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I. Introduction

A classical problem in electromagnetic theory is the evaluation of the energy absorbed and
scattered from a plane wave by a finite-sized scatterer in free space. There is a well known result
known as the forward-scattering theorem (or "optical" theorem) [7, 12]. This relates the absorbed
plus scattered real power in frequency domain (s = jw) to the imaginary part of the scattering
amplitude in the forward direction, i.e. the direction of propagation of the incident plane wave.

In this paper we generalize the forward-scattering theorem to complex frequency domain
defined via the Laplace transform (two sided) as

8= [emesta

—_—0

80 = 5 [ &9 as
Br (1.1)

Br = Bromwich contour in strip of convergence parallel to joaxis
~= Laplace—transformed quantity
s = Q + jo =Laplace—transform variable

= complex frequency

While this can be considered as an analytic-continuation procedure, there are some advantages in
considering this problem via the time domain.

A recent paper [8] extended the forward-scattering theorem to the case of a step-function
incident wave via a Hilbert transform. The present paper generalizes the forward-scattering
theorem to essentially arbitrary incident pulse plane waves. This is accomplished by first assuming
that the incident wave is a time-limited pulse so that the integral of the product of incident and
scattered fields on the sphere at oo occurs only near the forward-scattering direction. Through
Laplace transforms this is related to the usual scattering amplitude, but now as a function of the
complex frequency.

Extending the pulse width to e reproduces the step-function results in [8]. However, this
result disagrees with a result next obtained by considering an incident step-function wave for




which the product of incident and scattered fields must be integrated over the entire sphere at o,
This discrepancy is related to the order of two limits, letting the pulse width —ec and letting the

sphere of integration —ee. The difference in the two results is given by a combination of electric

and magnetic dipoles which does not contribute in the forward-scattering direction, but contributes
strongly in the backscattering direction near s = 0.




II. The Poynting-Vector Theorem in Time Domain

Write the Maxwell equations in time domain as

Vxﬁ@@nﬁ“ﬁo—%ﬁﬁws—%ﬁio
= — total magnetic current dencity
' (2.1)
Vxﬁ@¢)=ﬂao+§%ﬁ&¢ﬁﬂyio

= total electric current density

These current densities can take various forms by imposing various constitutive relations, simple
ones being of the form

—_ —_ —H — — —_
Jh(r,t) = O'h (r)e H(r,t)
- H —

B(T,t) = W) ¢ H{T,1)

T, Go=[0, @+ 1 @]« HE1)
sL) = T r)=_1® s
ht h ot 2.2)

H —_
(T,t) = o(f) & E(T,t)

- « -
DE,t) = e (T) ¢ E@ 1)

il

- . DA SR S
1.0 =1 o) + () 51 H{T D

Of course the constitutive parameters can be functions of frequency which makes convolutions
appear in time domain as in (2.2). The introduction of the magnetic current density gives

Ng .
symmetry to (2.1), and while © 0 (at least in a zero-frequency sense) is not known to exist, a

“
general form of [ ( ? )with frequency dependence (including losses) achieves the same thing.

For the special (but important) case of free space we have

— a Py —
J. (r,t)y=u_, 5= H({, t)
ht 09t (2.3)
=g — a o
Jt(r, t) =€, WB(r, t)




Use a vector identity [18]
Ve [EFT, t) xHE, )] =-BEF, t) o [Vx H(T, )]+ HE, 1) o [Vx EG, 1)]

=— KT, t) e 'J't(f‘, - H@E, t) o Th @, t) 2.4)
t

Applying the Gauss divergence theorem to some volume V within an exterior boundary surface S
we have

JEEG.H xAE D10 Tgds = JIE@ED T @0 +HE D« T, F01V
S v '

Ts = outward pointing normal on S 2.5)

If this form of the Poynting-vector theorem doesn't Jook familiar, consider the current-density
terms in the volume integral as

= - — - -, = a—._.

E(T,t) e J (F,t)=E@,t) ¢ J(T,1) + E(r,t) e 5 -D(r,t
<)t<)<><)<>ata() 06
H(T, 1) o i’ht(f’,t) =HE 1) o Th(f’,t) + HE, ) » E_I'D(f',t)

In this form one often identifies the first terms as power loss to the medium and the second terms
as the time rate of change of the electromagnetic energy density. In free space the above simplifies
to '

BED o T @0+ HED T, @o= %U(f’,t)
t

2.7)
UED =2 € BED « BE0O+ 51 AFY » HED
with U now being the energy density in the fields.
For a transient problem with V taken as free space we have
T T 1 __[o
él.[E(f', Ox HE, )] e 1S = \j[at U@, t)dV 2.8




and integrating over all time gives

[ [IB@o <A@, 010 Tgd =~ [UF =)av
—3 | v 2.9)

-

UG, o) = % e B(E, =) ¢ B(F, ) + % 1 HE, o) o HE, )

Here the fields in V are assumed to be initially zero and the final values to be bounded (a
reasonable finite-energy condition).




II. The Poynting-Vector Theorem in Complex-Frequency Domain

In complex-frequency domain the Maxwell equations are

o % = o
Vx Ef,s)=- Jh (f,s) —s B{T,s) =-— Jh (7,s)
t
(3.1)
> > > S
V x H(T,s) = J(,s) +s D(T,s) =17, (T,s)
Allowing the constitutive parameters to be functions of s we have
Jh (r,s) = Gh (r,s)e H(r,s)
= & >
B(T,s) = u(T,s) ¢ H(T,s)
> S > S
Ty (r,s) = Sy (f,s) +s W(T,s) 1 ¢ H{T,s)
t
(3.2)
= & >
J(¥,s) = o(f,s) ¢ E(T,s)
> & =
D(7,s) = e (T,s) ¢ E(T,s)
> > © >

I, @s)=[o(f,s)+s € (@s) 1 E{9)

R R .
In complex-frequency form one can then consider Sy +s Wand 6 +s € assome combined

or effective constitutive parameters. In time domain such become convolution operators,
generalizing the form in (2.2).

Using the same vector identity as in (2.4) we have

~ ~ ~ ~ —~ ~

- - - - - -
Ve[ EFs) x HF,—s) ] =— E(@,s) ¢ [Vx H(F,—s) ] - HF,—s) ¢ [Vx E(T,s) ]

= = > it
=~ E(T,-s) ¢ J . (T,—s) - H(Y,—s) o Ih (t,s)
t

(3.3)




Again applying the Gauss divergence theorem we have

~

> > .
JTEG s x HF 101 ds
s

- =
== [I E@s) x I @-9)1+ HE,-s) x I
v

J/l

(T',$)1dV (3.4)

=

t

This combination of electric field evaluated at s and magnetic field evaluated at -s is one of the
several forms considered in [5]. This is the form of the Poynting-vector theorem in complex-
frequency domain. Note that in the volume integral both terms have the same sign just like in time
domain in (2.5). The difference in form is given by the combination of functions of s with
functions of -s.

Relating time to frequency domains is conveniently done for energy per unit area as (per

appendix A)
TS = 1 = =
J B@o x H, Gvadt = w7 JEE9) x HE, - 5)ds
= Br
=L [EG-s) x HF ds (3.5)
2mj ’ ’

Br

Similarly for energy per unit volume (including stored and dissipated) there is the electric part

TS > T >
JEGO ¢ 1 @Eod = = [EG.9) T (- s
—e° Br
=L [E@-9 el (s (3.6)
2 Br | C




and the magnetic part
“%q > { = >
[ H@ o Iy (0 d =37 [ 5, o Ty, (98 :
—° Br
Ll [B@-9e7 9ds 3.7) ]
2RI h, " '

When integrating over all time which is equivalent to integrating over s on the Bromwich contour,
note the symmetry between s and -s (or between t and -t for that matter). At least then in this
integral form the Poynting-vector theorems in time domain (2.5) and frequency domain (3.7) are
equivalent.

Now letting V be characterized as free space (3.6) becomes (using (2.9)).

~

[ B@0 e le o SEE DI = [B@oel-se, E@,—s) 1ds

27‘:] Br+ ‘

~

=§l— J.E(r —s)efse, B(r s) ]ds

Br—
= —‘12—- [ o _E:‘,(f.,oo) [ ] E.(i‘., oo) (3.8)
and (3.7) becomes
T e oH ., 1 = =
[ BED o 1o G @01 = 51 [HES) @ [- suo HE~5) 1ds :
e Br+

~

- = J.H(r —5) o s, HE 9)1ds
Br-
= L u T e o I, ) (3.9)

b

One may think that these integrals must be zero since in s domain each equals the negative of itself,
or equivalently, the integrands are odd in s. However, this only applies if there is a Bromwich ‘

10




contour for the common convergence of the two Laplace transforms (one of s, the other of -s). If
in time domain there exist non-zero fields at t =e, the Laplace transforms have poles at s=0 and the
Bromwich contour cannot squeeze between two such poles. The above results have to be
understood in some limiting sense, properly derived from the time-domain form which utilizes the
time-domain energy density as in (2.7). Considered more carefully note that the terms from the
electric and magnetic current density involve s times the field transform and so do not give a pole
at s=0. So the two forms are not the same in that the Bromwich contour goes to the right of s=0 in
the first case (first term a function of s) and to the left of s=0 in the second case (first term a
function of-s). One could distinguish these contours as Br+ and Br- (if desired) as indicated in
(3.8) and (3.9).
,i

Going back to (3.4) notice that in the case of free space the frequency-domain Poynting

vector theorem becomes

; - -
JUEG 9 x (T -1+ T ds
s

~ ~ ~ ~

= = = =
= [[e sEE s ¢ EF -5 —u, sHF, ~s) ¢ HF, ) 1V

\%
(3.10)

While one can note the sign difference of the two terms in the volume integral and the fact that this
is different from the case of time domain as in (2.8) and (2.7)[10], the basic reason concerns the
requirement to reverse the sign on s of the electric or magnetic field term (and the corresponding
magnetic- or electric-current-density term). This is required by the generalized Parseval theorem
(appendix A) relating SLE)h energy-like constructions in time and frequency domains. Note that

__)
while (3.10) uses -s in H , it could equally well have been done in E instead with all s replaced by
-s and conversely in (3.4) and (3.10).

