the transmitted side of the slot, yielding (108) with dipole moment'mx =-2 a; “Hic .
and line polarizability

of =r1 02 transmitted side (110)

m,xx PLy s "
The result (110) can be written as

+  _ .2 : :

nxx = T3, transmitted side , (111)

where a is the equivalent radius (75). This relation has been shown to be true for general ‘

slot cross sections [3].

The transverse electric short circuit field is taken to be y directed and constant
E;c. The fields are determined from the electric scalar potential by means of (28). The

scalar potential can be found from a complex potential W as
p=ImW . (112)

The complex potential again represents a uniform field in the z plane and is given by

(106). The amplitude constant A is again found from the first term of (103) as

A= E;Cpc1 : (113)

The third term of (103) gives the electric line dipole moment contribution on the incident
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side of the slot

7 (114)

where from p_ = — 2¢_a_ __ESC, the electric line polarizability .  on the incident side
y o e7yy y eyy

is again given by (109). On the transmitted side the expansion (102) shows that the

electric line dipole moment p_ = 2¢ ot

y 0% E)S,c again has an electric line polarizability

Yy
given by (110).

Making use of the limiting values for p and —Cl/w discussed in Section IV, we

obtain, on the incident side, the asymptotic formulas

— - 1 2 2 . -
Y xx = Yeyy =3 (1 + p®) #C7, incident side , (115)
w2, <<, (116)

2
d -
”YZVTr’W>>1 , (117)

and a useful uniformly valid approximation

e (W2 .
Unxx = Yeyy ¥ T (—4-) ~incident side . (118)

Similarly on the transmitted side we obtain the asymptotic formulas

+ +

a = ae,yy = ra® , transmitted side (119)

m,Xx
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~ () ,%<<1 , (120)

2 d .
w-e ’W>>1 , (121)

2
o _=at vy * ¥ [%e “W} , transmitted side . (122)

The three dimensional point polarizabilities can be found from (113) — (122) simplv
by multiplying by the slot length /. The small regions near the ends of the slot, where
the field is perturbed from the two dimensional distribution, do not contribute

significantly to the polarizabilities because the slot is narrow and Thick (¢ >> d,w).

Figures 19 and 20 show the transverse field distributions with dipoles on the

transmitted side depicted.
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VII. HEURISTIC DERIVATION OF AXIAL POLARIZABILITIES FOR DEEP CASE

The geometry is shown in Figure 21. The field is incident from y < -% . The
magnetic field is derivable from (18), where the potential satisfies Laplace's equation (32)

and the boundary conditions

~¢p - =0,z=+h . (123)
oz7m -

The interior fields and hence potential will be taken uniform in x. Because H_ is odd in

z, the interior potential can be written as

Y= sin —z (124)
M nbodd L m

2% -2y
< mr
2 [Am e +B e ] .
*
The y directed magnetic flux per unit length § ~ in the Deep case will be different
aty = + % . This magnetic flux per unit length is related to the magnetic charge per

unit length, as viewed from the exterior of the slot, by means of

sl 1 =
where again the magnetic charge per unit length includes the image in the y = + (—21-
ground planes. From (124) we must have
< a < * d

In Section II it was noted that the voltage along a slot in a Thin (d = 0) or Thick
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Figure 21. Geometry of the Deep slot.
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r

(¢ >> d) plane can be modeled by means of a transmission line of the form shown in

Figure 2. The current I(z) is the z directed electric current on the x < 0 conductor. The

continuity equation for the current is

01 _ SC
%I—Kx .

For the Deep problem the current on the interior walls is not uniform in y, nor is it

purely axial, but it is described by the potential (124).

generalized to the continuity equations

+
where I  denotes the exterior z directed current on the x < 0 conductor for y = +

K; is the interior surface current density on the x < 0 conductor.

