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Abstract

This paper extends the use of filters and norm limiters from single time-
domain signals to vectors of such signals penetrating subshields. This gives a
general format for specifying the performance of protection of electronic systems

in the presence of various electromagnetic environments.

CLEARED FOR PUBLIC RELEASE
AFwL/PA §8-490
K& Sep g8




l. Introduction

In designing protection of electronic systems from various undesirable
electromagnetic environments it is necessary to control the signals reaching
various parts of the system. The basic concept of electromagnetic topology
reduces the necessary set of control locations to closed boundary surfaces
(subshields) through which the signals must pass to reach the equipment of
interest.

At the subshields there are filters and/or norm limiters which control the
penetrating signals. Extending concepts in [6] time-domain norms can be
applied to the filters and norm limiters to bound the norm of the vector of
penetrating signals. This can be extended to successive subshields as desired
in a form similar to the good-shielding approximation [5]. ]




1L Matrix Filters

As in [6] let us consider a filter which relates two waves as
Vieus) = T(s) Vinks) (2.1)

Vv(in) = wave incident on filter (input)

viout) = wave transmitted through filter (odtput)

Here we have expressed the basic relation in complex-frequency (two-sided
Laplace-transform) domain so that our filter is characterized by a transfer

function 'T'(s). [n time domain we have

Dy = T(t) o Vit

t
- J’T(t S 1) V(E) dt
0

\

o =convolution (2.2)

where our filter has been assumed to be causal.

Note for our purposes V(in) and V(out) are waves of the form V + Rl where
R is a convenient constant resistance and the + or —is chosen in conjunction
with the convention on the positive direction for the current | to give waves
propagating in the desired direction as in [6]. Furthermore V(ou) is assumed to
be terminated in a resistance R so that no reflected wave is incident back on the
filter from the transmitted-wave side. Similarly V(in) or its reflection from the filter
(or both waves) is assumed to be terminated in R on the incident-wave side.

This allows 'l~'(s) to characterize the physical filter without being complicated by
resonances on either side.

Another note [5] generalizes this filter con'cept to a matrix filter
characterized by a matrix of transfer functions. This can be written as

(V) = (Tom(®) * (V%)) (2.3)




where now we have vector waves representing say M incident waves Vg”)(s)

and N transmitted waves \~/(°”t)(s) giving an NxM matrix of transfer functions. In

n
the general formulation in [5] this (?n,m(s)) is just one block in a large scattering
supermatrix. In time domain we have

V) = e vy (2.4)
giving a matrix transfer convolution operator. (See Appendix A.) Note as in [5]
we assume both vector waves are terminated in all their components by a
matrix resistance of the form R(1nm) where our combined voltage vectors now
have the form (Vn) £ R(l). This termination is to prevent waves other than in
(2.3) from returning to the mairix filter and complicating the description of the
matrix transfer function.

The matrix transfer function is intended to characterize a set of filters at
some subshield [5] and so control all the signals passing through this subshield.
Then V!(f”t) represents all the signals passing through some subshield into the

corresponding sublayer of the system. Similarly V(rin”) represents all the signals
from an adjacent sublayer which are exciting our sublayer via the set of filters.

Now as discussed in Appendix A one can bound the time-domain norm
of the vector of signals penetrating the subshield as

(out

vl < e, ool I v Pan! | (2.5)

If we are considering the p-norm we also have

S et < e ool [ Hev"anl 1 (2.6)
with (us{ng results of Appendix A)

e, oo Lo Hid T, o T,

T, o [l T, ol (2.7)

T, o L < Hd T ol Lol L,




where pf indicates p-norm in the function sense. Regarding | ITn,m(t)| |4t as
matrix elements various bounds for matrix p-norms (indicated by pv) can be
applied such as from (B.14), (B.28), and (B.31).