11




IV. Scattering of a Plane Wave
Asin Fig. 4.1 consider S as being in two parts, with

S ¢ = scatterer surface with outward pointing normal 1

Ss

=outer boundary of Vg ( =scatterer volume)

S o =sphere of radius r.. (large)

with outward pointing normal 1 r

Vext = volume bounded by SquU S
= free space

The total fields are given by

- _ (inc) _ (sc)
EG,0)=E (F,0)+E (&, 0

- _, (inc) _(s¢)
H(T,t)=H f,t)+H (T, t)

The incident fields are specified as a plane wave with linear polarization as

_ (inc) . . _ (sc)

E  @=1,B ft-T,eF/0)+E "@1)
:Xinc) . _ -'y_l' oT

E  @9=1,Efe !

_, (inc) - .

H @0 =1,H,f(t-1,¢T /c)

:)(inc) . _ —'y_f o7

H (F.5)=T,H, T(s)e 1

Ey=2Z,H,

Z,= g—oc; = wave impedance of free space

12

(4.1)

(4.2)

(4.3)




1

Figure 4.1 Scattering of a plane wave.
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1
HoSo

c= = speed of light

:

S -
Y = o = propagation constant

f(t) = waveform (normalized by EO)

—i)

11X12= 3 12><13=11, 13><11=12

The scattered fields are much more complicated but have asymptotic forms for large r as

=(sc) =~

E (9= [% Ve (669 +0(r—2)]e‘Yr
=x(sc) =

H (9= [% i; (6, 0,5) + O(r‘z)}e_’yr
- ~

<

- - -
£ (66,9 0T1,(80,5=0, I, 00,9 * 1,(00) =0

~

- = — . = i

1:0.0) x V. (0,0,8)=Z I (8,0,5) Z;1,(8,0) X I (8,4,5)= V (8,0.5)

N -

V(80,5 =EoT(s) v, (8,6,9) (4.4)
T e >

I (8,0,8)=Hyf(5)1,(8,0) x v (6,¢,5)

<\L1

¢ (6, ¢,s) = normalized far field

%
In time domain the far field is given by a convolution of v ¢ (6, 0,t) with f(t-r/c) where now retarded

time is t-r/c as distinguished from the retarded time for the incident plane wave which is
t—(I,e%)/c o A . . e

( 1 ) . Note that ¥ = 0 is defined somewhere in the immediate vicinity of the scatterer,
perhaps even in V.

For S.. we have (with convention of outward real power positive)

14




Po(= [[B@0 xHFE 1] «T,dS
Seo

~ ~

5o(5)= I {:E)(f’ $) % HF SJ- 1.ds - 4.5)

00

fP (t)dt:—zi-f s)dsrz—gtijﬁoo(—s)ds
= Br

Note that r., is taken as some large, but not infinite, radius. It is only allowed to tend to e after the

integals have been performed. Note for the above

Re[P(jo)]= 0
W0 : (4.6)

which expresses the fact that the scatterer is passive and cannot emit real power for any s=jw. Note also
that in each case P, (s) is not the Laplace transform of P(t), this fact being denoted by the use of lower

case in s domain but capital in t domain.

Consider now the scatterer for which we have (with convention of positive real power into the
scatterer)

P =- [[BEH xHE 0] o igas

Ss
5=~ J 6.0 < 5o
Pg(s)=— E(r,s) x H(T,s) | » ISdS @7
Sg
EJ Pyt = 5z [ B(9)ds = 53 [ B - 9)ds
Br Br
Again
Re[p ((j®)]=0
WSZO (4.8)

In Vex we have (with convention of positive real power into Vex)

15



Pex (0 =5 [ UG DAV

VCX

_.

1) e E'(F D+ Ly THE 0 e HE O

U@, 1) = 5 Ho

1.
2 SoE

~ ~

Pex(8)=s [ E(r S) e E(r s) + Ko H(r S) e H(r S)

(4.9)
Wex = chx (t)dt

—C

~ ~

=L j[ EG.s) » B }dVd
=2 —-seq E@F,s) (f,— s) S
Br+ Vg

~ ~

27tJ -[ J-[Sp”o H(T,~s) * H(r S)]dV ds
Br—-V

Ver ©®

with other possible forms as in (3.9). Note that Wey is zero if the late-time fields are zero. Now we have

Re[p o ()] =0 except possibly for =0
(4.10)
Wey 20
In terms of the terms defined here we have the conservation equations )
P_(t)+ Ps(t) + Pex(t) =0
Boo(s)+ T4 (8) + P oy (8)=0 @1

Wet W+ W =0

Now the contribution at S, can be divided into three terms based cn the incident and scattered
fields as

16




i _ (inc) ) -
(o) = f[E ") e &, t)]clrdS

P, (O)s=
See
i (sc) (sc)
P ) = j[ﬁ 1) x 1 (rt):IOTrdS
S
; _ (inc) (sc) (sc) (inc) .
pU) ) o I[E EOxH  @O+E @oxH (1 t):]OIrdS
S
P =P )+ P ) + 2 )y
(inc ) [%m) Zy(inc ) ] }
oo (0= flE @ xH  (f,-5)]e71,dS
S oo
_(sc) [:)(SC) =(sc) } .

Bo (s)—sj E  @s)xH  (f-s5)|1,dS @12
(mix) = (inc) =5 (sc) = (sc) =5 (inc) } )
Do (8)= |LE T, s)yx H (f,-s)+ E @, s)x H T, - 9) *1.dS

S..

(mc} (sc) (mix)
poo(s)_poo (S)+Poo (S)+poo (S)

(inc) (inc)
wi_ [pl °)<t>dt=ﬁjjﬁm (6)ds =g [Be (=9 ds
- e Br Br
(se) _ ., (s0) (sc) _(s0)
We, j ()dt—z—,EJ jpm (s)ds—mBrpw (—s)ds
(rmx) f _(s0) 1 ¢ (mix)
P, <>d—2—n3 Poo (V5= 5= [P (—9)ds
Br Br

w_ =W W, yy 1)

17




V. Cross Sections ‘

In complex-frequency domain it is convenient to normalize the fields as

= 1 = = T = ,
e(,s) = ——=— E@,1) , h({T,s) = ——— H({,s)
Eof(s) Ho£(s) (5.1) .

so that

= (inc) . —y_l'lof’ = (inc) . —yTIO?

e (F,s)=1ze , h (f',s)=13e

= (sc) = _ (5.2)

e (T, s)=|i-%— vf(e,q), s)+0(r‘2)}e i

S(se) ~ ~ B

h & s)=[—%— 1r(9,¢)><\7;(6,¢,s)+0(r_2):}e ¥
In this form the incident fields have unit amplitude (for s=j®). In time domain this corresponds to ‘

a delta-function incident plane wave.

By a cross section we mean the ratio of some power to a power per unit area. In the above
normalized form

5 @inc) = (inc) .
e (f,9) x h @, - =1, (5.3)

so all we need is to place the normalized fields in the power expressions to obtain cross sections.

Corresponding to See, Sg, and Vex we then have

~ ~

- - N
Ao(s)= | [ e.s) x h(F,—s)197,dS
S o
= e .
Age)=— | [ e5) x hF,-5) ]+ 1 as (5.4)

4 o

18




~ ~ ~

> = - =
Aoy (=7 J[— e(@s) x e(fi— 5) 1+ h(F,—s) o h(F,s) 1AV

VCX
Be(®)+A )+ A (5)=0
Re[A (j0)]20
Re[A  (j0)]=0
In a more general sense note that

Ax()=-A(=5) (5.5)

i.e. is an odd function of s. This gives

i.e. the even part of A__ is just minus the even part of As . Note that — A_, is often referred to as

the extinction cross section [7, 12]

Consider now A ¢ Which might be defined as the (complex) absorption cross section of the
scatterer, representing the complex power flow through S into V. In a previous paper [6] the

absorption cross section was defined for a single port in a scatterer by defining transfer functions

for voltage and current with respect to the incident electric and magnetic fields. Assume that the
scatterer has tangential electric field zero on Sg except at N ports where the electric field can be

integrated in a quasi static sense to give a voltage and the magnetic field similarly give a current.
An example of this for a single port (easily generalized to give N ports) is given in [17]. Then we
define voltage and current vectors with associated transfer functions as

Vo) =Ty (9IEGTE)

(T = (TIn(S) H, £(s) (.7

19




For this case the absorption cross section becomes

Rg6)=(Ty (e (T (=9) (5.8)

For a passive scatterer the voltage and current vectors are related by

Vo) =2y () o (T, 6))

T =Xy ) e (V60

. _ 1 (5.9)
(Yn, m(s)) = admittance matrix= (Zn, m(s))

(Z n, m (s)) = impedance matrix

These matrices are positive real (or p.r.) in the sense that their eigenvalues have non-negative real
parts for s=jw and throughout the right half s plane. Another form A ¢ takes comes from applying

section 3 to Vg giving

5 [N S >
A= || e 9) o i~ +h(E~-s)» ip, ©9 Y

Vs (5.10)
~ . ~
ji(f.8) = — J t(i",s) = normalized total current density
H,f(s)
> ;] =
j. (T)s) = —— J . (F,s) = normalized total magnetic current density
by B, f(s) B¢

In this form we can think of Vg as some electrical network with Tt representing the currents in

resistors and capacitors (including fringe capacitance) and € the voltage across these, and with
il h representing magnetic currents (such as time rate of change of flux or voltage, including
t

losses) in inductors (including fringe inductance) and h the current through these.

