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L Introduction

A previous paper [3] introduced the basic concept of the eigenmode expansion method (EEM) and
refated this to the singularity expansion method (SEM). This material has alsc been summarized in a
review paper [4] and a book chapter [12].

In trying to understand the EEM it is useful to consider the asymptotic forms of the various terms as
Re[s] — * = in the complex frequency (i.e., s or Laplace transform) plane. There have been papers
addressing parts of this problem [10,11]. Another paper considéred some similar problems for SEM terms

[9].

As before the Laplace transform (two-sided) is denoted by

fs)= J'?(t) e~ at
_ 1 (s ot
£(t) = o7 J’f (s) e dt
Br

{(1.1)
Br = Bromwich contour in strip of convergence in s plane

s = Q + jo =complex frequency

This paper extends the previous results and finds sbme relatively simple forms for the asymptotic
forms of the various EEM parameters as Re[s] — £ . We first consider the eigenvalueé and find the left-
half-plane behavior determined by the maximum linear dimension Lg of the object of interest. [n the right
half s-plane the eigenvalues go to simple constant values. The various terms in the EEM form of the
response are examined and found to give rather simple exponential forms involving the dimensions of the

object of interest. The general asymptotic results are found to agree in detail with the exact results for the

perfectly conducting sphere.




1. Eigenmode Expansion

A general integral equation for the response of an antenna or scatterer in free space takes the form
S o o ~(— = 5
<T(rs,rs;s);J's(/s)>= / (r ,s) _ (2.1)

__) " ) - -
where J , represents the surface current density on a perfectly conducting (or at least thin-impedance-

__)
sheet) object, and / represents some incident-field parameter (such as tangential electric or magnetic
field). The domain of integration is the surface S of the body. However, some of the present results relate
to volume integral equations for the cases that currents are distributed in a volume as well. '

We assume that the body has a finite size with maximum linear dimension Lg. This allows us to write

a method-of-moments (MoM) eqdation in the form

(:Fn’m(s))-(..gn(s))=(l;(s)) (2.2)

The kernels of the various integral equations involve the free-space Green function

> -¢
éo(;:,r’s;s)_y_em_.
w67 7 s)=t, Ll 2 e

_ - -
+ oy 218186[7’ -/S)
(2.3)
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_ = i —’_rs"s

C=7R ) R=rs"',Js s 1R" R
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A,

Noting the appearance of e " in all the kernels as the dominant term as s — < in the left-half plane
the finite size of the object is important in that R is bounded {by Lg) for pairs of positions on the body as

—
they appear in the matrix elements in (2.2). Here we have included the integration near 7 = r’s as

_)
given by Yaghjian [7] for a surface type body with 1 g as the outward pointing normal.

Inthe Qeneral form of the integral equation (2.1) we define eigenmodes and eigenvalues via
[3.4,12]

(2.4)
- o > b . S
u (Fs ) S) g (r , S) =1 (biorthonormalization)
ﬁ.! ﬁ ﬁf BZ
2
This can be used to represent various powers of the kernel as
(':)n - -3 .. ~fn :_) - s -3
T (rs e ,s):%: lﬁ(s) s (rs ,s) [._I,ﬁ(fs ,s] (2.5)
. . < . . -1 . .
with special cases as T , the identify, and T . This allows us to write
A ~—1 :_,(—) )_%(—) ) >
Jg (rs s)% lﬁ (s) <uﬂ f’s )il \rg s ;Sﬁ(rs ,s) (2.6)
Eigenvalues are also expressible as [3]
~ ~ - S (o — “—‘) —
Aﬁ(s) = <uﬁ(r5 , s) ; T (rs e ;s); js(fs ,s)>
{2.7)
d - e d & (= = o s
-—1 = r.,s ,[——?(r,/,s”, (r’)
ds B <“ﬁ( )L s 's Js \s » ¢




The identity is

Sof » 7. _ > - 5 (2 _e - = -
T (rs s ’s)_% jsﬁ (rs ' S) 'uﬁ(r,s ’Sj'—1t (rs )Bs(rs _r'sj
— - - e
=1t (r’s )55(% —r’s) (2.8)

Here & s is the surface (two-dimensional) delta function, and the transverse dyad is

s o N PN .
1, (rs)=1 -—13(/‘3 )13(rs) (2.9)
—
When the identity is dot multiplied by a vector function of 7 s on S and integrated over S the vector func-

tion is returned as a function of 7; . Note at this point that the above expansion is possibly incomplete in

that one may conceivably need what are termed root vectors [8] in some cases. However, it is yet to be
shown that such are actually or practically necessary for finite-sized perfectly conducting scatterers in free
space. Further investigation would be helpful here.

In MoM form the above takes the usual matrix-algebra form
(Tn'm(s))(jsn(s)) = 2y)(J; ()
B B

(ﬁn(s))ﬁ . (f‘n,m(s)) =Zﬁ(s)(.ﬁn(s))ﬁ

. (2.10)
Z (s) | j. (8) =1
( n )ﬁ1 (sn )ﬁ :B1r ﬂZ
2
Assuming NxN matrices we have
~ n A - -
(T () =ﬁ§;1aﬁ<s>(/sn(;>) (un(s))ﬂ o1

This points out, of course, that the MoM form is but an approximation of the integral-equation form in which
there is an infinite number of eigenvalues. Note that the above representation is complete (as a repre-
sentation of the approximate solution of the integral equation) as long as there are N linearly independent
eigenvectors [3] and it follows that




‘ (ﬁn(s))ﬁ -(fsn(s)j #0 foral B ‘ (2.12)
. s _

in such a case. For distinct eigenvalues the above is always so. If for some stwo eigenvalues are equal
(degeneracy) there can still be independent eigenmodes as some cases can attest (e.g., sheer, thin wire
[4]). As of yet no counterexamples for simple electromagnetic scatterers have been found where eigen-
mode degeneracy implies the eigenvectors not spanning the surface.