For the special case that the transfer-function matrix is diagonal (and
hence square NxN) we have

H(l )O||=max lll (t)OH
v P 1<nsN nn P
< max |IT. 1] (2.8)
1<n<N nn it ’

with equality for p = 1, «. There are other bounds for this case given by
vy = 1, e o™l |
= | I<Tn,,,<t> o V)] | (2.9)
In p-norm sense this is
vyl = 1, 0o V™l |
= T, moviPmll Il

sHdITmo LI TVl T,

(in)
< T oL IV T, (2.10)




1l Norm Limiters

Following [6] let us consider a norm limiter as one which limits a
transmitted wave to

IV | | <x (3.1)

no matter what the incident wave V(N (t) is. We can think of this as an ideal
norm limiter if it does not distort V(out)(t) until the norm limit X is reached, in
particular as

VP11 <x

™y forallt (3.2)

(out)

=V =V

Of course, the norm of interest has to be specified. Again we assume the waves
are terminated as discussed in the previous section.

This can be generalized for signals ( (out) (t)) by requiring (3.1) to apply to

each component as
IV | <X, for1<nsN (3.3)

Then in the case of the p-norm we have the simple result

out)

Vel E=1 T el Il L,

p}%
X
(3.4)

noting that all the X are real and non-negative.

There are other forms that norm limiters can take for (V(OUt)(t)). In

~ L]

particular analogous to (Tn,m(s)) one can consider each V(om) (1) as a

combination of the V(ir;‘)(t) and limit the contribution to V(?‘”t) (t) from




each V(L?)(t) in norm sense. This might be thought of as a matrix norm

limiter in that we might constrain
M
ut
[V <D x , (3.5)
m=1

where the Xn m represent a-contribution in norm sense from the V(L:‘)(t).

Various other forms are also possible. For a diagonal norm limiter we might
think of (3.3) in the form of (3.5) as

Ve | | <x (3.6)

n,n




V. Combining Filters with Norm Limiters

In [6] we have the canonical problem of a norm limiter with filters on both
sides. For a single scalar signal this gives a fairly simple norm relation. Let us
apply this scheme to each of N signals as

| |V](’]out)(t)| | < | IT( o| ]{[esserof[ nn’l |T(1) olll [\/ﬂn)(t)] I:I}
(4.1)

Here V(;”) is passed through a first filter T(l?n, then a norm limiter (with

“norm limit Xn), and then a second filter T(nz’)n. Of course, the type of norm has

to be specified.

As we have constructed this case it is basically a diagonal matrix norm-
limiter/filter, as indicated by the n,n subscripts on the filters and norm limits.
Constructing, for example, the p-norm of the transmitted signal vector we have
(using results of appendix A)

| |( (out) {2' h.(z) yol|P {lesser of[ o | 11-(1 ol | | Ivgn)(t)| |§f] }}F

1

{ZIIT(2 {[esserof[ X2 T8 Hvij")amgf]}}p

(4.2)

cr in another form

10112t fosser o oo [T o L ML DI,

<1 (17201 Jiesserof X, 1 T2011, 11V DL,

Note that the Xn n are to be p-norm limiters in this case.




As discussed in [6] one function of the filters on both sides of the norm
limiter is to provide a resistive termination R for waves passing through or
reflecting back from the norm limiter. In the present case with N norm limiters
such filters help to isolate the N signals from each other at the norm limiters.
This allows us to approximate that each norm limiter limits only one signal
allowing the results in (4.2) and (4.3).

One can consider even more complex forms of combinations of norm
limiters and filters. Taking the basic combination of filter/norm-limiter/filter one
could consider VY as some linear combination of the various V" each

after passing through such a norm-limiter/filter combination. Then
'| [veUty| | would be a combination of terms like those in (4.1) and could be

bounded by a generalized form of (3.5).




V. Concluding Remarks

The results here give general forms for the norms of signals penetrating
subshields including both filters and norm limiters. By restricting the norm of the
vector of penetrating signals one can limit the size of the interference (noise) in -
the corresponding sublayer, thereby protecting it from damage and/or upset.
This then gives a format in which one can establish electromagnetic
specifications for subshield specifications to protect the sublayer from various
undesirable electromagnetic environments (EMXp).