In [6] there is also defined an effective volume Vg as the ratio of the energy absorbed to the

energy density in a step-function incident wave. In terms of our present variables this can be
written for the entire scatterer as

20




Voot | A s o °j° A (joydo =£TRe[7‘ss(Jw)] o
e 2 2 27 w2 T w2
Br - 0
= effective volume (5.11)

Any of the forms for KS in (5.4), (5.8), and (5.10) can be substituted in (5.11). Note that strictly
speaking the Bromwich contour threads between two poles at s=0, one from f(s)= (s —s O)— 1
and the other from f(-s)=(-s~s 0)_ 1 with the limit taken as s, (real and positive) —0.

This is aided by the fact that A ((s) has a zero (generally from both T, and TI) at s=0.

\%

Using (4.12) A, can also be decomposed as

(inc) 5 (inc) = (inc)

X (s)EL [e (F,s)x h (f,—s)}-Trds

(sc) |:~—> (sc) = (sc) ] S
X, (s)sjs e (Fs)xh (5 -sfe1.dS
oo (5.12)
(mix) [; (inc) > (sc) s (s¢) s (inc) } B
A (s)sjs e (F,s) X h &, —s) + e (F,s)x h (T, —)]* 1,dS
ey (s¢)  (mix)

Rw(®) =8 G)+A, (+AR. (9

The incident part of this is zero, since from (5.2)

(inc) o 2t w
Ree =] T,071.d5=r2 [ [cos(8)sin (®)d0do
Seo 0 0
— 0 (5.13)

This merely expresses the fact that all the incident power both enters and leaves through S... Note

that this is the only term for the case of no scatterer present. Also from (5.2) we have the
scattering cross section as

21




(sc) > >
Ao (5)= j{[—-{; v (6,0,5) +O(r"2)} LL (6,0) X vf(B 0,—5) +O(r"2)]} ®
Seo
«T,.(6,¢)dS
2T T ~ ~
- -
= f J[ V(8,05 o v(8,0,—5) + O(rj)}sin(ﬁ)d@dd)
00
2T T~ ~
- —
= ] [ V0.0 ¢ vi@0,-5) sin (8)d6dp ast,, e
00
(5.14)
Clearly this is even in s and real and non-negative on the j axis, i.e.,
(sc) (sc)
A (=R, (-9
(sc) (5.15)
A, GG)=0
This in turn gives for the odd part of A,
(mix) (mix)
[Rm<s)—ﬁoo<—s>]=[%w (s) - A, (—-s)} s 16
~[B ) - R (=) -2E () (516
For the even part we have
(sc) (mix) (mix)
[Rea()+ Boo(—5)] =2 &, <s>+[2iw ) +A. (- s)] 1) '

=—[K )+ A (-9)]

(sc)

These last two equations can be interpreted as equations for A ¢ sothat A_, does not enter into

the odd part and A ex does not enter into the even part.
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VI. Forward Scattering in Complex-Frequency Domain

As one might surmize the "mixed" cross section term involving both the incident and
scattered fields at S is the key to the forward scattering theorem [7, 12]. This mixed cross

section is evaluated from (5.2) and (5.12) as

(mix ) —yT o7 ~ yr
~ _ 15 = = = =1yie __
X () Sf {e T, x {1r(e,q>)>< Voeo—s * O )] -
TS 1] = y_flef’ .
+ =5 vf(6,<1),s) +0(r ) >< 13e ¢ 1.(8,¢)dS
- :_) -1 e’Yr_FY_l’l.r
= [T, ve®0.-9 +00h E—
Seo
- ~yr+yT1 1-?}
+ {[13 X1.(6,0)]e v ¢ (0,0,s) + O(r ):l——“—r dS 6.1)
This formula indicates some of the difficulty involved. On S.., we have
w-yl et =vr°°[1fcos(9)] 6.2)

As this is the argument of the exponential then as I'., — °° this allows an asymptotic expansion.
In the traditional derivation [7,12] with s=j the stationary-phase technique is used. Here we can

be a little more general.

Defining

(mix )
A =B +E)

2T .

Alo=ro | J[Tz . V“’f (6,0, 5) + O(r—l)]evrw[l—cosw)]
00

sin (8)d6d¢ 6.3)
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2T T ~
L OE| j[[‘l'?) X To(8,0)] ¢ vy (8.0,5)+ O(roc'l)]e“’rw[l"“os(e)]sin ©)d6dé o
00 '

and remembering that 8 =0 is defined in the 1 1 direction let us consider what is happening near

0 = (0. Here we have

o=1-cos® , do=sin(6)do

- 2n 2
A(s)=T,e Ve (0.6,-9)r, {) {)e“wo‘h +0o(r2hldads

2
+0 roojlaew“adoc as ., —>eowith Re[y]< 0
0

211:—1’

25T, 09,0, 6, - 8)+ 00, ) asr,, — oo with Re[y] <0

6.4)
. 2 2
R, =[1,x1]e Ve 60,91, | fe =%+ 0 h1dado
0 0

2
+ O rocj' o&e_yr“adoc as ro, —oowith Re[y]>0
0

1.5

(0,0,s) +O(rzl)  as r., —oowith Re[y]>0

Note that by evaluating the integrals with Y bounded away from the jo axis as indicated the

=
'
is assumed to have a bounded angular derivative near 8 = 0. Alternately utilizing the technique of

integrands exponentially decay away from 6 =0 giving the order of error as indicated. Also

stationary phase [13] the above results apply to the jo axis as well except that the contribution near

6 = 1t is also needed as another stationary point. The contribution near 8 = & is given by

o=1+cos@®)=2—0a , do =-sin(6)do
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21 0
(7,0, rooe Too [ [ M eo%I14 0rThIdordo
0 2

Kl(s)=—_’ . ?

2
+o{rwe27r°°joce Teo® gl as .. —eowith Re[y] >0

- '::9
=2—Y’-“—12o v (m o, —9 et Feo 0a21e2 M) a5t —seo with Ry} > 0
6.5)
~ ) 2x 0
_rT rd - —ZNr ’Yrooa" ~1 !
Ry =[1,xT1e v} (m0,9r e [ [eT=%11+0udodo
0 2
O 1
+0 rme_zyr“ja'eyr“adoc' as o, —oowith Re[y] >0
2
=%’”—Tz 7 (mo,s)e 2o 0le ™2 Mooy 4 r., —eowith Re[y]> 0

This is somewhat perplexing in that in order to make an asymptotic evaluation near 6 = & we get

terms which blow up exponentially as T., = . However, if we let Re[y] = 0 and consider the
result as a stationary phase evaluation the result does not blow up but is still oscillatory. The terms
corresponding to forward scattering are much better behaved, but converge in different half planes.

Combining the results gives (on the jo axis)

(mix ) = =
A<>o (S)=_2—fy£{_1'2. ‘_7:-(0,(1),5)——)2’? O¢ S)}
+%{12 Ve (10,5 7r°°+12u7’ (7,0,~ er}
+ O(r;l) as r,, —oowith Re[y] =0 (6.6)

In order to remove the oscillatory terms note that this part is odd in s, so we form
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- 08,910 ?} (0,6, s)}

SR )+ R(— 91— 2455

6.7)
(sc)
=—[A(5) + AR (-9 -2R, ()

where we have recalled the results of (5.17). Here A s()+ A S( — s) is from the absorption and
(sc)

2 A, (sc)isfrom the scattering. This may be considered the appropriate form of the forward
scattering theorem, but its extension into the complex s plane is still problematical due to the
asymptotic evaluation of the integrals.
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VII. Forward Scattering for Time-Limited Pulses

As indicated in Fig. 7.1 the forward-scattering computation is at least conceptually simpler
in time domain. Let us suppose that the incident wave takes the form of a time-limited pulse, i.e.
that f(t) is zero after some finite time. Then on S, for large 1., there is an overlap region of the

incident with the scattered field only near 6 =0, i.e. in the forward-scattering or Tl direction. It

is only this region then that will contribute to the "mixed" term. There is no contribution from near
© = 1 contributing the oscillatory terms in the previous section. Actually for these results the
pulse need not be zero after some time, but can asymptotically approach zero at late time with some
sufficient rapidity. | ‘

The scattered field is also of limited time duration. Basically the late-time scattered far field
is dominated by one of the natural frequencies of the scatterer with smallest damping. This gives a
late-time waveform dominated by a decaying exponential, at least for incident waveforms of simple
structure (or ones of limited duration). This is a fundamental transient scattering result associated
with the singularity expansion method [16].