Equation (127) must therefore be

(128)
(129)

g— and

The usual relation between the flux per unit length and the current on a

transmission line is in this case

where
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(130)

(131)



The inductance per unit length (131) is twice (7) because it now applies to only one side

of the exterior half plane. Integrating (128) and (129) with respect to z and using (130)

vields

T L=0S(r=9, | (132)

and _
—@‘/L=<p§l(y=—%)+zH;c. (133)

Finally using (126). we arrive at the impedance conditions

J < _ L < _,d )
&Ym= "W, fm V=T (134)
and
L
Ve = (v + 20y =-§. (135)
Q

Solving for A mand B yields the representation

<__4f Z‘ sC
o= 5 H sm( 7z)
m w7r" m}:odd m2

[2m7ruo mrr( —y)) +‘>—s1nh{7( ]

N A COSh{—7
2m7Tp 2m Ty
[——L——o- sinh(%l—%d) + 2% cosh(I.f”r )} {——L—c—’ cosh(%l—Tzf—d) + 2—\% sinh(%d)}
(136)

Applying (21) at both slot faces yields the dipole moments
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where the second equality follows from equation (20). Using (125), (126), and (136) in
(137) yields the polarizabilities

7~ m,odd 37
1
+ R B
2mry , (133)
N + ‘.Zv—f;' tanh(gm )}
¢ S .Y & 1
m,zz 3

[Q'm T,

o S . (139)
—1 cosh(%d) + 2% sinh(%l—’{d)]

Note that the exterior inductance per unit length L can be written as

2mu

o]

where the exterior fatness parameter is defined by

. Q=2 fm(a) ~ 2 a(4l/w) (141)

and the exterior equivalent radius is approximately a R w /4
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Because of the rapid convergence of the summations in (138) and (139) the first

term of each yields a good approximation for the polarizability

- 3
— 8Z 1 1
o % (142)
m.zz Q, + 2t coth(-’%) Q + ‘>— tanh(,(f)}
af & 161,’4/(7r3w) .
m,zz
[Qo sinh(W) + 7-€- cosh(g%)] {Qo cosh("d) + ‘)Z smh(%)}
(143)

Two limits of (142) and (143) will now be taken. First the Very Deep limit % >> 1

yields the results

3
g P ' (144)

mzz" 3 4 2l

+ 64 e
a x 5 . (145)
maz™ 3 a, + 207

If the exterior inductance is ignored by taking it large L -+ o (we can equivalently take Q_

- 0) in (144) and (145) we obtain the simplified results

2
— 8w
mzz~——3—7r , (146)
2 —nd/!
+ 160w -
am’zz ~—7r3——e . (14()

The results (146) and (147) correspond to the magnetic charge at both ends of an open
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circuited waveguide driven by a uniform current at one end and including only the

dominant mode TElO'
The Thick limit $ << 1 of (142) and (143) yields

— o+ 8y sed
« (47 d~ 3 ’
Q°+7r sy

m,zz = =~ m,zz d
w

where the fatness paramter is given by Q = 2 ¢n(¢/a) and the approximate equivalent
radius a is (17). Comparing (148) and (25) reveals a factor of 96/7r4 = 0.986 discrepancy
between them. This factor results from including only one term in (138) and (139). If
the coth term in (138) is dropped and the approximation tanh(%l—?d) R mélc} is used in the

second term, then the resulting sum

1
= 149)
i % (

corrects the discrepancy. The error incurred in the Thick limit, when only one term is
included, is obviously quite small. The error incurred in the Very Deep limit, on the
incident side, when only one term is included, is slightly larger because the sum in (138)

1 . 2¢ . .
then takes the form of a sum of = (typically >> 1). The error incurred in the
(Pl g

Very Deep limit, on the transmitted side, when only one term is included, is of course

negligible since all higher order modes experience larger exponential attenuation.
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VIII. INTEGRAL EQUATION FOR MAGNETIC CHARGE PER UNIT LENGTH IN

DEEP CASE

The integral equation can be obtained by taking the static limit of results in [2],
however, we will instead generalize the procedure used in Section III. We assume that
the dimensions satisfy (3) in this section.

