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ABSTRACT

A bound on the energy coupled to a load by means of an antenna or aperture subjected to
a step function EMP is given by the polarizabilities of the antenna or aperture. Examples of
coupling bounds for a slender electric dipole antenna, a circular aperture, and a narrow slot

aperture having depth are given.
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I. INTRODUCTION

A recent paper [1] expounded the fact that the total cross section of an antenna integrated
over all wavelengths is given by its polarizabilities. The proof relies only on the optical
theorem [2], the fact that the scattering process must satisfy the causality principle [3], and the
fact that the low frequency limit of the far zone scattered field can be expressed in terms of the

antenna polarizabilities.

This short note points out that this result can be used to bound the energy coupled to a
load by means of an antenna or aperture subjected to a step function EMP. Examples
involving a slender electric dipole antenna, a circular aperture, and a narrow slot aperture
having depth are given.

II. STEP FUNCTION EMP BOUND

The total cross section of an object o integrated over all wavelengths is given [1] by
o]
_ 2
f o, dA =12 V(P + Myy) , (1)
0

where V is the object volume. The polarizability tensors, P and M, are defined by the static

dipole moments of the object

p=¢ VP.E_ (2)



and m=VM.Ho, (3)
where the incident fields are taken as

E =E ¢ (4)
and

H, = E, ey/n, , (5)

where the direction of propagation is coincident with the unit vector e3=e; xe, and Ny =

i 0760 is the free space impedance.

The integral of the antenna's absorption cross section or effective area A o Can thus be

bounded [1] by
0
2
JAe dA < 7 V(P + M) - (6)
0

Consider the usual double exponential EMP
_ —at  —0t
E (t)=E_(e ™" —e ™) u(t) e, (7)

where « and f are real constants controlling the fall and rise times and u(t) is the unit step

function

u(t) =0, <0, (8)



=1,t20. (9)

Taking the Fourier transform of (7) by means of

E(w) = JE(t) et gt (10)
gives
E(w) =1G= %Eﬁaz o) Fo €1 (1)

Now letting the rise time approach zero (8 - ») and the fall time approach infinity (a - 0)

equation (7) becomes the step function
E (t) =E  u(t) e, (12)
with transform
, i
E (v) =-E ¢ . (13)
Notice that the magnitude of (13) is larger than that of (11) for all w.

Using the energy theorem [4] (Rayleigh's theorem)



J E2(t)dt = 51 J |E(w)| %dw | (14)

-0 —o0

and the fact that the effective area (in the frequency domain) is the area that intercepts the
same incident power as that absorbed (or received) by the actual load, the energy received

Wrec can be written as

w_o=L JAe(w)l— IE(w)]2 dw . (15)

_ o w_1 21
Wrec_fr_noJAe_Q"ifoEo _QJAe da (16)
0o v. 0
Therefore, from (6), we obtain the desired result
W <ieE2v(p,, +M,,) (17)
rec—2 .00 11 227 :

Notice that the right side of (17) is just the static energy required to polarize the object, or

equivalently, the energy stored in the static fields of the polarized object.

The result (17) can of course be averaged over all polarization angles, however, for our
purposes it is more desirable to adjust the‘incident polarization so that the right hand side of

(17) is maximized.



III. EXAMPLES
In the following examples, the amplitude E | of the EMP is taken as the typical
E, =50kV/m. (18)
1. Slender Electric Dipole
Consider a center loaded electric dipole of length ¢ = 2h coincident with unit vector e,
and having radius a (h‘>> a). The electric dipole moment dominates and is maximized when

the load represents a short circuit at zero frequency. The first order Hallén solution for the

dipole moment gives [5]

VP, ~

1 (19)

Pr
6(—2Q +mn 2 - %)

where the antenna fatness parameter is = 2 /n(2h/a). The energy bound (17) in this case

gives
W <legivp . (20)
rec—2 oo "11°

Figure 1 shows a plot of the right hand side of (20) as a function of £ for Q = 6 and 10.