From Section 4 we then have

Wex=0 (7.1)

since the late-time fields are zero throught Vex. This gives

Wo=-W, 20 (7.2)

which in more classical terminology is absorption equals extinction. So for our time-limited
excitation, in terms of energy (power integrated over all time) there is a fundamental simplification
in our formula. For further reference we have

W= [ Pyodt = 5 [ By(oas
e Br
____1_ [h’—) - ; _ }. —
- mgsj E (7,5 x H (F,~ )]+ 14dS ds 7.3)
T
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28




~

1 - i > } .
=~ 725 EoHo [F{CHED f[e(r,s>>< h (7, —s)j* Tq dSlds
Br Ss
-~ B _H _[F 3 A (s)d
T 2m —o0°o () f(—3) Ag(s)ds
Br

In decomposing W, we have the evident result

wi) o jp St =0 (7.4)

which merely expresses the fact that a time limited pulse passes through S in both directions
leaving 1:0 energy behind if there are no remaining fields. Refer to (4.9) and consider -Wex for the
case tha' Vey is extended to include Vi, except with free space instead of the scatterer.

Another term in W, is the scattered energy given by

W o jp( oyt = - jpw (5)ds

[—KSC) Zi(se) } )
=2an JlE @ syxH  (@-s)le1,dSds
Br S
L ( [—><sc> S(se) } }
e H, [F©T(-s) | @s)xh  (F9)]eTgdSlds
Br SS
1 L (sc)
=2—TCJ.EOHO_[f(s)f(—s)AOO (s)ds
Br
0 (7.5)

The scattering cross section is also expressible in terms of the far-field as in (5.14).
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Last (but not least, in magnitude anyway) we have .

wim) J-P (D

{inc) _, (sc) _,(sc) _, (inc) o
f I[ T t)xH T t)+E (FtxH (F,t)]01rdet

OOSOO

(7.6)

Expressing this as a time-domain integral the overlap-region near 8 =(Q in Fig. 7.1 is applicable.
Writing out the fields gives

(mix )

We  =EH, | f{f<t—(Tl-F)/c)Tzx[ir(e,q))x"\’ff(e,q),t_§)+o(r-—1)}%

_oosoo

+ %[Vf(e,dn,t -9+ oah]x 180~ ~F)/e) e T (0. ¢)asar

(7.7)
Now shift to retarded time as .
tr=t—r/c s dtr=dt
t- (I, e B)/e=t, +¢[r- 1o )=t + GlL-cos(®)]
=t +ga .
=t +t
oa=1-cos(0) , do =sin (6)d6
t'= %oc , dt'= %doc (7.8)
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: . (mix)
Then for convenience divide W, as

W _w ew
o EW W,

Wi=EoH, [ [ {3+ 0T, x[1,0, )x V1@ 0, 1)+ 0a™ D]}« 1,0 0)as e,

[= -]

S
(7.9)
wo=EHy [ [ {3t +0)[V,6 0. tp+06 H]xT,} e 1.0 0)asdr,
Seg.

Evaluating W1 we have

W, =EH, [ [t +0)1,[1, eV @oc)+0ah]ds ar,
Zeog

(= =]

o [(2m2
=BoH, | rodd | [H(tr+ )T, 0 V(00,10 +0GT fin (0)a0 d¢}dt .

= [ 00
o (22

=EoH, | rod | [t +0)[T, 0 V(80,1 +0cTh o dotar,
—= [0 0

o [2m 2r./c

=E_H, | Cij Jea +0[1, O—Vf(e,q),tr)+O(r:})}it'd¢jdtr
0 0

- (7.10)
Now letting r_, — o= note that for fixed t'
a=L =oazh
6 =0(c/?) = 02
(7.11)

Ve(6,0,,) =V (8.0,1) + OGTY)
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provided 9 V ¢ /90 is bounded near 0 =0 . Further assuming that v

£ is zero before some t;

(causality, based on f(t;) being zero before some t;) and that f(t+t") is zero for t' greater than some

t' (with t; not less than that for v

W =B,H,

to be zero) we have been taking 1o, t0 o=

£
ca 2'11'. [=%=2 -
fei | jf(tr+t')12.‘\’/f(e,q),tr)dt'dq; de .

—= 0 0 .

=27tch

Hy | [t +01, eV (80,tpdrde

0 (7.12)

Similarly evaluating W» we have

(==

W,=EoH, | 1.

(2T T
[ oIeap+ eIV 00,6 )+ 0aTHIx 1] e 14(6,0)sin (©)d0d0 a4
L0 0

(2n
[ e+ o)1V (@0, + 06Th1x T, 0 T8 9)dadopee o
L0 0

(275 zrwn/c
[ Jre+efivi@oep +0ahxi]e 1 0.0)ddd

|

Then letting r,, — oo

jdt c

(7.13)

L0 0

with the results of (7.11) including restrictions we have
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oo 2T T
W,=EoH, [ ef [ [+t )V (60,60 x1,]0 T drdopdr,
—= {00

=2mE H, | [ft +0)T, oV (6,0 )drdr,

=W
1 (7.14)

Thus the two mixed terms (incident electric with scattered magnetic and incident magnetic with

scattered electric) give the same results.

Now we have

(mix ) 0T N o :
We =4mcE Hy [ [ft,+t)T eV 801 der, (7.15)
—_00 O
Alternately shifting t' to
th=t_ -+t (7.16)
we have
wime) amcBoHy [ [raT, ¢ V@0t dr
—oc0 tr
=4mcEgH, [ 1,V.(60.t) [ £enaerlar, (7.17)
—0 tr
Defining

33



t ®

F(t)= [f(t)dt

vI(o,cp,:) = j v (0,0,9dt (7.18) -
and noting

£(0) = Tf(t)dfc

Tf(r) dr=F(0) - F(v | (7.19)

t
we have

wi) 4TL'CE0H0_].° [FO ~Ft ], oV (0.0, ) dt, (7.20) @

Considering the first term we have

[ 501, e V0ot d =F0) [ 1,0V 00t d,

S
=01, ¢ V. (06,0

(01

i
oy

1

L [FO 7, 06,0
) -
O, vy

5* Ve (0,0,0)

It
S MM

(7.21)

~

. 5
since f(0) is bounded (finite area (or impulse) of incident waveform) and v ¢ (0, ¢, 0) is zero

(no radiation or scattering to the far field at zero frequency). Thus we have ‘
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w4k H if F(t.)T . » V.0 4
o TTATCE, o_J_ (1)1, @ V(0 0, 1) diy (722

Alternate representations are found using the generalized Parseval theorem (Appendix A)

giving
(mix ) 1 f . e D
Woo =_4mEOH02_TCj F(S)IZ Vf(O,(b,—s)ds
Br
B 1 f(s) -5
——44&EOHO§E;J—§—f(—$120Vf(Q¢f1)$
Br (7.23)
From (4.8), (4.11), (4.12), (5.15), (7.1), (7.2), (7.4), (7.5) and (7.23) we have
W N W(sc) Wiomix)
WS_O
(sc)
W, 2 (7.24)
giving
1 1 (s¢)
5B H j FOI(-9)B (ds+ 5= E H J.f(s)f(-— AL (5)ds
T )
Br Br
= A TeE  H jiﬁﬂ—91o7ﬁaa—ga
Br (7.25)

all three terms of which are real and non-negative. Noting that the symmetry of the Bromwich
contour means that only the even parts of the integrands contribute to the integrals, then (7.25) can

be considered as an integral form of (5.17) with weight T(s)f(— s). Note also that the even part

_ (mix)
of A, asin (6.7) is consistent with (7.25). Furthermore, this property of using only the even

parts of the cross sections means that the backscattered contributions in (6.6) do not enter the

results for the total energy in the three contributions.

For completeness (7.25) can be stated using time-domain quantities as
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[ pa+ [ P ma=- [P 0a

P =- [ [E@0) xHF,0] #14d5 20

SS
_ (sc) _ (sc) .
Pfic)(t)='[[E @0 xH (f’,t)]OlrdSZO
_ S
j-OP(mix) o (mix) T s
~[p =W, _4mE0H0jF(t)12-vf(o,¢,t)dt

t

=4ncE H, | {j £(t)dt }f@)o[i’z * V0,0, ]ar
ool

o = convolution (with respect to time)

(7.26)

with various alternative representations also possible.
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VII. Limiting Case of Step-Function Incident Pulse

Now let us take from before

W ()—4EHLJ—F——T-;0—d
S Tic 2 ( S) 2 v f( H q): S) S
Br (8.1)
and see what happens as f(t) assumes the character of a step function. So now let
St
fh=e © u(® , s,<0
> 1
f(s)=35=
> %o (8.2)

This is not strictly a time-limited pulse. However, referring to the diagram Fig. 7.1 notice that the
trailing edge of such a pulse is exponentially small. While the overlap region is not limited as
before the portion away from 8 = 0 includes only this exponentially small weight. Then taking
r.. — oo the contribution from this trailing part should be asymptotically zero.