One advantage of the MoM form is that we can write [3]

DN(s,l)sdet((f‘ (s)) A1, m))
' N

> a (s)&

p:

v 15

(2.13)
(- 1)

Y

3,(s) = del{ (T, ())}= Dy (s.0) = ﬂiﬁcs)
B =1

The N eigenvalues can be calculated given ( (S)) by various methods.

The impedance, or E-field, integral equation takes the form

<<_Zt) (z ' FT; ; S); j; (?: ,s)>=<1_; (r—; ) . E’(inc) (7; ,s)s .,_;-t’(inc) (?; ,s)
(2.14)

é‘)(_) - “ o

S -
r.,r 's)s—suoir(?) . GO(F;,K ;s)-1t (7)simpedancekernel

s''s !’ s s s
Note that the transverse dyad removes the delta-function term from (2.3) since

T(R) T, (@)=, T, (%)=0 (2.15)

For this integral equation we use a superscript E on the modes and note




s )

BO@.) =0 (@) @16)

since the kernel is symmetric. The eigenvalues are now dubbed eigenimpedances [3,4,1 2] so that

~(E ~
A(ﬂ )( §) = Zﬁ(s) =Z E,ﬁ(s) = eigenimpedance

. (2.17)
Eﬁ(s) = normalized eigenimpedance

Note now that the eigenmodes are an orthonormal set

> 3 o

/s (rs ’S) /g (rs’s) =1[3 B {2.18)

131 ‘62 B
with the additional result
<[zf; Js (rs’s)}’ Js (rs ’S)>_0 (219)
B B

The eigenvalues are then

Zﬁ(s) = <Zﬁ(r_s} , s) ; Zé (r_; , /_S) ;s); /::5(7; , s)> (2.20)

since the eigenimpedances represent impedances and are p.r. functions as discussed.in [3,4,12] due to
the passive nature of the scatterer. This implies various things like cénjugate symmetry and no singulari-
ties (or zeros) in the right half s plane. '

The impedance integral equation can be modified by the addition of a uniform sheet-impedance
loading Z js) to give an integral equation

(2 (77 sz o, ()87 -7): T (7 5)

=P (7)) BT s) 2.21)

>
This integral equation has the same eigenmodes js , but the eigenvalues have been changed to
B8

fﬁ(s) +Z y(s) [3,4,12].

The magnetic-field integral equation takes the form



(2.22)

S(s 2.\ 19 (» > = S (s -
L (rs, ’S)—21t (rs)as(rs-—r’s)+ M(rs,r’s,s]

(’:') — - — - ~ [ =y -3 x4 —r
M (rs 7 ;s)=—-1s (rS)X[VGO(rS 7 ;s)x1 . (ﬂs )]

We have assumed an'externany incident field; for internal incidence there are some sign changes. For this

!n\‘

integral equation we use a superscript H on the eigenmodes and eigenvalues.

Let us now mentron a key assumption concerning the present deve!opment This concerns the
behavior of the elgenmodes as functions of s, the complex frequency. " We assume that for any fixed g the
local variation of the mode (on S} is small over a wavelength as § — oo. In cases of simple bodies such as
spheres and thin wires the mode index f is related to the number of half wave-like variations of the mode

3
over the body. Of course for general finite-size perfectly conducting scatterers the < and ;A ¢ are
8 8

known to be complex (varying phase over the body) [2], and the associa!ed natural modes for say the
prolate sphere are a little different from each other, implying variation as a function of S. Stated another

way, let us assume that
[1 v : ] .
N j

sils 8

any unit vecior tangential fo s {2.23)

VA « ly| as s — eoin both half planes

-ty ‘L
1]

A=areacof &

—
and that in the limit the ratio goes to zero. The introduction of \/; is to make js ‘\/X of arder 1 due
B

to the normalization of the modes. Of course, we want the body to be smooth so there are no singularities
of the surface current density in the above expressior: (cut this is not important since for an gigenmode

the current and excitation vectors are related by the same eigenvalue all over S).




. Asymptotic Form of Eigenvalues in Left Half s-Plane

Beginning with the form of the eigehvalues in (2.'7) let us consider the case that Rels] — -, i.e.,
left haif-plane asymptotics. Foliowing a concept in [8], let us consider the case that the dominant
contribution in the kernel in the left half plane is given by maximizing the exponenti'al appearing in the
kernel. As indicated in fig. 3.1 let us define

- -
LOE sup !rs —fs |s sup R
7, 17; e S r—; , F; e S ,
= maximum linear dimension of scatterer (3.1)
Writing an eigenvalue as
; > . 7 (.7 (7
AB(S)=< Hy (r;.8): T (rs g ,s), /sﬁ(r’s s)> (3.2)

note that the kernel takes the form of e—}R times powers of ¢ asin(2.3). As Re[s] - ~oothe expo-

nential term dominates the kernel. This exponential is largest when R = Lg. So as in [9] the significant
pa—

. -
integration occurs when 7, and r

s are near the opposite extremities of the scatterer. The normaliza-

1

, 2
tion of the eigenmodes as in (2.4) makes the modes of "average" amplitude A  (as used in (2.23)).
’ 1