T

Figure 22 shows a portion of the slot and contours C 4 where (47) will be applied.

It is assumed that d | << {wherey = S}— d,. The field is again incident from the y <

g half space. The contour C_ yields

>, ~ sc < - _
[H7, (2} + H, ] dz —Hz(-yo,z) dz + de 4 =0, (150)

o’ o

and the contour C + yields

> < -
~H(pf2) dz + H(y,2) dz + dI:o’do =0, (151)
sl
where dI s d is a differential of the local axial current
0’ o

+
I d=JE-g£, (152)
(o]
C

P
° +
c s

+
in the axial direction (the contours C%& are the cross—section parts of C~ with the

largest z value in Figure 22). The quantity H< is now interpreted as the nonlocal
g g z

interior axial magnetic field. From (18) the axial magnetic field can be found as
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— W —>

Figure 22. Portion of Deep slot with contours C + defined for application of Ampere's

law.
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Integrating (150) and (151) with respect to z yields

>, - sC < - _ -
(pm(poaz) + (pm (Z) - Qam(-yo)z) - Ipo’do =0, (134)
>, + < ==
0 (po2) =9 (ve2) + I-;o’do =0, (155)
where npélc(z) =-z H;c, gp; is given by (45), and c,a;l now denotes the nonlocal interior

potential (note all terms in the above two equations will be taken as odd in z). The local

axial current is related to the magnetic flux per unit length by means of

Li Ii *
= , 156
P o’do P o’do @ ( )
*
where L 5 ,d_are local inductances per unit length at the incident and transmitted sides
o’"o
of the slot. They will be taken to have the form
* Th, .
Lpo’do= T o (157)

tlp,/ay) + T 5

+
where a  are equivalent anterna radii to be determined.

The potential garfl satisfies Laplace's equation, is taken to be uniform in x, and satisfies

the boundary conditions
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%ga;:o,z—ih, (138)
+ +
+ + d .
—uow%¢;=§ =i-§qm,y=i§ (159)

h o
1 rd
(p;l =- 7r;110w i mll = csch(mrd/¢) cos%f(z + h) cosgl—ré(Z + h)

[q;;(z’) cosh2(S + y) + q(z) coshBH(§ - y)] dz' . (160)
. Inserting (160) into (154) and (155) yields
h

> 1

— sc - mr,,
cpm(po,z) +@m (z) - Ipo,d + THw im csch(mnd/?) cos—z(z + h)

lle~1 8

1
o) 1

'cosﬁ%r(z + h) [q;'l(z’) cosh(27 ot ql_n—(z’) coshE%(d - do)] dz’ =0,
(161)

h w
> 1 ,
cpm(p_:,z) + I-;o’do + T l 2 % csch(mnd/¢) cosylf(z + h) cosmg(z + h)

m=1

[q:;l(z’) cosh™%(d —d_) + a(z’) cosh(7 o)] dzr =0. (162)

The approximations
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cosh(27d )~ 1 , (163)
cosh—z (d-d )=~ cosh(ﬂ}'d 74 sinh(F7d) (164)

Q

along with the identity [8]

ZCOS %z + h) cos™T(z’ +h)=Hoz-2)-3 . (169)

will now be used in (161) and (162). Furthermore, the approximations (38) and (39)

yield the result

+ +
LBz ) + o Ba(e) o
l——R—“ + —g— (@) - Zi__midz" (166)
- — a’o

where R  is given by (57) and

(167)

[q;'l(z’ ) csch(®0d) + q_(z") coch(%)] do’ =2 HC,  (169)
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, @
1 q.(z") .
™ J'm——dz’ + WﬁltoW imz_ %cosj(z + h) cos r(z, + h)
~h a, _

[qr';(z') coth(—m%d) + qr_n- ) csch( Elfd)] (169)
These are the desired integral equations.