As indicated in Fig. 8.1 the Bromwich contour goes to the right of the pole at x=0 as well
as singularities of f(s), these being in the left half plane. Here £(s) /s is the transform of the

~

. - o =
integral of f(t) and is hence causal. However, f(—s)le v ¢ (0, ©, — s) is not causal, having

singularities in the right half plane. The Bromwich contour goes to the left of these.

~

- -
Now in the left half plane as s — o, £(s)f(—5s)/s goes as s-3 while v ¢ (0, 6, s) is

bounded. So close the contour at o in the left half plane with a semicircular contour as indicated in

Fig. 8.1, this semicircular contour giving zero additional contribution to the integral. Shrink the
contour or equivalently use the residue theorem to give contributions from the poles at 0 and s as

(sc) 12 2 1 2 2
W o+ W, —4mEOHO{ 2 I, Ve (0,0,0) - 23212. v f(0,¢,— S¢)
0 0 (8.3)

Now from appendix B and [1] the low-frequency delta-function response is
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> _Lz{_b** _Tles +to7 »3 1
. Ve (6,0,8) = EOs 4n[1r1r 1:|o Poo + 4mlr><m¢,<,+0(s) 5.4
This being zero at s=0 give
W WS mE B oL T e300,
4 =dmEoHe mJala Ve (00mso)
0 (8.5)
Now evaluating 1 . for forward scattering gives
1,=1,
H - = - — - =
1 _1r1r=1212+1313
;_)(O(I)S)--—Ls2 ar] 1.7, +1.1.]e53 +—H—Q—1 X m +O(s)}
£ ®Y=E an L2l 1gTa] e Pt g Ty X T
1,0 v, (0,0,8) =587~ 7 —1,8D— 51,0 M +0(s)
2 f E, no{ 2 3 } 8.6)
Applying the zero-frequency polarizabilities from appendix B gives
1.0 ¥ (0,008 {1 1,+1,e M 1,+00}
[ IV ’ ,8) = — ® + ® + S
Evaluating at sq gives
- Felle 4, }
W +W, c 1 01 +130M o1 +O(s) 8.8)

While strictly sq should be negative we see that if s, — 0 we have the step response

_ (s¢)
Ws"'WiC):“ o oanj ASS;S)d EoHozan AtZ(S)dS
Br Br
=%Ve W(SC)
o _ ol L B a1 41,0 M, o1, 55
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sC
This agrees with [8]. Note that we require that W ¢ and WSO ) when considered as functions of

so be continuous as s , — 0 so that the limit applies. In normalized form we have

(8.10)

—e O 0 © (8.11)

with now

(sc) (mix)
Ve+V°° =Ve (8.12)

It has long been known that polarizabilities have dimension volume [19]. Here they bound the

: : : : , (sc)
effective volume (normalized step absorption). There is also now a scattering volume V.,

(normalized step scattering to o) it also bounds. Note now

(sc) (mix)
V.20 V., =20 V. 20 (8.13)

, (mix) .
Since V, is non negative we have

. > . o > -
0 Poelyz-T 0 M o1, 20 (8.14)
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for all choices of 1 5 and TB with the constraint T2 o TS = (0. When diagonalizing these 3 x 3

matrices we have all non-negative elements in the electric case and all non-positive elements in the
magnetic case.

Going further suppose we reverse the direction of the incident wave. Keeping the same
, _ > - : .. {mix)
electric field polarization we reverse 1 1 and thus 1 3 But this changes nothingin V,
Hence this result is invariant to reversal of wave direction even though the scatterer is not
symmetric with respect to such a reversal (i.e. not symmetric with respect to reflection in a plane

perpendicular to 1 1 (or equivalently a plane parallel to 1 2 and 1 3)) . More generally we have

Vifﬁx)<iz,i3>=\f§fﬁx)<—i i >=V§f’ix)(‘1’2,—i3>=\/£omix)(—i

2 3 23_13)

(8.15)

which is a high order of symmetry. So we may wish to think of this as something other than
forward scattering when dealing with step-function scattering.
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IX. Scattering of a Step-Function Plane Wave
A. Decomposition of Step Response

As in section 4 let us decompose the scattering by energy terms. From (4.11) we have

W+ W+ W, =0 ©.1)

based on the energy absorbed by the scatterer, radiated to o, and in the external fields. From
(4.12) we have a decomposition of the energy at oo as

W = W9 o)y, (se) 9.2)

Furthermore similarly decompose the external fields as

(inc) (mix) (sc)
Wex=Wex +Wey +Wey . (8.3)

Considering the incident fields to be a step-function wave by selecting £(t) in (4.3) as u(t) thereis a
residual energy in the fields in Vey which is non zero so Wey is non zero involving respectively

the incident fields, the scattered fields, and the mixed terms involving both incident and scattered
fields. Rearranging terms we have

[w o+ WSC)] + [wﬁj“") + WS:C)] + [w g?ix) + w:f)] PR _ g 9.4)

Note the grouping of the terms which we now consider.

B. Ws+w§fc)

This is the basic term we wish to evaluate, the sum of the absorbed energy plus that
scattered to eo. As discussed in sections 5 and 8 these basic terms take the form
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(sc) E Hgy (mix) EgH (sc)
W+ W, =—22v_ ———[V +V_ }
A (s) * A (jw)
V =-— C' S ds = C S d
° “JB{ o= | 72 ©:5)
A(SC) -~ 2&(scs)
(sc) c o (8) . ¢ o ()
- =3 | 2 B3 | 2 ¢
Br -

We have required that as s — 0 there is no stored energy in Vg, and no power radiated to oo so that

the above integrands are well behaved as s — 0.

(inc) (inc)
o TWoo

C. W

Now from (4.12) we have

i -, (inc) (inc)
(mc)(t)z J[E inc inc

P, (F,t) xH C,t)]-irds

Seo
(9.6)

wine) _ IP D) dt

This gives the energy flowing out of V., due to the incident fields. Since this corresponds to the

Poynting - vector theorem with no scatterer present we can use (2.9) to give

; e . _(inc) _( _, (inc) _ (inc)
w(mc)=—{—7:9 B &, ) o E mc)(r w)+u_2o ol @, ) H (F, oo)}v

= m
__JSo0.2 Fo 2}
-—{2E0+2H0 Ve,

0770 " 0.7

o0

This diverges as 1., —>oe.
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From (4.9) we have

W(inc) _ { € 4 (inc) _, (inc) Hg , (inc) _, (inc)

ex _2—- E (Fs °°) e E (f’: °°) + T H (F: °°) o H <?’ oo)} VCX

(=
3 o 2, Ho 2}
“{TE0+TH0 Vex

(9.8)

This is the energy in the late-time incident fields, but only in V4. This also diverges as 1., —> .

Noting that
we have
(inc) (inc) 2
Weo "+ Wey "=-€E Vg (9.10)

which is well behaved as r_, — oo.

(mix) N W(SC)

D. Wex €X

The details of these terms are treated in appendices C and D for the electric and magnetic
parts respectively. This is the energy of the static scattered and mixed late-time fields in Veyx. So

take the results for Vo in the appendices and remove the energy terms corresponding to V.
The mixed term is
(mix) { _ (inc) L (s0) _, (inc) L (s¢) }
Wex = J1e€oE (@ oE @ e)tpgH @ eo)eH (7 e)fdv
Vex
(.11}
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The electric term is evaluated from appendix C as

_ (inc) L(c) | (mix) 2
e, [B @ e)eB (@ e)dV=W, +e EqV
Vex
o 2
=—EOE0120 P0012+GOEOVS (9.12)
and the magnetic term is evaluated from appendix D as
-, (19) 2. (50) (mix) 2
Ho JH @ e)eH @ e)dV=W, o +uHV
Vex
cop HET, e M. o1, +p HEV
ST Hotglg e Mg Iyt gtV (9.13)
Combining these we have
(mix) 2{~ =l v A 2
W, "=-€e,E] 120P0012+130M0013 +2e E Vy ©.14)

The scattered term is

(sc) 1 { L(se) _ (s0) ,, (s¢) L (s¢) }
Wex =5 J1€oE (G eE @ e)+p H @ e)eH (T e)fav
Vex
(9.15)
The electric term is evaluated from appendix C as
L (sc) . (s0)
ey [B8 Goret  Geav=wi?-le E2v,
Vex
1 22 9 1 2
=§EoEolz°Po'12_§€oEoVs (9.16)

and the magnetic term is evaluated from appendix D as
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%p,o _[ _I:I(sc)(?, -y -I:I(SC)(F, ) dV=W§ISC)— _%_ MOH%, v,
Vex
=%_‘”“o H%T?,’ﬁo’_fs“%“o H%)Vs : (9.17)
Combining these we have
S:) 7o %{Tz‘?o&z*%'ﬁo‘13}‘eoE%VS (9.18)

Both terms being the same except for different coefficients we have

mix) () 1 P )
Wex +Wex =——2- {1 . P 012+13¢M 013}+60E0VS
(9.19)
B, W)
From (4.12) we have
i _ (inc) - - L @ -
plm®) j[E e b x H(SC)(F, £) +E(SC)(F, £) x H(mC)(F, t):| °1_ds
S
(9.20)
W) J-P Yo d

Substituting for the plane-wave incident field from (4.3), note that behind the wavefront the
incident fields are uniform for the case of a step function. Furthermore causality indicates that at
any T the incident field must arrive there before the scattered field. In a product of an incident and
a scattered field the product is non zero only after the scattered field "turns on". Looking back at
Fig. 7.1 the scattered field interacts with a uniform field everywhere the scattered field exists.
Substituting for the uniform incident field gives
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i o~ L.(s0) - (sc) -
P j[Eolsz . O-Ho T xE (f',t)JO 7_ds
s

oo

1o 1%, o)
=_E0129 lrxH (r, t)dS

Seo
o L (s
+H0130 1. xE T, t)|dS
S (9.21)

using identities for the scalar triple product [18].