2 . Y
Integrating near the extremal points gives contributions proportionalto A for each integration over 7
> il
and 7, . Of course, the variation of e near each of these points makes the integration over

distances like 7-1 of significance. Details of the geometry near these points also contribute as do the
.detalils of the modal variation. However, the fundamental smoothness assumption of the eigenmodes in
(2.23) makes the modal variation smalf compared to the exponential variation in the kernel. So our esti-
mate of (3.2) is the same as the corresponding term (D) in [9] except for general s giving

~ ~ _VLO
2./3(5) = f(s)e as Re[s] —» —o , (8.3)

with é(s) bounded above and below by algebraic quantities and where the exponential term is the most

significant. Now this is an asymptotic bound sinc;q j ,/3( §) can have zeros in the left half plane. Of course,

as the restraint of (2.23) takes effect so that the eigenmode oscillations are over larger distances than
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center of minimum
circumscribing sphere
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Fig. 3.1. General Surface Scatterer with Maximum Dimension Lg, Clearance Distance L4, and
Contact Distance L2
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-1 - ~Re[
l? l such zeros should not appear and the magnitude of 4 /3(3) should behave like e o] times a

slower varying function of s as in (3.3).

As in {(2.6) the reciprocal eigenvalues appear in the expansion for the surface currents or for the
resolvent kernel {inverse or n= -7in {2.5)). The present results then agree with the results obtained in
[10,11].

A note of caution is that there are special caseAs in which the extremal points are on portions of S
which are degenerate in the sense that S (near one or more of these) collapses to a single surface (no
interior). If the modal currents are equal and opposite on the two sides for some modes then they do not
contribute to the integration in (3.2). Cases when such surfaces are on planes of symmetry can produce
such conditions [6]. In such cases the parameter Lo must be reduced for these modes to extremal posi-
tions for which the modal‘ currents do contribute to the integration. This sheds some insight onto the
assumption of a convex body in [11]. While the body need not be strictly convex there are degenerate
cases (as above which are definitely not convex) which réquire some modification of the resuits.

As a check, consulting appendices A and B, these resuits are confirmed for the perfectly conduct-
ing sphere for both E and H field integral equations. In this case, Lo = 2a and the term is muitiplied by a

constant (1/2 times a sign depending on mode index).

11




IV. Asymptotic Form of Eigenvalues in Right Half s-Plane

in [10,11] the asymptotic behavior of the inverse kernel is also discussed for large s in the right half
plane. The authors note tha{ instead of an exponential behavior the inverse kernel (and for our pumoses
the inverse eigenvalues) have behavior bounded by a rational function in 5. Here we find asymptotic esti-
mates for the eigenvalues of the E and H equations.

Referring to fig. 4.1 consider some small region of S and consider that there is some particular gth
eigenmode of concern. Now for our fth eigenmode we consider very small wavelengths in the right half
plane under the assumption of a bounded variation of the eigenmode as in (2.23). Consider some posi-
tion on S away from any zero of the Sth eigenmode. Then we can think of an outward propagating wave-

. -
front as a plane wave propagation in the +1 3 direction.

Of course these are not strictly plane waves but can be thought of as such as Re[s] — + e for
which we confine our attention to a small region of S and the surrounding space. The size of this region
needs to be small compared to both wavelength and the local radii of curyature of S. Of course, the
eigenmode is assumed to vary negligibly over this region. Viewed another way, one may censider the
situation in fig. 4.1 in time domain for say an eigenmede surface-current-density which behaves as a step
function at early timeé. Then for sufficiently small times the fields are not influenced by portions of S out-
side of our region of interest.

" Now incident and scattered fields at high frequencies do not in general propagate parallel to the
—
local 1 X Such fields are composed of an infinite number of eigenmodes. As more and more eigen-

modes are included (larger and larger §} an arbitrary distribution of some incident or scattered field can be
arbitrarily approximated, including waves noi normal to locai S. The result that eigenmodes propagate

-

parallelto 1. near Sas Refs] — + s for fixed 8. If one first fixes s and then lets 8 — oo the results

can be quite different.

Considering first the E-field integral equation, note that the eigenimpedances relate the surface
current density to the tangential incident electric field, which is the negative of the tangential scattered
electric field. Here we use labels "ex" and "in" for exterior and interior scattered fields respective[y. For

the fth eigenmode we have on the exterior

t2




outward

propagating
wavefront

inward
propagating
wavefront

Fig. 4.1. Small Region of S with Early-Time/High-Frequency Behavior
of Local Fields for Some Particular Eigenmode
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~

Nt - = )
J, =1, xH_ asRels] » +

ex S
— ~lex) > - =
E oy = —Zﬁ (s) Jsex =-Z,1g X H,, as Rels] = + o
| (4.1)
~(ex)
Z (8)=Z as Rels] - + o

B

—
Similarly for the inward propagating (

-1 S ] plane wave we have

= — =
J, =-1, X HmasRe[s}—>+oe

in S
g -_zm J =271 xH asRels]
=2 () g =Zg\g xH asRelslo e
(4.2)

~(in)
4 (s):ZoasRe[s]—>+oo

B
So we have effectively spiit the eigenimpedance into exterior and interior parts. Recombining we have o
=5 = ~ =
E,, = Em =—Zﬁ(s) Jg
' (4.3)
I
= +
s in Sex

Combining with the previous equations we have
-1

Z(s)=|Z (ex’—1< Y+ 2 (i”)_( )
;‘3 S} = ﬁ S} + )3 S
ZO
= as Rels] —» + {4.4)

14
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In normalized form we have

3 - 15 =1 -
Z,B(S)—ZO ,B(S) 2asRe[s]—>+
- ~ )
zB(eX)(s)s—Z":Zﬁ o =1as Re[s] - +
_ (4.5)
Eﬁ(ln)(S)E'%-éﬁ(ln)=
0 as Re[s] » + =

As a check, consulting appendix A, the results for 2/3( s) as Rels] — + « are confirmed for the

perfectly conducting sphere. This is true for both E modes and H modes of the E-field integral equation.