Note that for these results to be applicable, there are certain assumptions
concerning the design of the system as in [5,6]. This involves the termination of
signals at the penetrations (from both sides) and isolation of the norm limiters by
termination of the signals scaitered from them. While it may be possible to relax
the requirements somewhat, it should be observed that the protection of
electronic systems is still basically a problem of synthesis in which subshields
are defined and norms of penetrating signals are conirolled. The protection
design should include whatever is necessary to accomplish that with a sense of
completeness.
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Appendix A: Norms of Vector Functions and Matrix Operators

Various papers have discussed norms of vectors and matrices for use in
frequency-domain analysis [1,3,5]. This is extended to functions and operators,
particularly for time-domain analysis [2,4,6,7]. In more general situations we
can have vectors of functions (say a set of time-domain waveforms on a
multiconductor cable). For this case we need to extend our norm concepts to
. include vectors of functions and matrices of operators.

Consider a vector function as (fy(t)) in which there are N functions fn(t) for
n=1,2,...,N of a parameter t which will normally be taken real. Often fy will also

be taken real (but this is not essential). While t is suggestive of the parameter
time it could be something else such as frequency. Then define norms by the
properties

=0 iff (f (1)) =(0,) or has zero "measure”

|l | per the particular norm
>0 otherwise (A1)
| |oc(fn(t))l | = ol | I(fn(t))l |, o =a complex scalar

g @) + @ enl I < TTdE o +@ !l

Define the p-norm for a vector function as

1

= N
[l = fz,lfn(t)lpdt i (A.2)

Note the consistency of this definition with the usual forms for vectors and
functions [7]. Let N=1 and the usual function p-norm is produced. Drop the
integration over time and the usual vector p-norm is produced. [f pv is used to
denote the vector p-norm and pf is used to denote the function p-norm we have

ot o= THTTEant 1, Hog=TTd et )1 (A.3)

pv
so the vector function p-norm has the form of norm of a norm.

Take the usual special cases of interest for the p-norm. For the 1-norm
we have '

11




¢!, f§:|f Idr- jlf@ldt- | (A4)

which can be interpreted as the sum of the rectified integrals of the vector
components. For the «-norm we have the generalization of the concept of peak
magnitude as

Heant I_=Tid ol )H

= max sup [f (0l (A.5)
1EN<N -oco<i<eo

where isolated points of fr(t) are excluded. This norm is in effect the peak of the
peaks.

In the case of the 2-norm we have first

N
D 1t wl2a

n=1

L

|1 anll,=

]
""'_-"8

- X

[ .07~ 0 o

—o

REGRIEN

tof—

F=lltwll,= J.lfn(t){zdt
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By the Parseval theorem [7].

1

il === 1 7gel,
Jor

. 1 (A7)
N ) 2
| f(o),= f (o) |2 doo
This directly generalizes to vector functions as \
i il === 111G Gl |
n 2 ,27’: n 2
. (A.8)
1 i [ 2
(o |, === f fa(jo)** (r(jo) do
n 2 ‘/'2'; n=1-m< niJ n(j®))
Here the Laplace transform (two-sided) is
fs) = J.f(t) e dt
s _ (A.9)

s = Q+ jo =complex frequency

ity = — | f(s) e ds

with the Bromwich contour in the strip of convergence paralleling the jo axis.
This directly generalizes to vector functions and matrix functions because the
Laplace transform is a scalar operator.

Now consider a matrix operator as (An,m{ )) which can be considered
element by element as Apm( ) withn=12, ..., Nand m=1.2, ..., M. The
elements operate on functions fm(t), so we can consider that the matrix operator
operates on the vector function (fa(t)) with a number of elements compatible with
the matrix elements. Symbolically we have in the form of elements

13




M
Fot =D A, (1) (A.10)
m=1

or in vector and matrix form
(F ()= (A, ()« () (A.11)

indicating the dot product inherent in our definition of the matrix operator. Then
define associated matrix operator norms via

| a0l
A, N T= sup o] (A.12)

(f,(0)2(0,)

Here the Ap,m can include any kind of linear operation that results in the
following properties of an operator norm.