2. Apertures
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Figure 1. Maximum received ehergy for a center loaded slender electric dipole of length ¢ = 2h

and radius a (€2 = 2 /n(2h/a)), subjected to an incident step function EMP plane wave of

amplitude B



The optical theorem can also be derived in a half space as noted in the Appendix. This
fact is worthy of note in applying the preceding results to apertures for which Babinet's
principle [2] does not strictly apply (for example, apertures having depth or cavity backed
apertures). The scattered field in the specularly reflected direction is used to determine the
total cross section in this case. The electric field component of the scattered field, used in the
optical theorem, is polarized in the direction of the electric field of the specularly reflected

wave.

The polarizabilities of an aperture [6], a, and @, on the transmitted side of the aperture,

are introduced by means of the dipole moments as

P=2¢ 0,.E, , transmitted side (21)
m=—2 am'. Hsc , transmitted side , (22)

where Es c and Hs ¢ e the fields at the location of the aperture, on the incident side, with the

aperture shorted (external fields). The dipole moments on the incident side of the aperture are

P=-2¢, a,.E ,incident side , (23)
m=2a_.H, ,incident side , (24)

where, for an aperture in an infinitely thin ground plane with no backing cavity, etc. (Babinet's
principle applies), the polarizabilities in (23) and (24) are identical to those entering (21) and
(22). Making use of the fact that | |



nxe,=axn=0 (25)

and

n.a =a_ .n=0, (26)

where n is the unit normal to the conducting ground plane, and the optical theorem in the

incident half space, equation (1) becomes

Jatd/\=7r24(a —a, ) . (27)
0

Moo

The integral of the effective area is thus bounded by

0
2
JAe D<oy~ ) (28)
0

The energy received is therefore bounded by
2
o]

4o, —a, ), (29)

1
w <ze¢E
rec—=2 ‘o My €11

where, in (27), (28), and (29), the components of the polarizability tensor are taken to be those

corresponding to the incident side of the aperture if Babinet's principle should fail to apply.
3. Circular Aperture

A circular aperture, of diameter b, in an infinitely thin ground plane, has polarizabilities

10



[6] given by

3
2 b
aell =(n. el) Vi (30)
and
3
2 b
a = |nxe,|” ~ . (31)
My, 2" 6

The energy bound is thus maximized at normal incidence n . e; =0 for which

3
2b
W oo <€ B3 . (32)

Figure 2 shows a plot of the right hand side of (32).

Note that the polarizabilities entering (29) must in principle include the proximity effects
of backing cavities, etc. However, because these are purely static quantities and because of
studies involving backup ground planes and backup cylindrical cavities [6], the changes in the
polarizabilities may typically be ignored if clearance exists behind the aperture on the order of
the aperture dimensions. Furthermore, these proximity effects typically reduce the

polarizabilities [6].
4. Narrow Slot Aperture Having Depth
Figure 3 shows the geometry of the slot aperture with length ¢, depth d, and width w.

The slot aperture is assumed to be very narrow (¢ >> w). The unit vector t is tangential to

the conducting plane and directed along the length dimension of the slot.

11
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Figure 2. Maximum received energy for a circular aperture of diameter b in an infinitely thin
conducting plane, subjected to an incident step function EMP plane wave of amplitude E . <
0
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and width w. The unit vectors normal

b

depth d

?

Figure 3. A narrow slot aperture of length ¢

3

to the conducting plane n and tangential to the conducting plane along the length dimension of
1

the slot t are depicted.



The "thick" case (£ >> w,d) has an axial polarizability given [5] by Hallén's first order

theory

2 [37r ~ (33)

Cmyy " (¢ %) 24(5 + fn 2 — )

192
where the fatness parameter of the "thick" slot is given approximately [5] by
Qx2mo(4lw)+ rd/w . (34)

Note that the polarizability given by equation (33) is approximately the same on either side of

the aperture in the "thick" case.