-+

In the case where the slot is symmetric in the depth, a; =a_  =a,, (168) and

(169) may be decoupled by letting

(170)

where qgl and qgl denote the even and odd parts of the magnetic charge per unit length

with respect to the depth y. We thus obtain

h ©
q( ’)
}Tc;l 47rR“d + Lowlq;(r) z %coth(%d 0087z+h)

cos2R(z- + h) dz = — p""%(z) = 2 HIPC (171)

L tad(z) , >
m , o/, mr
K 1—4—7‘_Ea— dz’ + WﬂoW l qm(Z )m; ﬁl_ ta.nh( 9 ) COS——Z(Z + h)
o .

coswlr(z’ + h)dz' =- wrilnc(z) =1z H;nc . (172)
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+
Note that because q;(z), q;(z), and qr(l)l(z) are odd with respect to z, only the odd terms

in the summations contribute.

+
m~F qm’
the Very Deep limit 7 >> 1, (168) and (169) should be used instead of (171) and (172).

In the Thick hmlt 7 << 1 q. and thus (172) alone must be solved. In

Note that in the Very Deep limit, the csch(%d) term in (168) may be ignored and
coth(%) may be replaced by unity yielding

a(z) e T

~ = gam (z) =3z HSC (173)

Furthermore, in the Very Deep limit (169) becomes

h q+ ( z’ ) h e o]
1 m 1 + 1 mn
— | ————dz’ + q. (z’ = cos—(z + h) cos—(z’ + h) dz’
Hq J]47rR + ThoW i m )mzl m _Z( : 7( )
o [o] -—
-zd/¢ h
N_%W—sin(gz) qp,(2*) sin(7z*) dz” . (174)
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IX. EQUIVALENT RADIUS FOR DEEP CASE

The quantity a can be found by taking d >> w and extracting the uniform field
contribution to a in Section IV. However, we briefly determine it by means of the simple

direct solution to the siot in a Very Thick (d >>w) plane [2].

The geometry is shown in Figure 23. Note that the origin has been shifted to the
corner of the metal originally at x = —w/2, y = —d/2. The transformation which maps

the region surrounding the conductors into the upper half of a z; plane is [2], [9]

1 2 ——
%:;(arctan(—(), C=le—1 ) (175)
where the arctangent is defined by
arctan ¢ = 5 + L+ 1 (176)
TTANIC—1] >

and the principal branch of each linear factor in the square root and logarithm are to be

taken.

The magnetostatic field is determined from (18) and (68) with the complex

potential in this case given by

W= —% fn(z,/2,) (177)

where 3y is an arbitrary real constant. The current I; d is determined from applying
o’ o

(152) as
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Figure 23. Incident edge of Deep slot for evaluation of local axial current and inductance
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Ipo,do

= 9(=p,) —e(d,) (178)

where the arguments of ¢ S the complex locations in the cross—section z plane of

Figure 23.

The transformation (175) can be expanded for p_, d | >> w as

Ps _
N T =, 2=—p, (179)
—rd /w -1
z1~2e ,z=1d (180)
. Using (179) and (180) in (68), (177), and (178), yields
I =9 /L 181
Pod, 2/ Pyrdy (181)
where
Ty
L, 4 = (182)
oo In(p fa,) + md /w
and the equivalent radius is
2w o w

Of course, by symmetry I'; q and ) * are also related by (181).
o’ o

If we consider (172) in the Thick limit $ << 1, by taking tanh(3%d) » mJ3 and
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using (165) we obtain

h o ( ) 7'd
q. (z’ Iw .
> J;—mﬁ——d e RO PICOI

Combining the two terms on the left of the equals sign in (184), see (166), yields Hallén's
equation (60) with the asymptotic expansion of the equivalent antenna radius in the Very
Thick limit (77). If the Thick slot conformal mapping solution is used to define a_ when
% << 1, but % = O(1), it would be possible to make (172) uniformly valid as d - 0.
However, because the Thick case has already been treated, and from a practical point of

view because the rigorous value of a_ differs by so little from w/4 anyway, we can obtain