=0 iff (A () =(0, ) orhas zero "measure”

| I(An,m( Nl per the particular norm
>0 otherwise

oa, o W =lal T, (D]

| (A13)
Al D+l DT LA DT+ T, (0]

Ao 0o (0 DT THa O T, ()]

For the case that the operation is convolution let us symbolize a matrix
convolution operator as (Anm(t))o where

(Fa) = (A, ) o (f(1)

= Ayttt - (1,00

= | (A, @) (f(1-1)) dt (A.14)

—o
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In terms of the Laplace transform this is

-~

Fals) = (&, (8)) * (Fa(s)) (A.15)

with convolution replaced by multiplication in complex-frequency domain. The
associated norm of a matrix convolution operator is then defined as

A, ) Q G

A, () oll= sup (A.16)
) G0y el
For the p-norm the results of [7] are readily generalized as
A )o@ @l
A, A1) ol lps sup Pom®) Q BN T (A.17)

(f (©)£(0,) REGIEN

The numerator on the right can be evaluated via (A.3) as

M
A, @ o (=11 (21 Ay D) fma)) [,

M
= | l(l | ;An,m(t) of (1) 3pf)| | ov (A.18)

- The interior pf-norm can be evaluated as

M M
| léAn,m(t) of ] lpfs; RPNERUTE MG (A19)

with equality if all the fm(t) except one (say for m=m') are identically zero. Next
we have

A ®of ol <lla, woll 1wl (A.20)

pf

With equality for some choice of fm(t) (say f'm'(t)), at least in a limiting sense
(corresponding to the supremum in the definition of the operator norm). Note
the use of pf now to also indicate the associated operator norm. Building this
back up substitute (A.20) in (A.19) to give

M M
| l; Ay of < mZJ Aol T ml (A.21)

with equality if both restrictions above are observed, i.e., the only fm(t) is f'm(1)).
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Placing this last result back in (A.18) gives

' M
A, o Eanl | <1 ; Aol L el i,

=, a@o Tl mll L, (A.22)

with equality for the two restrictions above. This is now in the form of the vector
p-norm of a matrix (with elements | |An,m(t) ol [pf) times a vector (with elements
[ [fn(t)l |pf). This gives the inequality

A, om0t s a, oo T, TTdTR@ Il

= (A, ool T T, Tl (A.23)

Note the use of pv now to also indicate the associated matrix norm.
Combining (A.17) and (A.23) now gives the fundamental resuit

[, ol LT, ol Lol (A.24)

n,m
If now the result

A, 0ol <A ol (A.25)

pf

from [7] is substituted in (A.22) the inequality remains now as

s o d o< a0l - dlel T,

< a0 T e Ll il

= 1A, O T oy Hanl | (A.26)
With (A.17) this gives the inequality
[, myol o< A ol TpTL, (A.27)

so that the pf-norm, i.e. the associated operator p-norm of the matrix element
operators, is replaced by the 1-norm of the corresponding functions.

16
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From appendix B there are various inequalities that one can use for the
pv-norm in (A.27). A particularly simple case occurs if (Anm( )) is square (NxN)
and diagonal in the matrix sense. Then we have

|](|1Ammﬁﬂl1ﬁpv=1gﬁ2& 1A, ol (A.28)
giving
A, ol l < max a0 (A.29)
sNs

Going back to (A.18) a diagonal (An,m(t))o means that only m=n is included in
the sum giving

ool l=1da, oot (A.30)
Defining
[ 1A, L) ol lpfamn?]eg\J a0 T (A.31)
. then

e moedolo=dla, woll  TInmllall,
<A, ool Hi ol

] |‘An-,n- ol lpf ¢l ]fn(t)l lpf)l lpv

= Ay woll @l (A.32)

p
By choosing
(f,1)=©0,..,f.1),..0 . (A.33)

with f(t) chosen to given equality in (A.20) (with n=m=n') we have equality in
(A.32). This gives for diagonal matrix convolution operators

17




[, ol = 1A, @l

= 12151<XN A, ol | (A.34)

Applying resuilts of [7] for special cases of p we then have special resulis
for diagonal matrix convolution operators. Forp = 1,0 we have

A, o) ol Ly =T, )0l |

= max A (t A.35
1Snlel ROIN (A.35)

For p = 2 we have

e, _wyoll,= max |A,, (o)l
’ 1<n<N

max
@

= max |A, . (jo |
1<n<N Oy )

< max | |A_ @] ‘
(2 1O SRS

Note in this last result we have maxima (or suprema) over both n and .