The contribution to the polarizabilities resulting from the transverse field components [5]

is approximately

o 2 w2, . . .
am22 [(nxt). e2]‘ jr-(z) ¢, incident side , (35)
_md
% [(nxt) .e2]2 T [%e 2w ]2 ¢, transmitted side , (36)
2 _ w2, . . .
a, ~(n.e)" 7 (7)” ¢, incident side , (37)
11
_md
% (n. el)2 T [% e W ]2 ¢, transmitted side . (38)
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The contribution resulting from equations (35) and (37) is dominated (£ >> w) by the axial
magnetic contribution (33). These transverse components are therefore ignored as in the case

of the slender electric dipole.

The "deep" case (¢,d >> w) results, in general, in different axial magnetic polarizabilities
on either side of the slot. For example, approximations that, in fact, hold for all d (0 < d < «)

have been given [5] as
Incident Side

3
‘ 2 8¢ 1
o r(t.e)
Mo, € -

20 7d
QO + _W tanh(ﬂ)

1

+ (39)

27 nd } ’
QO + W COth(72 )

Transmitted Side

4,3
o z(t.e)2 }rg(f/(ww)

Ma9 2 [, cosh(z7) + % sinh(%)]

1
©, sioh(Z9) + 2 cosh(29)]

(40)

where O = 2 In(4{/w).
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Ignoring the very small transverse polarizabilities, the energy bound becomes

2 o |
Woee < 6Eq 2am22(1n(:1dent side) . (41)

Figures 4, 5, 6, and 7 show examples of the right hand side of (41) using polarizability (39) with

incident polarization |t . e,| = 1.

Note that aperture depth tends to reduce,-even further, the proximity effect of backing

cavities, etc., on the incident polarizabilities.
IV. CONCLUSIONS

It has been demonstrated, by use of the bound on the integral of the effective area over all
~ frequencies [1], that the maximum energy absorbed by an object subjected to a step function
EMP is bounded by the static energy required to polarize the object. (The energy spectrum of
the step function EMP bounds the spectrum of EMP described by the double exponential over
all frequencies.) This static energy is, of course, given in terms of the static dipole moments of
the object or its polarizabilities. It has also been demonstrated that this bound can be used on
apertures for which Babinet's principle fails to apply (apertures having depth and cavity
backed apertures), the requirement being simply to use the polarizabilities on the incident side

of the aperture.
APPENDIX. OPTICAL THEOREM IN A HALF SPACE

Figure 8 shows the geometry, consisting of an aperture in a thick plane with a backing
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Figure 4. Maximum received energy for a narrow slot aperture of width w ~ 0.25 in, subjected

to a step function EMP plane wave of amplitude E..
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w = .00126 m ( ~ .05 in)
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Figure 5. Maximun received energy for a narrow slot aperture of width w % 0.05 in.
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Figure 6. Maximum received energy for a narrow slot aperture of width w % 0.01 in.
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Figure 8. Geometry for optical theorem in a half space.
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cavity. A plane time harmonic electromagnetic wave (time dependence ef'“"t) impinges on a

cavity backed aperture. The incident wave field components can be written as

Baem e (42)
Hipe = e3x B/, (43)
where r is the position vector and' k is the wavenumber.
A reflected plane wave is generated by the conducting plane with fields
Eef= e?ef) eik(e:(’ref)' " , (44)
Hief = :(;ref) X Eref/ To | (45)
where egref) kegref) = e:gref) are unit vectors associated with the reflected wave. These two
waves constitute the short circuit field
. | Ege = Eine T Eper (46)
Hge = Hipe + Hper - | | (47)

Note that we can write

22



egref) =—e +2n(n.¢) (48)

and

e:(}ref) =e3—2 n(n. 93) , (49)

where n is the unit normal to the conducting plane, directed into the incident half space, as

shown in Figure 8.