+ .
a good uniformly valid approximation (0 < d < ) to q;(z) by solving (171), (172),

(173), and (174) with a_ given approximately by the exterior Thin slot value

(185)

o
124
- E
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X. AXIAL POLARIZABILITY FOR DEEP CASE

An approximate solution of (171) and (172) can now be derived by iteration,
similar to Section V. The first step is to expand the magnetic charge per unit length in

the basis

®

qS(z) = 21 a5 cos?H(z’ +h) (186)
n—
®

qgl(z') = 21 qgm cos-n%(z’ +h) . (187)
: n=

Now making use of the orthogonality of cos%(z + h) and applying the operator

h
lcosﬁ}(z + h)dz , (188)

to both sides of (171) and (172), the summations in the second terms (interior part of the
kernel of the integral equations) of (171) and (172), as well as the summations introduced
by inserting (186) and (187) into these terms, are eliminated. In other words the interior
kernel is diagonal in the basis (186) and (187). The first terms (exterior part of the
kernel) of (171) and (172) are broken up as in (79), with Q_ (See (141).) replacing Q.
The dominant Q  part of the exterior kernel is diagonal in any basis, but the remaining
part is not diagonal in the basis (186) and (187). Thus the summations introduced by
insertion of (186) and (187) are not eliminated for this part of the exterior kernel. The
resulting system can now be iterated by including only the interior and Q_ parts of the

kernel on the first iteration (zero order), then using this solution in the previously
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discarded exterior terms to obtain the first order solution. Instead of following this

straightforward but tedious iteration procedure we now introduce an alternative

approximation.

We are interested in determining the polarizabilities of the Deep slot. The Thick
result (86) indicates that the first order solution could have been determined by a simple
zero order calculation if the expansion parameter had been selected as @ = Q + 2(fn 2 -
7/3) instead of Q. This consideration of the Thick Case leads us to choose the expansion

parameter

Q=0 +2(02-17/3), (189)

instead of 1 for the exterior kernel. A zero order calculation will now be carried out for
the Deep case. This zero order calculation will actually be correct to first order in the
Thick limit. When the slot becomes Very Deep the zero order distribution of magnetic
charge is changed somewhat from the Thick case (for example, the Thick case has a zero
order charge distribution which is linear in z, whereas the Very Deep zero order magnetic
charge distribution on the transmitted side is proportional to sin(%z)). This change is not
significant, however, and furthermore, the choice of the "best" expansion parameter is
most critical only in the Thick limit (to be more precise only in the Thin limit d/w - 0)
where the choice (189) does indeed produce the correct first order result. A comparison
of this zero order calculation with a Galerkin numerical solution later in this section will

confirm the usefulness of the choice (189).

The n even coefficients in (186) and (187) all vanish. From (171) and (172) we

obtain for the n odd coefficients
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-hQ’ 2 1 .
e ) h nTa| _ inc, £,2
Umn |7 Ty + FaWa coth(wd)_ =-2H (507, (190)

-hQ” 2 -
o h nw inc, {2
9mn |2 iy + T, Wi tanh(zd) | == 2H,"(372)" -

-

(191)

Inserting (170), (186), and (187) into (137) we determine the polarizabilities as

1

mQ + ‘>£ coth(57d)

rnzz 2

odd

1
+— , (192)
{
mQ; + 2 ta.nh(gnl[fd)}
I i 1
m,zz 3§
m,0dd 3[mQ’ smh(%l—}fd) + 2+ cosh(%d]

- 1 . (193)