Considering second the H-field integral equation, now the eigenvalues relate the surface current
. — (inc) o - = (inc) - .
density to J as defined in (2.22) as 1 s X H . For this integral equation the boundary

" condition has the total magnetic field inside S as 0. For the fth eigenmode we then have on the exterior

._)
Jsex =1g X Hex
| (4.6)
3 (inc) o =5 (inc) ~(H , ex) 5
= = as Re(s] = +
s v 1S x H )“p' _ (S)Jsex
On the interior we have
J; e ﬁ, 7 l-? (inc) J:->(inc)
s, "7 's X T Tls % " s
3 (inc) ~(H,in) 3
s = )Lﬁ (s)Js
in (4.7)
):(H,in)
s)=1
8 (s)
Combining the surface current densities
= 0+ -
s = Vs, + Sox (4.8)
and noting
S(inc)  ~(H) =

15



}»:(H) {£<H’9X)_ ; H,in) }
8 (s} B 8 (s)
— 1
-1
~ (H, ex)
={ﬂ» +1}
B (4.10)

Furthermore, noting that at high frequencies we have the well-known doubling of the tangential magnetic
field on the incident side (exterior for the fSth eigenmode), then the exterior scattered field equals the inci-

dent field giving

-~

(i
Jg (mc)(s) = J: (syas Re[s] — +

~(H, ex) v

;”;3 * T (8)=1asRels] - + (4.11)
~HY 1

lﬁ (s)-EasRe[s]—->+oo

As a check consulting appendix B, the resuits for /f 5 ) (8) as Rels] — + o are confirmed for the

perfectly conducting sphere. This is true for both E modes and H modes of the H-field integral equation.

While [10,11] obtained results for the eigenvalues of the E-field integral equation as Rel s] — + <o,
these were of a general form which could be used in a bounding sense. Here (4.5) gives an exact asymp-
totic results (i.e., 1/2 for the normalized eigenimpedances). Furthermore, we have shown a similar result

tor the eigenvalues of the H-field integral equation.
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‘ V. Coupling to Incident Plane Wave

As indicated in fig. 3.1 we have an incident plane wave given by

(P )= E, f[t———'——

E T.7
(inc) T -
H (?,t):—o—f[t——L——]‘l—) x1

Zo c ~1
T
= (ine) - TR A
E (7,5)=E0f(s)1 e 1
p
-
~:>(I.f7C) — Eo ~ - o ‘711‘;’
H (r_,s == (st x 1 e
Z 1 P
o]
(6.1)
__)
1 o= polarization vector
_> . . . .
‘ 1 ;= direction of incidence
- - 0
1,01,
In normalized form we can define
A-_) -.)
3 (ine) - AT
e (f ,8)51 e
A P
b -
-—)(/'nc)(—a )_"’5[ 11 f]
rot)=1,68t-—
B {(5.2)
3 (inc) — - ~— 71 7
h (7,3)511x1pe f

1‘" -
— (inc) - - - r
h (}_),t)=11><1p5[t-———1———J

As the plane wave interacts with the scatterer, the leading edge of the incident wave just passes the
entire object at the clearance distance defined by

17
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F.eS

and it first reaches the object at the contact distance defined by

. 2 =
L2-=' . inf 11 - r (5.4)
' e S

s

In temporal units we have the clearance time

L1
L= (5.5)
and the contact time
L
_ S
t2= e (5.6)

The coupling term as in (2.6) is the symmetric prdduct of a left eigenmode with the incident field.

T
-yl.r
Using the normalized incident wave as in (5.2) we notice that in the left half plane we maximize e 1
and observe
=N - == -~ - /L‘l ~ - Sr1 :
< ‘uﬁ(r’s ,S); f (r’s ,s)>=f1(s)e = f,(s)e as Rels] —» + o0 (5.7)

similar to the result for 4 ;3( 5) in (3.3) except that only one extremal position is used, one with respect to

~ 7.7
the incident wave. Similarly we minimize e ! in the right half plane and observe
52 N P W e T o T
<#ﬁ(r's ,8) 51 Kfs . 5))-. f.(sie = rz(s)e 5.8

In obtaining these asymptotic estimates one avoids special cases in which the dot product of the incident
field with the mode is zero over some non-zero region near the clearance and contact positions respec-
tively. For example, a protruding fin with ideally zero thickness could have its surface perpendicular to the
incident electric field; this would be such a case.