In addition to the incident and reflected waves, there is a scattered field, which, in the far

zone (kr - w), becomes

eikr
Esca.tt = 1F(er) TR (50)
Hoeatt = € X Escatt/ My > (51)

where e is a unit vector in the radial direction.

Following the usual procedure for the optical theorem [2], the Poynting vector is written

as the sum
S = Ssc + Ssca.tt +S (52)
where
_ 1 *
Ssc -3 Esc X Hsc ’ (53)

23



" | (54)

1
Sscatt -2 Escatt X Hgeatt

and
*

scatt T E

1 *
§* =5 (B, xH xH,) , (55)

scatt

where * denotes complex conjugate. Integrating the real part of (52) over the sphere at infinity

yields

—P, =P +P . +P, (56)

scatt

where P, _ is the power absorbed by the aperture (and backing cavity),

PsczReg[Ssc.erdS=0 , (57)

where (57) vanishes because the plane boundary is assumed to be perfectly conducting,

Pscatt = Re l Sscatt - & 95 (58)
and
P’=ReJS'.erdS . (59)
S

Note that, because all field components vanish inside and behind the conducting plane, S caﬁ be

taken as the hemisphere at infinity in the incident half space. Using (57) gives

P+ P -P . (60)

scatt —

24



The total cross section of the aperture defined by

oy = (Paps * Pycatt)/ReSine - €3) (61)
where
s. =lp xH, =,le (62)
inc ~ 2 “inc inc_Wo 3
is therefore
o, =—2n.P" . (63)

The integrand of P~ includes the four terms

% f; ikrap(inc)'

(Eine * Hycage) - & = gr @ : (64)

*
1
(Brog X Hyeaty) - € = “fr—© ’ (65)
* f2 —ikrcp(inc)
(Bgeart * Hine) - =kr © ’ (66)
and
(ref) .. (ref)
(B, xH. ) .e B 67
scatt = “ref/ " T kr ’ (67)
where

25



fgref)(er) = %cl—) egref) . F*(er) e ,

and

The following stationary phase asymptotic approximations are used to evaluate P*:

Stationary Point Contribution [2]

fle,) e " ds ~ 2 fle)e —f(—e)e

1 —ikre(e ) 9 —ikr ikr
i | ——
S

Boundary Contribution [7]

26
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~ikry(e ) . —ikry
1 KT € —i n . Vo d{
. fe) e dS ~ J f(e,) e =, (75)
kr 4 T k? - v Ichl 2 T

where V is the gradient operator on the surface S, n is the unit normal to the plane conducting
boundary directed into the incident half space, and dS is the boundary of the hemispherical

surface S formed by the intersection with the conducting boundary, and

where the stationary points are e = + .

The boundary contribution (75) to P can be ignored because on the boundary we have f;
fgref), £, = féref), (p(inc) _ (p(ref), nx v(p(inc) —nx v(p(ref), and n . V(p(inc) ——n. v(p(ref)_

b

combined with the fact that the boundary integral is of lower order than the stationary
contribution anyway. Furthermore, the stationary points e = e3 — (ref) do not contribute,
because they lie outside the surface of integration (it is assumed that e . n < 0). Therefore

application of (74) yields

T —ikr ikr
P’ = —k—21m [fl(— eq) € —f5(- e3) e
(ref), (ref), KT (ref), (ref), TIKT
-1 (e3 Je +1 (e3 ye ], (77)

where Im denotes imaginary part. The total cross section therefore becomes

27



o, = i-gae[egfef) - F(e{reDy] . (18)

Using the Hilbert transform relation for the scattered field [1] gives

J o, (A) dA = — 433573 Im[egref) . F(e:(;ref))] ,w=0 , (79)
0

where c is the velocity of light. The low frequency limit of the scattered field amplitude F may

be evaluated in terms of the aperture static dipole moments by means of [1]

2
HoW'k (ref)

f
Escatt =T r [e3 X (e:gre ) x p)
ikr
+ % egref) X m] ng : (80)
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