Converting the surface integrals to volume integrals via a form of "Gauss' theorem" [18]
we have

(mix ) . L (s¢) - L (se)
Po (=-B,1,e | vxu (FDdV+H T, [vxE @& vav
VOO VOO
. - . 5 ()
=-Bol,s [T@0dV-e,E T 0 [LB ¢ vav
vV, \
“HoHoT, e [S2 T (@ vav
Veo
(9.22)
Integrating over all time
w0 T

=-E,Tye [ [TGE vdvat-e B 1,0 [B @ =)av
TV Veo

Veo (9.23)
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Substituting

7@ vav= [T, vas= % B(t)

Vs Ss
— T = 2N — - 2—0 > -
Eol,o | [7G 0avat=E, 1 eBe)=c BT, 0Py T,
s (9.24)
and using the results of appendices C and D gives
w0 B2T e M eT,=c E2T e M o1
oo =Ho Ho 3. o* 3_60 o 3. o? 3 (9.25)
F. Combining Terms
Now (9.4) can be evaluated to give
(sc) (inc) (inc) . {mix) (sc) mix)
W+ Wo,  ==[W, "+W_ "1-[W, +ch_]—w°°
=eOE:(Z)VS
+—1€ Ez{l eP o7 _+1 oﬁ .1} EZV
2S00l "2® Fo® 2T 3 0 3f " €0F0 Vs
> —
—eoE0130M0013
e oB Ty BTy Tye Mo T,
=§€oEo 120 P0012-—13-M0013
E H “ &
_Z0%01f3 % .7 -7 7 }
= c 5 120P0012 13.M0.13 (9.26)

Note that this differs from (8.9) by a minus sign on the magnetic polarizability term. Of course
since as is well known this term is negative the minus sign converts it to a positive quantity making

the result in (9.26) larger than that in (8.9). The question is: "Which is correct?" The present
mix)

results also change the result for V(°<> in (8.11) and following equations.
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X. Backscattering Due to Induced Electric and Magnetic Dipoles

In order to account for the difference between (8.9) and (9.26) let us first consider the
assumptions in the two cases.

The first result is based on the forward scattering theorem (use subscripts fs as needed).
For this we have

(sc) 21§ © o5 o & o -
W +W_, = E =3 1. P o1 +1_ M el
£ 02 2 - 3
_ l = — ‘_1__' -
=Eop il e Bert gl e me) (10.1)

To obtain this result we considered a time-limited pulse. The integral at S.. for the mixed energy

involved only the forward scattering T 1) region on this sphere. Then the pulse width was

extended to t=c< as a step function. However, notice that 1., — o first, followed by pulse width
—oo (orineffect s = 0).

The second result is based on the scattering of a step-function pulse (use subscripts sf as

needed). For this we have

[W W(C)} €o 02{1 Pye 3°§Zo°T3}
02{1 *B(=) - % 'm("")} (10.2)

To obtain this result we considered a step-function incident wave. The integral at S, for the mixed
energy involved an integral over all S., because the incident field was present everywhere that the

scattered field existed. So, notice that the pulse width — o first (or in effect s — 0), followed
by oo =

Thus it would seem that there is some possible difference between the fs and sf cases.
Might there be some scattering term which does not contribute in the forward scattering direction?

Let us now consider the fields from dipoles at low frequencies. As in appendix B and [1]
the far fields are
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P
=i
w

R A (AR

AN _ u
ZOHf(r,s)— s —[lr 1_-—

=1_x Ef(?, s)

~ ®
P E)+sT x m(s)}

(—)

1

om(s)—-l X p(s)}

(10.3) »

Consider the component of the electric field parallel to a 2) (the polarization of the incident

electric field) as

with a similar result for the magnetic field. Now consider forward scattering

®
1 ONE @ s)=—e_wsz—u2{_1’ o:)(s)+—1_f ogw?(s)}
2% Fr dmrl 2% P c'3 (10.5)
However, backward scattering has
i,=-1,
I - Holo = -
o 2_0{ Sl o2 }
lye Bp @ 9=~c ro 12" P ®mglyem®) (10.6)

Note that the sign between the electric- and magnetic-dipole terms in (10.5) and (10.1) are the same
(forward scattering), while those in (10.2) and (10.6) are the same (step-function scattering). So
the step response seems to correspond to backscattering.

A picture of the quasi-static situation is given in Fig. 10.1. With the incident fields
propagating to the right the electric and magnetic incident fields have the relative orientations as
indicated so that 1 1 points to the right. On the perfectly conducting scatterer (at least perfectly
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Figure 10.1 Low-frequency scattered fields.
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_ (inc)
conducting at s=0) the induced dipole moments are as indicated with E e P positive and
_, (inc)
H e i negative (for real-valued field vectors). The scattered fields are indicated to both right

_(inc) _ (sc) _ (inc) _ (sc)
and left where E oF is negative and H o H is positive. Note that on both left

L(se) _ (sc)
and right sides of the scatterer E x H points to the left, which is oppositely directed to

_{(inc) _ (inc)
E x H . Scattered power is predominantly backscattered.

This argument can be developed even further. As discussed in [1,2] there is a special type
of radiator with balanced electric and magnetic dipole moments which can be referred to as
MEDIUS ora p X I antenna. This is given by the constrained relations

ﬁﬂ=p@ﬁp ,  m@=m@®I,

fpeln=0 , I,xT,=1,

1
P =g m(D) (10.7)
Under these constraints the antenna radiates in the cardioid pattern centered around 1 o- Inthe 1 o

direction all the dipole terms (r'l, r'2, and r"3) are balanced in that the electric and magnetic fields
are perpendicular and related by Z, for all frequencies and times. Furthermore in the back

direction (— 1 o) the dipole fields are zero to second order (r! and 2 terms) but not to third

order (-3 term) which is the quasi-static field at s=0.

Let us decompose the 2 component of the induced electric dipole moment and the 3
component of the induced magnetic dipole moment into forward and backward components as

—]
[\*]

[ ]
gl
o~

3
p—

Il

—
[\

®

3l
L
Pl

8

p—
+
—l

\®]

[ ]

3l
O:‘\

8

L

3 o "3 "3 f 373 b 3 (10.8)
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‘ These components are constrained as

T.eP, eT =-T_ M, el
(10.9)

Here 1 5 P ¢ and T, e th, are a pair of balanced dipoles radiating in the forward a 1)
an

f
b d1 3 —rhb are a pair of balanced dipoles radiating in the backward

(=1,) direction.
Combining the above we have for forward scattering

|: (sc):‘ _ 2 {_. L, - “ _,}
W+ W, =€ ,E} 120P0012+130M0013

| 1
‘ fs 2

3 f 73 (10.10)

which shows only contributions from forward components. For step-function response we have

[ (sc)} 3 21{q “ _,}
. W+ W, f_EOEOE 120P0012— 30M0013
S
{1, By iy-T50 M0 1,
=€ E, 5 120Pb012—130Mb013
2. 2 o
=r£()E()120P13012
2. &
=m€oBolge Myl (10.11)
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which shows only contributions from backward components. From this we construct the forward

components as

1o el =21 o ¥ et +T 0 MyeT, =T, ebt 01
2. f. 2_—2- 20 0. 2+ 30 0. 3= 30 f. 3 (10.12)

and the backward components as

1,08, el =240 o ¥ et ~T 0 MyeT, bo-T 00, o1
2 b "2 2 2 o "2 73 o -3 3 b "3 (10.13)
As is well known the multipole expansion of the radiated or scattered fields gives a
complete orthogonal set on a sphere of constant r [9, 11]. The backward combination of dipoles
cannot be seen (for rlandr2 terms) in the forward direction and are not included in the forward
scattering integral (near 1 = 1 1 ). The forward combination of dipoles does appear in the

forward scattering integral. The forward and backward parts are independent and so one does not
directly imply the other. Energy considerations, however, do give bounds as

1
2t Fotlpzlpe Ppedy=-dgeMyelszgl o Pocly o1
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XI. Bound on Absorption for Step Response

o : (sc) o
There is a difference in the result for W s+ W, fora step-function incident wave

depending on whether we take r., — o for a time-limited pulse and then let the pulse tend to a
step, or we first take a step function and then let r ., — . However, this should not affect the
energy absorbed by the scatterer since from (5.4) and (8.9) we have

A_()
1 S
Br
= A (o)
_ 1 S
=E,H, 5 - _joo “y o
E H
0o _ 2
- c Ve_EoEoVe

(11.1)

A (s)=— jf?Kis)xi?G,—sJOTst
SS

Note that 1., does not enter this term at all. Then it makes no difference which of 1., and the pulse

width goes to o first,

This being the case then the difference between the two results (fs as in (10.1) and sf as in

sc
(10.2)) must be associated with WE,O ) which does involve integrals over S... Applying the

: o (sc), , :
appropriate subscripts to W, ~ in these two cases and subtracting the two results gives

WS w9 g

2 —3
sf fs 0o

1 §Z 1,20
. ® >
37073 (11.2)

In considering this difference one may note that the step-function response has contributions from
all over S.., whereas the forward scattering response has contributions only near the forward

scattering direction 1 I As discussed in section 10 this can be explained by that portion of the

dipole terms which does not appear in the forward direction.
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Now since W does not depend on which case, fs or sf, is considered, then for a bound

one may take the smaller of the two bounds which is associated with fs as

(sc) 2 1 T .1 L,
W S| W+ W, =e,E{5 1 +1 eM o1
02 3 o "3

fs (11.3)

This agrees with [8].