4

[mné cosh(7d) + 2 sinh(%)}

These expressions are identical to the heuristic results (138) and (139) except for the

replacement of 2 | by /. Obviously, one term again gives a useful approximation

o= 88 A 1 (194)
mzz " 3 Q; + 2 coth(Z! ) Qé + 2% tanh(gd[) b
ot = 16[4/(7r3w)
. m,2z Lt d ‘
[Q' sinh(39) + 2£ cosh(Z )] [Q") cosh(39) + 2 sinn(Z )]

(195)
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The Very Deep limit of (194) and (195) gives

o= 16¢° (196)
m,zz w’z(Qé + 2%)

-nd/ ¢
4 T
+ 644" e . (197)

m,zz F:TW(QC’) + 2;%).'2

The purely interior results (146) and (147) remain unchanged when we let 2/ - 0.

A numerical solution of the Deep case is now given. As in the Thick case, Section

+ 8

V, it is more convenient to work with Ym O Ym where
g + =
% ¥m =9y ° (198)
d
and
+ 8
yo(#h) =yI(4h) =0 . (200)

The operator % is applied to (171), (172), (173), or (174), followed by integation by parts

to bring the second derivative outside the integral

S’NI%

’

h
E[}’m(z [Rl— % 2 —coth (574) cos(7
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cos(%z’)} dz’ = 47r,u°H;nc , (201)

h
ly m(z)

cos(r—n—}' )} dz’ —47ruoHinc , (202)

1 4' 1 mm mmw
— — tanh -7d } cos(—3z)
R Tw mZodd m (2 (_7

and for the Very Deep case

h
9 ly;(z) {IT;_ + % zodd _r% cos(—n%z) cos(%z’)} dz-
m,

~ 4mp HC (203)
ﬁ)- Y ( ) Rl_ 4 2 Lcos(-nigz) cos(%z )| dz”
oz° ¥ m7odd ™
372 —rd/¢ b
Nw—lie cos(-[z) l ( )cos(Yz )dz’ (204)

+
where the fact that y; and yg are even in z has been used..

. The Galerkin method is now identical (with the addition of + superscripts to the

appropriate quantities) to that in equations (89) through (100) of Section V except: (93),
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(96), and (100) are replaced by

+ +
* 1 x . '
O = i4 e ym(z) dz (205)

oz

+ +

* 1 g * .
Q =+ y..: H: (206)
m,zz 4uoH;nc e Tmi

x +1 § st - (207)
o =—" ) ey _.H , 207
m,zz 4#°H;nc g 37mi

IIE; in (93) is replaced by each of the bracketed quantities in (201) through (204) above,

H;nc is replaced by H;c when solving (203), and the right hand side 47 oH;nC of (89)
and the succeeding equations is replaced by the right hand side of (204) when solving
(204) for yl';. Note that when solving (204), the integral on the right hand side is simply
a normalization constant which can be taken as unity in the numerical solution and then

multiplied by the solution once y;n- has been determined from (203).
The sums in (201) through (204) were terminated at m < M where we chose
M=10N , (208)
and N was the upper limit of basis functions in (90).
Figures 24 through 27 show a comparison of the Galerkin results from (207), the

analytical results from (192) and (193) including terms m < M = 11 with Q; expansion

parameter, the one term m = M = 1 approximations (194) and (195) with 2/ expansion
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Figure 24. Longitudinal magnetic polarizability for Deep case with {/w = 10. A
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79

d/w



M/p

10

G=N (SUONOUNJ SISeq |+ GXZ) UPiajen

z’w

(E/L- U+ ¢/°OWa] [ 1 L = O

(M/7 Pl € = °0

saloay] dea( slewixoiddy pue jeouswnN yloq

Buisn sanigezue|od onaubepy [euipnubuo

TTT T T 7T

T T

1000

100

10

2'w

2’

O/

b) Transmitted side.