18




‘ Appendix B: Vector and Matrix Norm Inequalities

There are various vector and matrix norm inequalities such as those
discussed in [1]. Here a few more are presented. As in [7] we have the Holder
inequality

) =ty = [ o) = ) 12

et Tl l, (B.1)

p,>1 , p,>1

Setting these two vectors equal we have

o) o 2 e (B.2)
‘ There is the special case (in the limit p2 — =)
oL TTe 2 e T (8-3)

By letting the number of vector components tend to « these results can be
applied to functions as well [7]. Next a general inequality is found from

N 5
x| IPE{Z lxnlp}
n=1
N
el (x| lp)=%zn{ 2, Ixn]p]

N=1

1 [N pzn(lxn,l)}
=55Ln Ze

19




Differentiating with respect to p we have

d 1 d
A, =—an(l )] | = — | [ )| |
TR N IPTIRC
N
. pan(]x |
p n=1
paa(x, |)
+ = 1 2n(|xn[ e
pzepzn(lxnh n=1

Then we have

A=A p L) 1E

N
——an (o e 2 25w en (lx 1y 1x,1°

n=1

N
DY |Xn|p[zn(|xnl)—£n(l (x| Ip)]
n=1

3 Pan|
= £ XA T

] p

20

(B.5)

(B.8)




Note that

N
(Xn)llg=2|xn|pzlxn.[p fort1<n' <N
n=1
oz I | B.7)
Ik
n H H <0 for1<n<N
s Pan]|
oA Tl T

Strictly this applies for |xn|>0, but as|xn | =0 the limit is zero, so the inequality
applies as well for|xq|=0. Then we have

A, <0
A0 since pllx)l P20 (B8
d

o |kl =0

This last result of a negative derivative gives

e s el forgzp (B.9)

Turning to matrices we have

A .
| = sup Hnn 1],

a1 =0 e

(B.10)

p}l
P .
) (B.11)

(A

for an NxM matrix. Now we have

N M
H(An,m).(xn)l Ip={z z An,mx

n=1 =1




The Holder inequality (B.1) gives for each n

m=1
= LA el T TTe T
1=t (B.12)
P P
(An,m)n = nth vector with components
nd ! An,2 3oee An,M
Combining with (B.11) gives
A, e s TR e ] (B.13)

and with (B.10) gives

T o LT TA, Dl T = Hd T, o T )T

p-1

N[ M P P 13
= 2 EIAn,mlp" (B.14)
=1 m=1

Note the use of the p-norm of a vector with components the p'-norm of (An m)n.
So this bound takes the form of a vector norm of a vector norm.




Special cases include the 1-norm

A, < Hd T, .,

=[1( max ) IA DIl
1=m<M ’

N

=z max |A

l (B.15)
n=1 1smsM

n,m

which compares to the known result [1]

N
| I(An m)l l1 = max Z lAnm| = maximum column
: 1<m<M =t ’ magnitude sum (B.16)

For the 2-norm we have
N M %
A, sl Td T, o =4 22 1A 17 B.17)
n=1 m=1

which compares to the known result
t 2
A, = {xmax«A,,,m) . (A,,,m»}

A, = maximum eigenvalue

(B.18)

Some additional insight is obtained into the 2-norm inequality by observing [8]
1

N M > 1

22 A 12 <A, e Y

2, g2 ={tr (A )+ (A )

n=1 1

2

= t
_ { DA, ) <An,m>>}
=1

1
2

. <An,m>>} (B.19)

1

- {xmax((An’m)
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(A )+ (A )= MxM Hermitian matrix with real

non-negative eigenvalues A,

t =trace =sum of diagonal elements

giving some estimate of the tightness of such a bound on the 2-norm.

For the «-norm we have

i, < A TA, DT

M
= | 1(2 xAn,ml) N

M

= max A |
1snsN§1 i (B.20)

However, in this case the known result is

M
[1(A 3| = max |A_ | = maximum row
M e 1<ngN mZJ "™ magnitude sum (B.21)

so that in (B.20) we actually have equality.

By applying (B.9) to the vector norms with
o) < T for 1 <p <o (B.22)

then (B.14) gives

H(An,m)llpszzlf’\n,ml for 1<p<ee (B.23)

as a general upper bound on the p-norm of a matrix.