—_
While the coordinate origin ( 7 =0 j can be chosen arbitrarily, there is some benefit in trying to
-3
choose this optimally. Note that as the direction of incidence 1 1 is changed over 4rn steradians both L1

—3
and L2 change. H 7 =0 ischosen inside the scatterer this variation is reduced. Suppose we try to

-3
minimize the maximum value that Lt achieves over all 1 g This minimizes the left-hali-plane exponentially

growing coupling term in (5.7). Just as in [8] we have | e

18




a= inf L

for all =0 sup
(5.9)
L =sup L
1 sup T 1

This length defines the radius of the smaliest circumscribing sphere for the scatterer and the coordinate
origin is the center of this sphere. With this choice we have

0< L1S a
(5.10)

< =3
0< t1$ c

It may not be immediately apparent that there is this lower limit of 0. However, this can be obtained by
-
assuming the converse for some 1 1 and noting that this places the entire scatterer to one side of a

diameter of the bounding sphere and noting that there is now a new bounding sphere of radius less than
a (a contradiction).
Similarly one can look at Lo. In the right half plane the exponential dominates the asymptotic form of
_)
the coupling term as in (5.8). The minimum value of this for all 1 1 is found by minimizing the maximum

_>
value of L2 overall 1 ; giving

-a= sup L
for all F = o inf
(6.11)
L = inf L
inf T 2
1 . e
Note that under this condition L2 is negative as
0= L2 =-a
(5.12)
02t 2-=
t2

This also defines the same coordinate center as the center of the minimum circumscribing sphere with
radius a.

Consulting appendices A and B for the perfectly conducting sphere note first that in this case the
coordinate center is already optimally chosen. In this case

L,=-L_=a (5.13)

and appropriate foregoing inequalities are now equalities.
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VI.  Asymptotic Forms of Eigenterm

Consider first the kernel as in (2.5). The dyadic product of eigenmodes is reasonably well behaved
in both half planes as s — « due to the restriction in (2.23). Each term in the inverse kernel then
behaves as

= oo ~ (2 ot e > 2 =
A, (8} r.,$S (r’ ,S)=f (s)e r.,s (r’ ,s)
RSO AU - i, (s 9) #,rs

as Re[s] —» — = (6.1)

From (5.7) we can include the incident field to get the Sth term in the expansion of the surface current
density in (2.6) as
~ 1 = (5 rd i = s> - ~ -1 ~ 7[L0'L1] o
lﬁ (s) <pﬁ(f’s . s); ! (r’ s)> i (rs . s)=f (s)fi(s)e ‘[Sﬁ(rs ,s)

as Re[s] —» - = (6.2)

So in the left half plane the dyadic terms in (6.1) go asymptotically (exponentially) to zero since Lg is defi-
nitely positive.

The term Lg - L1 in (6.2) is also positive, so the fth term in the incident field expansion also goes to
zero exponentially. To see this note first an upper bound for Lg as

L0 <2a (6.3)

which merely requires that the scatterer touch diametrically opposed positions on the minimum circum-

scribing sphere. Examples of this case are given in [8]. However, examples can also be produced for
which Lg is smaller than the diameter. To obtain a lower bound chcose some point _r: on the object

corresponding to one end of some line of length Lo which also fouches the object somewhere else

(say 7; ). Consider 71) as the center of a sphere of radius Lg. Note that —r'; lies on the sphere. Now

other points on the body may touch the sphere but no points of the scatterer lie outside the sphere since

the distance from such points to 7; would be greater than Lg, the maximum linear dimension of the body

(a contradiction). So one circumscribing sphere for the scatterer has radius Lo, and the minimum circum-

scribing sphere of radius a has

asl, (6.4)
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This is not a tight bound since if one takes a line of length a, touching a sphere of radius a at both
ends one can construct another line from the center of this one, through the center of the sphere to
touch the sphere. This line has length greater than g, a length which is less than Lg. So we have

a< LOSZa (8.5)

A more detailed analysis could establish a tight lower bound on Lg. An equilateral triangular piate has
'\/ga = 1,78 a for Lg. Aregulartetrahedronhas 2/ 2/3 a = 1. 63a for Lg. This latter case
appears to be the best lower bound for Lg.

Now from (5.10) we have bounds for L1, Combining with the above gives

0< LO_L152a , (5.6)

Using the result for the tetrahedron the lower bound for this is (24/2/3-1a =.63a. So (6.2) con-
verges 1o zero exponentially in the left half plane.

in the right half s plane each termin the inverse kernel behaves as

Ly @ 0y (oos) B )= 2 (709) By s

113 (s) /SB(rs ,s) #B ry,§)= 2/Sﬁ(r ,s) “/3 ry S asRels] - += (6.7
provided the eigenvalues are taken as the normalized eigenimpedances (4.5} of the E-field integral equa-
tion or the eigenvalues (4.11) of the H-field integral equation. Including the incident field the fth termin
the expansion of the surface current density is from (5.8)

e (B(7 ) 7 s) m2rse asrd

5 s) <,uﬁ s S)5 ! s,s>=2f2(s)e’ as Rels] = + = (6.8)

again using the eigenvalues (normalized) as above. With L2 bounded between 0 and -a as in (5.12) then
(6.8) diverges exponentially uniess Lo is zero.

By a time shift, equivalent to a turn-on time

o

_a
c (6.9)

we can then multiply the incident wave by e = . This additional factor makes (6.8) converge in the right
halif plane since

O<a+Lly<a (6.10)
Applying the same factor to the left-haif-plane, then the length in the (6.2) exponent has, from (6.6)

—a< LO—L1-asa ' (6.11)
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where this lower bound is actually somewhat tighter. If L 0 L - is negative then there is divergence

in the left hali plane. If the scatterer has Lo-= 2z then the lower bound is zero giving no exponential

divergence in the left half plane.
Anoiher approach would use the resuit that

. )
_ 6.12
0s L -L,y<L forall, (6.12)

which is apparent from fig. 3.1 as L1 - L2 is the-distance the incident wave travels across the object. The

lower bound corresponds to allowing the scatterer to be a disk and having the wave normally incident.
71';

Looking at (6.2) and (6.8) and multiplying by & 2 gives no exponential in (6.8) but

0L -L+L,<0 (6.13)

as the coefficient of yin (6.2}). This corresponds-to choosing the turn-on time as the time the incident
wave first touches the scatterer. in such a form the Sth term in the eigenmode expansion of the surface
current density is well behaved as Refs] — * «, .e., in'both half planes.