80



10

z’w

(E/L- TUl + T/POW [ b= o

salloay| deaQ alewixoiddy pue [eduswnN yioq

Buisn saljjigeziiejod onsubepy jeupniibuon

2Z’w

zZ2'w

1'0

o/

Figure 25. Same as Figure 24 except {/w = 20 and N = 10 in the Galerkin results. a)

Incident side.

81



10

(ro10wiesed (g/-guNZ + °U ‘Ll=W) xo1ddy deaq
 (@swered oy ‘=) x0iddy daa(

(lo1sweled (£//-ZUZ + °U ‘=) xoiddy deaq

(ta10weled °( ‘|=W) xoiddy deeq
OL=N (suonouny siseq |+ QLX) uiyisjey

27'w

(E/L-cul + C/°OWC] [ 1 L= PO

(M7 € = "0

sonoay] dea ajewixolddy pue jedouswny Yyioq
Buisn saniyqezuejod onaubepy [euipniibuoT

-100°0

P i T i

100

ITT T T T 7

ZZ'w

Zz'w

0

0/

b) Transmitted side.

82



(€/L- Tul + T/°VWe) [ L= 0

00l ol l 1’0
SO U O O T Y Y N | 1 lev ot 11 1 1 I O O T I B | 1 _,OO
" 1e1swered (£/£-ZU)Z + °0 “11=W) xoiddy desq i
- peewesed o ‘||=) xoiddy daag i
T (pereweled (E/£-ZUNT + °U ‘|=W) xoiddy dasq
............................. A._oawr:m‘_mnocéﬂ_):xo;aa(ammo i
Ol=N (Suonounj siseq |+ QLXZ) uniajen -
- 3
10~

(M/7 Pl € = °0

00l = M/}

W NN e

saloay| daa(] a1ewxosddy pue jeouswnN ylodg
Buisn sangeziiejod onsubely |euipniibuo

Figure 26. Same as Figure 24 except {/w = 100 and N = 10 in the Galerkin results. a)

Incident, side.

83



M/P
0oL oL | 1'0

SRR Y X T Y SO R SN VRN 10 N A N S N N 1 I O O T I 1

tm.oEEmQ °U ‘= s: xoiddy des(
Ol=N (suonouny siseq [+ QIXZ) uisien

T T

zz'w

(E/L-cU + ¢/°OWe) [/ g L= o |

(M/7 Pl € = °0

TTT 7 7 1T

00L = M/}

sall0ay| daa( ajewixoiddy pue |eouswnN yiog
Buisn saniiqeziiejod onsubepy |euipniibuo

1000

b) Transmitted side.

84



[(E/L- Ul + T/°UWC] [ 1 L = P

M/p
000! ool ol _

O O T | 1 | I O | 1 | O | 1 [N O A | 1

10

(+91aweied °( ‘|=|) xoiddy dasqQ
Ol=N (suonouny siseq |4 QLXZ) uyiaes

(M/19)Ul € = °0

008G = M/7

Zz'w

saloay| des( alewixoiddy pue |eouswinN Yyloq
Buisn saiiiqezie|od onaubepy jeuipniibuon

i r T

T 11

100

zz'u

Same as I'igure 24 except {/w = 500 and N = 10 iﬁ the Galerkin results. a)

7.

2

Figure

Incident side.

85



®
M/p

0ot ol l

1 I T T T I O B I O O O T | 1

(ta1awesed (g//-2uU)Z + °U ‘LI=W) xoiddy daaQ
. (eswered oy ‘L1=W) xoiddy deaq

(1e19wesed °( ‘|=W) x0iddy des(q
Ol=N (suonodunj siseq |+ OLX¢) uyiaey

z’'u

[(E/L- T + C/°OWE] / 1L = P

(M/7 Ul € = °0

souoay] des( olewixoiddy pue jeouswnpn yloqg
Buisn sanijgeziejod onsubepy jeuipnibuoT

1000

TTT T T T T

100

T

[TTT T 71

2z'w

Z'w

R

o/

b) Transmitted side.