Note that in section 8 various volumes are defined. While Wy and hence Vg does not
sc
depend on the difference in these two cases, V_, ) as in (8.11) does depend on this difference as

SC
does Ai, )(s) , at least near s=0. This is based on

R R A
v+ Ve =210 ,ti,e Mo,

v+ v =M1 0¥ 01 -1, e M 01, }
= = ® [ ] — L ] [
o 2 2 Y 2 3 o 3

(11.4)
: B ) R
The difference in V., ~ is given by
C - —
Ve v -1 e M 01,20
sf “fs (11.5)
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XII. Damped Sinusoid Response

Another interesting kind of incident wave is a damped sinusoid. Following the procedure

in section & let

s, t+jv  s¥t —jv}
£(1) E%[e 1 +el u(t)

jv —-jv
~ 11 e e
f<5>=7{s—s1+s-s*}

Im[v]=20 , Re[sl] <0 , Im[sl] >0

*= complex conjugate ' (12.1)

In this form v is a phase-like parameter to be chosen for convenience. In another form

Rels, ]t

f(t) =e I cos (Im [s,1+V) u(t) (12.2)

so that if

IRe[sl] l< < Im[Sl]l (12.3)

then the peak of £(t) is nearly 1, and the peak electric field is nearly Eg.

If the incident field is only approximately a plane wave (near the scatterer) such as would

come from a radiating antenna, then one may wish
£(0)=0 (12.4)

i.e., that the antenna does not radiate at zero frequency. In this case we have

!
© -7 _S;
1 (12.5)
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v=Larg- L) =2 2+ argcs)
=7 argl — ¥ |= x5 +arg(s,
If any (s1) is just a little larger than 71/2 it is appropriate to take

- _T
V= a-rg(sl) 2

(12.6)
so that v is near zero and e}V is near one.

Now use the same procedure as in section 8 and close the Bromwich contour in the left half
plane as in Fig. 8.1. Besides the pole at s=0 there are poles at s;and s

o
theorem on (8.1) we have

1 Using the residue

w_o+ WS oy EH{?2OT 7. o}
= [ ]
S+ o ic oo (0) 2 Vf (0, ¢, 0) (12.7)
+ (-5 Y1, e %) 0, 6, — s )+i,f(—s*ﬁ . 3) ©, ¢, —s¥)
51 17" 2 f " 1 s‘i‘ 1772 f 1
The first term is zero, not only from (12.4), but also from (8.4) for the scattered field at s=0.
Evaluating the remaining terms
(s¢) 1 [V V] S
W+ W, =4mcE, HO{_TSI S + Rels ] Lyo ve (06,-5))
_jV jv R ~
‘41*[es* RZ[ ]JIZ.?f ©. ¢, - ?}
S 51
% - jv ~ .
_ djee e " |3 .2 _
=2 ncE H, Re{ Sl[ 5 + Re[SIJ 1, \ 0, o, Sl)}

1
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~

__)
Going further than this requires some more detailed knowledge of v £ If the scatterer is

electrically small at s=s1 then a dipole approximation is appropriate as in (8.4). Then using (8.7)

we have

(sc) EgHy 17, © L L ¢
W+ W, =" ¢ 7 120 P0012+130M0013}

1 o6

—'jV
{cos (v) + Re[sl] Re[s1 e 1+ O(Sl) + Re[sl]}

E,H, O(s%) l{ﬂ e = q}
= C COS(V)+O(81)+WSI:|7 12. PO.12+13.MO.13
(12.9)
where we have used from (12.6)
—jV Jarg(sl) —jV
Re[s1 e 1=1 Sll Re[e e ]
j I
=I5/ Refe’ ]
=0 (12.10)

This shows where the low-frequency content of the incident wave is important. Note, however,
that the result in (12.9) is essentially the same as the step response (in fs sense) in (8.8).

Of course, if we have some choice of s1, we might try to maximize Wg. In a bound sense

(sc)

we could try to maximize W s T We, * asin (12.9). Basically this involves maximizing things

~

%
involving v ; (0, ¢, —s 1). One might look for resonances of this term with small values of

—~

_>
-Re[s1] where v f

function. Basically one is trying to match Im[s1] in the excitation to the imaginary part of a natural

is like the filter transfer function discussed in-[4], while f is the excitation

frequency of the filter and make -Re[s1] as small as possible. This will maximize the coupling to

an exterior resonance of the scatterer and hence the exterior scattering which will show up in
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(sc

o

W

frequencies as well.

as well as Wg. Considering the maximization of Wg one needs to consider interior natural
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XIII. Concluding Remarks

Well, there seems to be a lot contained in this forward scattering business'. There is the
question of the order of the limits (pulse width —eo, and r., —> ). Somewhat arbitrary pulses
can now be treated. This leads to concepts concerning optimal incident waveforms, such as
appropriate choices of natural frequencies.

Perhaps now it is appropriate to apply these results to various example problems. One can

study canonical scatterers with various kinds of loads to get further insight into optimization

conditions.
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Appendix A. Generalized Parseval Theorem

As discussed in previous papers [3, 6] the generalized Parseval Theorem is

| ENCINOE" =2—1ﬁj- [ £ T (~9ds= o ) [ £(=9F s
- Br Br (A1)

provided of course the integrals and transforms exist.

Here we merely point cut a simple generalization to vectors, matrices, etc. Consider the
dot product of two vectors for wnich we have
= = 1 =
F(t)ef L[t f (-sds=5— | f
I (et =g [ £ @0 (-9ds =g [ £
Br Br

=
(—sye f ’ (s)ds
(A.2)

This is seen by writing out the dot product as a sum of products of the components and applying
(A.1) to each. In this case the order can be reversed because the dot product of vectors commutes.
For the cross product, however, we have

o

1 N
J’f(t)xf(t)dt z—ff (—s)ds=—2—.
Br

— &0

Here order can be reversed, but with multiplication by -1. Again merely consider each component
of the product.

For dyadic products of vectors we have

o=

[ £wF,md LJN? ¥ d—LI% ¥ ()
(D, (Dde =57 . () £,(-9ds=75 . -5 £, ()ds

—_ CQ
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Here in general the order cannot be reversed. In this case just consider each of the 9 components
of the 3 x 3 dyad.

For general matrix dot products we have

o0

[ G m©)y (g ()88 = [ T (9 ¢ Fy o =9) 5
- Br
1 - ~
=5 | Eam(=9)* En,m), ds
Br (A.5)

This is seen by writing

M
(fn, m(t))l * (fn, m(t))z =( 2 fn, mu(t) fm', m(t)J
‘=1 (A.6)

and applying (A.1) to every term in the sum. Here M is the range of the second index of the first
matrix and of the first index of the second matrix.

Note that (A.5) applies to the case that one of the matrices is replaced by an M component
vector as well.

Often the Bromwich contour integral can be replaced by setting s=jo for which

o ] >ds=51—n_J< )do

Br (A.7)

However the Bromwich form is more general.
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Appendix B. Dipoles

Here we summarize some important formulae concerning dipoles. As discussed in [1] one
can expand the fields from current and charge distributions for large distances (r) and low
frequencies (s). First we have the low-frequency expansions

p(T, s) =fp(s)ch(r) + o(fp(s))
> e -
T @ 9= ()T @) + o)) B.1)

as s =0

Here poo and J, are the low-frequency asymptotic forms of the charge and current densities. The

subscript e~ is indicative of their roles as late-time distributions such as appear in the response to

step-function excitation, whether for antennas or scatterers. The coefficients fo and ?J are just

s-1 for step excitation. The next terms in the expansion for small s are actually of order s¥_ and

s ?J if we make a Taylor series expansion of the response around s=0 giving

ol

(T,s) = fp(S)Pw(?) + O(Sfp(S) ) = ?p(S) [poo(T) + O(s)]

HJ’I

(@, 8) = F(8) T oF) + OGT(5)) = T (9) [T @) + 0)]

as s =0

(B.2)
Now the corresponding electric dipole moment is
= >
P(s) = f p(r,sydv —fp(s)poo+0(sf (s)) =% I J (T, s)dv
N N (B.3)
Boo= | T o)V :

A"

The corresponding magnetic dipole moment is
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(B.4)

Dipoles produce fields. As s — 0 for fixed r there is the usual asymptotic expansion. In
addition, as in [1] these terms can be subsequently evaluated in an asymptotic sense as T —> oo .