Thus obijects with Lg = 2a have special properties in the asymptotic behavior of the eigenterms.
Such scatterers also have special properties in-the convergence of the SEM series [8]. This is associated
_)
with the choice of a turn-on time fo which is-independent of 1 1 ‘

As in appendices A and B for the perfectly, conducting sphere all the foregoing results can be seen
to apply.
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VIl.  Asymptotic Forms of Kernel, Inverse Kernel, and Response

Now consider the properties of various summations over the various types of eigenterms. From
(2.5) we have an expression for various powers of the kernel. In (2.8) we have the 0 power which is the
identity on S; this expression is not asymptotic, but rather valid for all s.

Consider, however, the kernel

5’%( ) ZA (s)j (r ,s) u( ,s) - (7.1)

In the left half plane this has the formal result from (3.3)

~ n, = ~
7T 00 L) B0
-t
=e 0/3 0}B(s) /s (r ,S) @ (_):S) (7.2)

Note that f~o has another subscript 3 since the result (3.3) might conceivably give a different function for

each 3. This points out part of the problem in that summing over 8 the asymptotic results may not be uni-
formover all §. If § is proportional to the number of oscillations on the body for the Bth eigenmode, then
for larger and larger 8 one must go to more and more negative Re[s] before the restriction in (2.23) is met.

So we have the problem of the order of 8 —» « and Rels] — —oo, i.e., which limit is taken first.

Now from (2.3) we can write

3 (:)_.) —). _7
51':)( s):fs(rs,r’s,s)e
&

f

._)
is rational in s. Note that Lg in (7.2) bounds I—r_; - f’s ‘ in (7.3) so that these two are consis-

A

as Re[s] s —e ~ - o {7.3)
where

=
tent in the sense that for some 7; , fs (7.3) blows up as fast as (7.2) in the left half plane.

Similarly the inverse kernel has

A AD I EREI DN A

T rs,r’s,s=22,ﬁ (s) Jg (r ,s) uﬁ(r’s,s : (7.4)
B B

In the left half plane this has the formal result
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~—=1 ~ -
z (s) zﬁ(;: ,5) ﬁ?ﬁ(z ,sJas Rels] — — e (7.5)

> =1 . .
This one is somewhat problematical since e 0 goes to zero. However, fo 5 should be increasing as

B —  so this relates to the order-of-the-limits problem. In[11] there is the conjecture that

& vin -7
ol (7’5,,7;;3)= f 9{5 SlasRe[s}a—_oo (7.6)

<
f

where is rational in s. Note that this is large when 7‘: is near r_’; . It can be reconciled with (7.5) by

the contributions to the sum for large .

In the right half plane we have the formal result for the kernel

AN S (DR

B

19 (@) 8,7 -7, JesRets1 5+ (7.7)

Similarly we have the formal result for the inverse kernel

A RANDEHNADEARD

«3
=21t(r—s))5s(’r_s’ —z)asﬂe[s]—w»oo (7.8)

where in both cases the eigenvalues as in (6.7) are taken as the normalized eigenimpedances of the
E-field integral equation or the eigenvalues of the H-field integral equation.

Now (7.7} and (7.8) are clearly inverse to each other. However, each result is only partly correct, and
that concerns the illuminated side of the scatterer. Assuming a simple shape for the scatterer (such as
convex and smooth) divide S as

§=5,USs,

S, = illuminated portion of S (7.9)

il

—
= portion of S first reached by rays parallel fo (and in same direction as) 1 3

Ssh = shadowed portion of S
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‘ Now we have on Sthe usual physical optics result

N =~ (inc) ., _, - (ine) ,_, o
f(?)=1s(rs)xH (7. .s)=2 4, (rs,s)forrsesﬂ
) S — N
0 for ry € Ssh
as Re[8] —» + (7.10)

If we apply (7.5) in the context of the H-field integral equation (2.22) we have the formal result )

L= FT G 7 e (7))

R TGRS TR A LTRSS

il

s S S

= (inc) ~
=2 J, (7. .s)asRels] -+ (7.11) -
This of course is only correct in the illuminated region. One could also operate termwise on the incident
field to give
S ~—1 __)(—> j :‘—;;(inc)(—e j =
Jg (7 ,s):%lﬁ (s)<uﬁ Py s Jg ry.s /sﬁ(rs,s)

' =%2<%(;’: ) s);J:(}nC)(rTS) , s)> zﬁ(7’ ,s) as'Re[s]—>+'oo (7.12)

One could also use the asymptotic expansion of the symmetric product as in (5.8) giving a leading term of

e 2 In any event the asymptotic form of the kernel, inverse kernel and response have the fundamen-
"“tal order-of-the-limits problem because 8 has to be summed to « before Re[ s8] — * .

Looking at the E-field integral equation (2.14) we have the formal result

2@l (7.7 E7N(7 )

t s’

(£ 5 @aln-7) B (o)) wrets -+

= (inc)
=72— E, (7., s) asRels] -+
[o]

(125 > (ine) |, .