86



parameter, the heuristic results (138) and (139) including terms m < M = 11 with €

expansion parameter, and the one term m = M = 1 approximations (142) and (143) with
+

expansion parameter (2 . These graphs give the axial polarizabilities « m.22 normalized
bl

by the first order polarizability for zéro depth denoted by 0’;1 2z Note that the Deep
equivalent radius has been taken as the approximate exterior Thin value (1385) in all
graphs. The basis function length A has again been maintained larger than

approximately 4a  in the graphs.

Note the good agreement of the analytical results based on the expansion
parameter §) s with the Galerkin solutions. The rather small, but noticeable, discrepancy
of (194), for the Very Deep limit % >> 1, is explained by the discussion below (149).
Nevertheless, the reasonable accuracy and simplicity of (194) and (195) distinguish them
as very useful uniformly valid approximations. If greater accuracy is required than that

provided by (194), a second term can be included from (192).

Figures 28 through 31 show a comparison of the Deep approximate results from
(194) and (195), the Thick result (86), the Very Deep approximations (196) and (197)
with expansion parameter 27, and the Very Deep (interior only) results (146) and (147).
It is interesting that a crude, uniformly valid approximation is provided by an
appropriate combination of the Thick and Very Deep results, switching between the two
at, say, the intersection point of a;’

ZzZ

wQ//2xl-7d . (209).
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Longitudinal Magnetic Polarizabilities using
both Approximate Deep and Thick Theories
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Figure 28. Longitudinal magnetic polarizabilities for the Deep case for {/w = 10. The

zero order, one mode, result with expansion parameter 2/ = _ + 2(¢n 2 - 7/3) (solid

curve), the Thick result (dashed curve), the one mode Very Deep result with expansion

parameter 27 (dotted curve), and the one mode Very Deep result including only the slot

interior (dash—dot curve), are compared. All curves are normalized by the first order

zero depth result. a) Incident side.
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XI. CONCLUSIONS

The polarizabilities of a rectangular slot aperture of width w, depth d, and length /.

have beexi estimated when the slot is narrow ¢ >> w.

The Thick case { >> d,w is for the most part described by an equivalent antenna
radius given by (75) through (78). The magnetic charge per unit length, and hence the
dominant axial magnetic polarizability, is determined by solving Hallén's integral
equation (60). A simple method of deriving this integral equation has been introduced in
Section III. The axial polarizability is given to first order in Q, see (80) and (31), by
equation (86). This result is quite accurate as demonstrated by the numerical
comparisons in Figures 12 through 14. It has been noted in Figures 16 through 18, taken

from [1], that the equivalent radius concept provides an immediate generalization of .

existing zero depth hatch aperture polarizability formulas to the Thick case. The smaller
transverse polarizabilities are given by the slot length times the line polarizabilities given

in (115) through (122).

The Deep case £,d >> w is described by integral equations (168) through (172)
with equivalent radius (183). The Very Deep case d >> £ >> w is described by integral
equations (173) and (174). A simple derivation of these integral equations is introduced
in Section VIII. It is argued in Section IX that these integral equations provide a
uniformly valid approximation for 0 < d < « if the approximate exterior equivalent
radius (185) is used instead of (183). Using the accurate exterior expansion parameter
(189) (see (141) for © ), a simple zero order calculation yields the axial magnetic

polarizabilities (192) and (193). The first terms of these sums, (194) and (195), provide

reasonably accurate approximations for the axial polarizabilities as demonstrated by the

comparisons with the numerical solutions given in Figures 24 through 27. The one term
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Very Deep approximations, (196) and (197), and the Very Deep approximations,
including only the interior wé.veguide region, ( 146) and (147), are compared with the one
term Deep approximations in Figures 28 through 31. It is interesting, from these figures.
that a crude, uniformly valid approximation is provided by a combination of the Thick
and Very Deep results switching at the intersection point of the incident polarizabilities

(209).
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