Let the maximum matrix element in magnitude be Ay m for (n,m) = (n',m").
If there are more than one such element, select any one for this purpose. Then
in (B.11) select

(%) = (0.0, ccco, X_s 1rre, 0) (B.24)
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i.e., only the m'th component is nonzero. Then we have

1

N - -

1A, - %) lp={2 Ay l? |va|p}p
' n=1

1
2 {1A, 17 15,17}

Ay ) 1] (B.25)
which with (B.10) gives

l I(An,m)I |p2 !An',m'l = nm?nx |An,ml (B.26)
Alternately we can find an upper bound from (B.14) by replacing lAn,ml by the
maximum magnitude as above giving

1

N

M P > P
RIS Z{ZlAn,m,|p-1}
. m=1 ’ - -

n=1

It
>
3—.——_
=
—
ik
¥:/_/
A
ol=

~ NP P
ol =NTM {';:f};f |An,m|> (B.27)
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Note for a square matrix (NxN) the coefficient of IAn',m-I is just N. Summarizing

we have in terms of the maximum matrix element magnitude e
1opt
PMP< max |A }
max Ayl < A, D <N M { e L (B.28)

For square matrices (NxN) we have a lower bound by choosing (Xn) in
(B.10) as an eigenvector of (Apm) with eigenvalue A, giving

(A ) * Xy = A0A, DX, (B.29)
substituting this as one case in (B.10) gives

LA, o2 1200A, )] (B.30)

n,m
Since this is true for all eigenvalues we have

(B.31)

A= A

n,m n,m)) ‘ max

where the right side is also referred to as the spectral radius of (Anm). Note that
the above holds for all associated matrix norms, not just p-norms.
As in [1,5] for square matrices a block diagonal matrix can be considered _

as a supermatrix

(An,m)1 1 O
((Ay mluy) = (Anmla2
| O (An,m)N,N
= (An,m)1,1 @ (Ah,m)z,z @...® (An,m)N,N °
N
= L§1 (An,m,)u,u (B.32)

where the diagonal blocks are square and of sizé NyxNy. Corresponding to this
we have supervectors

(%)) = (X )y X ) s-os (X)) (B.33)
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with elementary vectors (xp), of:size Ny. Now the p-norm of a supervector is
just

N

N, i
o= T T T =4 20 2 e, P

n=1 n,=1 (B.34)

i.e., it is the p-norm of an N component vector, each of whose elements is the
p-norm of an Ny component vector.

The norm of a supermatrix is now

A, ), ) 0 ((x) )1
A, D )= sup AL
e ((x))=((0.),) s (B.35)

For the p-norm of a supermatrix as in (B.29) this reduces to

(A, o) o= sup '
M (%) )=((0,),) ICS IR (B.36)

Now the numerator is just the p-norm of an N component vector each of whose
elements is the p-norm of an Ny component vector (An m)u,u * (Xn)u - SO we can
write

I e AT A g s ) T
Brmlu)lp= - ou0 T oo 1]
((x),)=(0.),) nul T lip (B.37)

Now the p-norm of the diagonal blocks are defined by

I I (An m>u u ’ (Xn)u I lp
II(Anm)uqu = Sup —
e (%), %(0,), [Tx), (B.38)
giving ‘
[ TA gt <l o= A e T (B.39)
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Define

l I(An,m)u',u'i | = max | I(A | lp—maXImum p norm

p u,u
1<us<N for any diagonal
block (B.40)

where if this occurs for more than one u, pick one arbitrarily. We have from
(B.34)

Al L 116 11T

A, ) 1o < sup

((x,),)=((0,),) HGCANIN
e A T,
((x),J#((0) ) RCARIEN
e wp Al AT, DT,
() )=(0;) ) JICARIER
= A, el ~ (B41)
By choosing
((xn)u) = «On)T ! (On)2 1 e (Xn)u' 3oeres (On)N) ’ <B42)

with (Xn)u chosen to give equality in (B.39) then equality is achieved in (B.37).
Hence we have the very general result

A, o =T uu.lips1Ta§NH(An,m)u,ull (B.43)
Sug '

Thus the p-norm of a block diagonal supermatrix is the maximum p-norm of the
diagonal blocks. As a special case if (An,m) is a diagonal NxN matrix the above
matrix blocks can be considered as 1x1 giving

l I nm)Il _1n<1r?§N |A l (B.44)
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