2
. : Z, ot (rs8)
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25, (Z) [T x A @8 ]

-2 (B[ )T x AT (75 ]
= - L = (inc)
() TR @)« A (78 ]
- .. - = (ine) ,
=2[1S(rs)x?1}[1s (Z)- A (rs,s)]

- — —¥ (inc) - .
—2[1S(rs) . 11]“’3 (r’s ,s) (7.13)
— —
This result differs from (7.11) unless there is normal incidence {ie., 1 ] =~1 s ). So this result has prob-

lems not only on Sgp, but on Sjyas well. Due to this order-of-the-limits problem (7.6) looks better for the

kernel and inverse kernel in the right half plane.

In the case of the perfectly conducting sphere (appendices A and B), we know by the uniqueness

of the solution to the Maxwell equations and the completeness of the eigenmodes that the result is exact
for all frequencies. For any given 75) on the sphere, however, one needs to sum an infinite series. As

frequency is increased more and more terms are needed to obtain an accurate answer. In principle an
infinite number of terms is needed for each finite frequency for an exact answer. The limit of this exact
answer as Re[s] — + «is what is wanted. This again illustrates the order-of-the-limits problem.
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Viil.  Concluding Remarks

Here we have found some resuits of interest and rather simple forms concerning the asymptotic
behavior of the EEM terms in both left and right s-planes. What is interesting is not only the result but the
questions that are raised.

As we have seen in evaluating the eigenvalues as Re[ 8] — + oo there are separable contributions
from the exterior and interior fields. Perhaps this extends throughout the s plane. In the right half s-plane
the symmetric product (integral) of the eigenmode with the kernel is dominated by the local contribution
near 7_; = ?: . An asymptotic evaluation of this integral over S might lead to a simpler (perhaps

differential) equation over S for the eigenmodes in the limit of Re[s] — + .
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Appendix A. E-Field-Integrai-Equation EEM Parameters for the Perfectly Conducting Sphere . .

As discussed in [1,4,5] the various EEM parameters for a perfectly conducting sphere of radius a are
summarized for the E-field integral equation (2.14). The normalized eigenimpedances are

. -1 ~ : '
z, n(s)=.2'0 Ze, n(s)=—(:7'ain(?a)][i’akn (ra )]
(A1)

. -1
3, (®)=2y 2z, [(9)=-[ni (a)][nk, ()]

, n=1.2,..
with a prime indicating differention with respect to the argument of the bessel function (i.e., ya ). The

gigenmodes are

= -
/se' n‘mra(rs ’s) =0y 0. mo%, m (6 9)
> =
jSh . m, a(rs d S) = dh n,m,c n,m 0'(8’ ¢)
(A.2)
= - - - —
r,,s}=1 r X r,,s
o (Tee)=1, () < g (7 .e)
= — —_ —3 —
r. ,s)=-1 r X r.,$s
h (BT, B x 0, (79)
Here we have organized the eigenmode index as a set
o e
3 = ,n,m, o .
"5 1 h (A3)
with the first index indicating whether the mode is an E or H mode [4]. The unit normal is
e d - — —_
(R )=1, (%) (A)

The modes are developed from

n

cos( m¢)}

: (m)y
Y ’ m’;(e‘ $y= P, (cos(e)){sm(m@

5 -
Pom o8 0)=Y, o (8,0)1, (8, ¢)

28




—
. C)n,m,d(e ¢)_aVsYn m, a(e’ 9)

=17 Iy 1 9
=Te %0 26 Yo, m, (0 0)+ esm(e) aeYn m, o(9:9)

F{_;,myd(e, 9)=av, x[ (6,9)Y, ., (6, ¢)}

N Dy

8 Sin(@)%yn,m, O'( ’¢) 3 EL) n m, 0'(9 ¢)

- - -
Qo8 8)=1, (8, 0)xR - (8,0)

- — -
Rn’ m, 0-(9! ¢)=_ 1, (8’ ¢)X Qn’m, 0-(61 ¢)

Note that o= 1,2 corresponds to the choice of cos(mg) or sin(me) in the first equation in (A.5). From

[1] we now have the normalization coefficients

de,n,m,azdh,n,m,o
1
2 n( ) ( ) ! o
nln+1n+m!
= + |1 -
{[1 Mo 1200 0 m]?™ 27 s (n—m)!} (A.8)
‘ The bessel functions are
o 7 (n+n')! -

() = =57 Zo n’1(n _n,)!(Zya)
n =

1
() =3~ k- ) + 0" e ) b (A7)

From these we construct the normalized eigenimpedances in (A.1).

Considering the E modes we have for low frequencies

2, n(o)==[rai,(a)][ra k)]

[@%(m) [1 + O((ya) m[- nlen —Dupa)” " 1[1 + O((ya)z)ﬂ

_ nin + 1)

o1 (7 T+ olom)?] asva 0 (A8)
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This is capacitive with

Z,z, (8)= s%n% + O((ya ),_2)}

c = 2n +1
n=nns D o? (A.8)
For high frequencies we have in the left haif s plane
"
~ (1) -2 ( —1)
ze'n(s)=—£—e [1+O (ra) ]as Re[ya] — —o (A.10)

In the right half plane we have

Ee,,,<s>=%[1+ O((?fa )_1)] asRe[ra]— + (A11)

Unnormalized this tast result is resistive with value Zp/2.