Noting that e~ is first factored out, this gives for the electric field

> o
- i 1 7 2 > -4
E({@,s)=¢e f ) {———=31,1.— 1 |ep+0O ™)}
{ P 47teor3[ T J P
+s{fp(s)[4m2[3lr1r— I ]epo+00 )}
+fJ(s)[4nr21r><m°°+O(r )]}
u — - d H
2¢F 0 = -2
+s {fp(s)[4nr[1r1r~ 1]0p°°+ O(r )]

~ Hey - o _
+fJ(s)[W2r1rx T, + O(r 2)]}

+ O Fy(9) + O(s> £, )}

(B.5)
Similarly for the magnetic field we have
?(F, s) = e‘“/r{?J(s) {4 ;r3[3ir1r -~ 1} et +0r 4}
+ s{FJ(s)L Tclcrz[ﬁ .- ?] et +0(r~ 3)}
+Tp(9] = 725 Tp X Bt O™ 3)
+ SZ{FJ(s)L n102r [i d.- T e+ 06" 2)]
+ Fp(s)[— Z}w—rTr X Post+ O(r~ 2):I}
+0(s3 Fisn + o(s3 RO )} B.6)
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Now the dipoles are generated through a set of incident fields via tensor coefficients called
polarizabilities [19]

= = Zsinc S .
p(s)=€,P(s)*E ((),s)=eo}30f(s)P(s)-12

~ ~ . ~ (B.7)
m(s)=M(s) e H ((),s):Hof(s)M(s)013

where the incident fields are evaluated at T = O, near which the scatterers are located (ideally
centered). Now as s — 0 we have

“ &
P(s) = Py + O(s)
~ (B.8)
— >
M(s) = M, + O(s)
based on a Taylor expansion around s=0. Then we have
= | =
p (s) =f(S){p S O(S)}
S(s)=f(s){5’ +0(s)]
. & - &
Pu=€oEy Ppol, =€ E 1,0 Py (B.9)
- o, . &
M, =H, M, e 13=H0130 M,

The last properties are related to the symmetry of the polarizability tensors for the case of reciprocal

media for which
T
P(s) = P(s)
T (B.10)
M(s) = M(s)

For low frequencies we assume in general
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(B.11)

O)-UQ:
W
ol ‘o$

g7
o
1+

which is appropriate to a perfectly conducting scatterer. Of course eventually the magnetic field
penetrates any finitely conducting scatterer, but such an idealization is useful. This does not
prevent the scatterer from absorbing energy through ports which transmit power to the interior for
nonzero frequencies.
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Appendix C. Energy Due to Perfectly Conducting Scatterer in Uniform Incident Electrostatic
Field

Consider an incident uniform electrostatic field with associated scalar potential

E.(mc) -, _1.2 e (D(inc)(F)
(inc) _, . _(inc) L. (C.1)
@ (fY=—T e E =_Eor.12

Given a scatterer with surface Sg, Vg inside, and Vex outside we have a scattered field and

potential

_, (inc)

@ =-v o"r) ©2)

with an induced surface charge density p4(7') on Sq (assumed perfectly conducting). Then in Vg

and on Sg we have

0™ + 0@ 20 (€3)

where total charge on Sg is assumed zero and the origin of coordinates is chosen to make the
constant in (C.3) zero for convenience. Alsoin Vg we have

_(inc) _(sc)
E E

+E (@)=0 (C.4)

Then following [15] we have the mixed term

_ (inc)

W [ @00 @yas, =~ [pEEeE | ds,
SS SS
_ (inc)
=—E 9 JPS(F)F dSS
SS
_(inc) L
=-E  ep=-Eyl,ep (C.5)

68




where P is now the induced electric dipole moment. Using the static electric polarizability from

appendix B we have

XD _ E27_ oD o7 '
e =7€0%0'2 o 2 (C.6)

An alternate expression for this term integrates over the fields as

(mix ) L(ne) (se) | Lo L (se)
W, ‘'=e, J E "B ‘®mdv=e.,E, | 1,8 (@)av
VS uVeX VSuVeX
(C.7)
Note that (with Vg as volume of scatterer)
L L(se) 2
- jlzoE #)dV =—e EZ V,
Vs (C.8)
Following [14] we have the self term for the scattered fields
(sc) L. (se) - . _(nec) |
We =5 Jp @@ (Hds=-1 [pH@ T (F)ds
SS SS
1 . _ (inc) 1 _)(inc) .
=5 Jps®FeE  “dS=5E e [py@Fds
SS SS
e
:—2—E op:EEolzop (€.9)

(sc) 1 2. 9 -
We —560E0120P0012
_ 1 (mix)
‘"2We (C.10)



An alternate expression for this term integrates over the fields as

VsuV (C.11)

Note that

_, (s¢) _ (sc)
Teo JE @B @M =5e,E
VS

(C.12)

. (inc)
In computing W from

(inc) _

W =

i _(inc) _ (inc) )
e 57 €0 J.E o

o E dVv =
Vsu‘\fex

(C.13)
V ., = volume of sphere of radius r,

=V + Ve,

this term is unbounded as 1, —> e but Wimlx ) and WSC) are well behaved.
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Appendix D. Energy Due to Perfectly Conducting Scatterer in Uniform Incident Magnetostatic
Field

Consider an incident uniform magnetostatic field with associated vector potential

_, (inc)

. (inc)_.
:HO 13 =

Lywda @
Ho (D.1)

_, (inc)
The choice of A (T) is not unique since one can add the gradient of any scalar (the curl of this

being zero). One can derive an appropriate one as in [14]. For our purposes we can use

_A(inc) . 1 = (inc)

073 ‘ (D.2)
One can derive this expression using

PAG) o dl=p, [ HE) o d3
c s (D.3)

and assume symmetry about an axis parallel to 1 3 through T = 0. One can verify the results

using the dyadic formula [18].

1 _, (inc) 1 _. (inc)
TVXA (F)zEVX[H X T]
o
1 {_} (inc) _ (inc)
=5HoLH Ver-—-1V o H
_ (inc) _ (inc)
+(f « V)H - (H J \7)?} (D.4)
with
Ver=3
_ (inc)
VeH =0
_(ine) e D.5)
VH =0 )
<~
Vi=1
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Given a scatterer with surface Sg, Vg inside, and Vey outside we have scattered field and

potential

- (5¢) 1 (sc)
H @=75-VxA ¢
@ =g Vx (f) ©.6)

with an induced divergenceless surface current density J (T) on Sg (assumed perfectly

conducting). Then in Vg and on Sy we have

L(sc)  _ (inc)

A ®+A @®=0 (D.7)

Of course this need not be zero but could be any constant vector plus the gradient of any scalar
since we only need the curl to be zero. The above, however, is convenient and can be constructed.

Also in Vg we have

L@ne)  _(sc)
H +H (@)=0 ' (D.8)

Then following [14] we have the mixed energy term

) . _(inc)

(mix) I@®e7 @), .

R e TR
vV

(D.9)

This is a mutual energy corresponding to the mutual inductance between two loops. Substituting

) _(inc)
A WO=kel o &

(D.10)

and replacing J by a surface current density J g glve
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(mix) ¢ o 4 nc)
W, =T eR T T@ads
Ss (D.11)
_ (inc)
Substituting our form of A we have
(mix ) . (inc .
W =%“o [3@e  xrIas
SS
(inc) 1 -
= H o] 3T(F)x7ds
SS
(inc) ..
=-U H om=—uoH013om (D.12)

where m is now the induced dipole moment. Using the static magnetic polarizability from
appendix B we have

W(mix)=_LL -

o o1-M-T

., ©
"3 o "3 (D.13)

An alternate expression for this term integrates over the fields as

(mix ) L (inc) _ (sc) _(se)
W =g JH TeH myav=pH, [ T,eH T@av
VS o Vex VS v VCX
(D.14)
Note that (with Vg as volume of the scatterer)
. L (so) )
boHo [ T4 B (F)dV=-p HgV,
Vs (D.15)

Following[14] we have the self term for the scattered fields
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(sc) Uo I@) 7@ |
Wy =2 ] | e ave
vV Vv (D.16)
This corresponds to the self inductance of an inductor, giving the factor of 1/2. Then analogous to .
before
_(sc) ed T ()
A @=ue | e ovimne l gz es
\'A Sg
D17
(€)1 f= . (80
W, = J7@® oA (@)ds
Ss
Next using (D.7) we have
(s¢) 1 (- . ,(inc)
W =-g [T@mern @es
S
. inc
=—g o JT®eE xflds
Ss
1 _, (inc) f % e o
=-SuH e [ZT (@) xTds
Ss
g HoH  em=j ool em (D.18)
Then substituting for the magnetic dipole moment
(sc¢) 1 2, «
W, =g hoH T My 01,
1, (mix)
== 2 Wy (D.19)
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An alternate expression for this term integrates over the fields as

(sc) 1 L(se) ()
W =2u,  JH @ eH T®av
VUV
Note that
1 L(se) L (se) 1 2
She JH el AV =5 u, HyV
Vs
. (inc)
In computing Wh from
(nc) 1 LGne) _(@ne) |,
N T JE Tem Tav=gu Hg V.
VUV
V o, = volume of sphere of radius r,
=V + Vo,
: : ', (iX ) (sc)
this term is unbounded as r_, — <<, but Wh and W h are well behaved.

75

(D.20)

(D.21)

(D.22)
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