Censidering the H modes we have for low frequencies

2, (&) =[rai (a)][rak, ()]

| n+1
) L%%)mﬁ * O((Ya)zjﬂ[@n —Dpa) [1 + O((Ya)zjﬂ

- 2n1+ 1(;@)[1 colgay ) msm o (A12)

This is inductive with

Zth, o8} = Sn’-,,[1 + O((ya)z)} asya — 0

(A13)
n_a
L o=—2
no2n +1
For high frequencies we have in the left half s plane
( )n +1 2 ]
i, 0= 1 om) )
2, n(s)=——2——e 1+ 0\(na) asRe[ya] » - (A14)
In the right half plane we have
~ 1 -1
) aneya) -+ A.15
z, (S) 2[1‘["0((7’3) ﬂ R (A.15)

This is also resistive with unnormalized value Zy/2.
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‘ The coupling term for E modes (in hormalized form as in (5.2)) is

> - ~ (ine) (= -1 I:Yai ('}’a)]'
</S ('Js ,S) ; e—) i (/S ’S)>= de,n,m, G_%_AZ,n,m,o-,p (A.16)

e,n,m,c

where A, o is a function of the indices and the direction of incidence and polarization of the

incident wave, but is independent of frequency. For low frequencies )

’:‘}'a/ (76)] n+1 n -1 ( 2)}
va (2” +1)||( ) [1+ o (73) as’ya">0 (A17)
which goes to a constant for n= 1, but to zero for n> 1. For high frequencies we have in the left half s
plane
vai (r e 1 K
E——”(—ﬂ_( ) e [1+o((ya) ﬂasRe[ya]e—oo (A.18)

va

In the right half s plane we have

[ya/‘n(ya)]' e l_

[(76) Has Re[ra] - + : (A.19)

@ )
One can see here the symmetric form in the last two equations.

The coupling term for H modes {in normalized form as in (5.2)) is

= - _ s(inc)(—> j M .

<jsh.n, m.cr(r,s ,S)’ ¢ ,JS i >_dh'nv mso-ln<‘ya)A1vn!va. (A'20)

“where A inm e is again independent of frequency. For low frequencies
() [ 2
()= Gy ot * O((Va) )]8576 -0
(A.21)
—0ass— 0forn=12,..

For high frequencies we have in the left half s plane

i(r) = ("7 2~/a [H O((?’a) )] as Re[ya] —» ~ (A.22)
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In the right half s plane we have

A

() = 2%;[1 + o{iey )] s rera >+ (A.23)

The eigenterm for E modes is _
~—1 ;(-; ) Ss(inc)(—> )
Ze, n(s) st r‘s .8 Et r’s ]

-1
—1 = — i
== 9 n.mo sy o m d("s :5)[75[7’3 k,,(?a)]] Ay n.m o.p (A.24)

At high frequencies the combination of coupling term and eigenimpedance gives interesting resuits. In
the left and right half s planes we have

T knca]] =lis o{gmy ™ as rera o £ (a.25)

va
If one multiplies the response by @  to give a time shift the eigenterms are well behaved in both half
planes and only have pole singularities. ‘

The eigenterm for H modes is

~—1 /:). - ) = (inc) (—) )
Zh, n(s) \ sh(z’s . s) ; E r’s , 8 >
—1

- d:nm o X (?s ’ s)[(ya )k, (ya)] Aamoo.p (A.26)

sh, n,m, o

In the left and right half s planes we have

...1 "
0a) 2,0y ] =21+ o) ] as Repia] > £ (a27)

This is the same form as for the E modes and the same comments apply.
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‘ Appendix B. H-Field-Integral-Equation EEM Parameters for the Perfectly Conducting Sphere

As discussed in [2,5] the various EEM parameters for a perfectly conducting sphere of radius a are
summarized for the H-field integral equation (pseudosymmetric) (2.22). The eigenimpedances are

) (9=~ [r ai (@) [7 2k, )]

~(H )(s) . '

Py () =m[rai )]y ak a)] -
n=12,..

Note that these modes also separate into E and H modes indicated by the first subscripts. These modes

are the same as those for the E equation in (A.2).
Considering the E modes we have for low frequencies

ar (== [y 2l (m)][y 2k, ()]

n+1
L lgw I on-my™T ol]

=.z§;ﬂm[1 + 0((“}7:2 )2)] s - 0 | | (B.2)

This is not an impedance as it represents a relation between the response surface current density and the
incident magnetic field as in (2.22). For high frequencies we have in the left half s plane

1
~(H) " 2 1
- He,n (8)= (- )2 © [”O((?a) )}asRe[Ya]-%—w S (B.3)
In the right half s piane we have
~(H) -]
Ae’n(s)=%[1+0((}'a) )]asRe[ya]—>+ao (B.4)

Considering the H modes we have for low frequencies

~(H) .
Ry (9 =[rai(a)][r ak ()]

=fi<—2;’ni—11)”('}’a )n [1 + O((}Q)QJH[@” _ 1)”(7’3)—n[1+ O(('ya)z)ﬂ

LA [1+ O((ya)Z)]asyaeo

“n+1 (B.5)
‘ For high frequencies we have in the left half s plane
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"‘(H) - n -2 -1
lh, , (8= ( ;) e 7""’[1+ O(()’a) ]:las Re[ra] » —ea (B.6)

In the right half s plane we have

ZU:[: (8)= —12-[1 + O((m )_1]} asRe[ya] — + oo (B.7)

h
Since the eigenmodes of the H equation are the same as for the E equation and since the solution
must be unique, the coefficients of the eigenmodes must be the same as in {A.24) and (A.26). The
asymptotic expansions are the same as are the associated conclusions. while the coupling terms are dif-
ferent for the H modes they can be related to those for the E modes (as in {(A.16) and {A.20)) by a ratio of H

equation eigenvalues to the E equation eigenvalues..
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