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Abstract

The Singularity Expansion Method (SEM) parameters (natural
frequencies, natural modes, and coupling coefficients) are
presented for several different geometries each composed of four
arbitrarily-oriented, thin, straight wire scatterers with one end
of each of the four straight members connected at a common
intersection point. Various choices of the orientations (and
lengths) of these four members result in specific configurations
which have been investigated previously (perpendicular crossed
wires, planar symmetric tri-arm, L-shaped wire, and straight wire)
as well as several other configurations which have not (nonplanar
symmetric and nonsymmetric tetra-arms, nonplanar symmetric and
nonsymmetric tri-arms, and arbitrarily bent wire). The SEM
parameters for the general tetra-arm structure are calculated for
a wide range of geometrical configurations. Commonalities which
exist between the SEM parameters of the general tetra-arm
scatterer and the previously analyzed "dipoles", "tripoles" and
"crossed dipoles" are presented and discussed. These data suggest
that the SEM parameters of some of the more complicated scattering
structures may be expressed partially as (or decomposed into)
combinations of the SEM parameters of several simpler geometrical
configurations.



I. Introduction

The Singularity Expansion Method (SEM) has proven to be a powerful
analytical (and numerical) tool providing significant insight into the
fundamental behavior of electromagnetic radiators (antennas) and reradiators
{scatterers). The SEM data presented in the simple analyses and comparisons
addressed in this paper indicate that it is possible (at least in some
specific classes of antenna and scattering problems) to express some of the
SEM parameters of a more complicated geometrical structure in terms of the
SEM parameters of simpler structures which may be geometrically combined to
form the original structure of interest. However, it should be noted that
the interaction of these various simpler decomposition structures is not

included in the SEM parameters thus obtained.

One of these postulated cases of decomposition will be demonstrated by
determining the SEM parameters for a general four-arm (subsequently referred
to as tetra-arm) scatterer excited by an arbitrarily-polarized,
arbitrarily-oriented incident plane wave. The calculated SEM parameters of
the general tetra-arm scatterer will be compared to thosé SEM parameters
previously determined for several specific scattering geometries such as the
straight wire [1], the L-shaped wire [2], the planar symmetric tri-arm
scattering element [3], and the perpendicular crossed wires [4].
Commonalities of the various SEM parameters of these previously analyzed
scattering structures and the general tetra-arm scattering elements are
presented. Also addressed is the very intriguing special case of the
nonplanar symmetric tetra-arm scatterer which possesses the unique symmetry
that the distance from the tip of each arm of this tetra-arm scatterer to
the tip of any other arm is constant, i.e. line segments connecting the four

tips outline the simplest of the regular polyhedra, the tetrahedron.
II. Singularity Expansion Method (SEM) / Method of Moments (MOM) Formulation

Consider the perfectly conducting, thin wire tetra-arm scatterer as
shown in Figure 1. In general, the specific geometry will depend on the
geometrical parameters associated with each of the arms : Zk , ek , ¢k , and

ay for k =1 to 4. The electric field of the exciting plane wave is of unit




amplitude, E-fleld polarization orientation ep, ¢p’ and is incident from the
einc’¢inc direction. Currents and charges are induced (in general) by the
incident field on each of the four arms. These induced currents and charges
reradiate a scattered electromagnetic fleld. Boundary conditlions require
that the superposition of the incident fleld and the reradiated (scattered)
field vanish at every point on the surface of the tetra-arm scatterer. Using
standard potential theory [5], the scattered electric field can be expressed
in terms of an integro-differential operation on the induced surface current
and charge. This relationship and the boundary conditions result in an

electric field integral equation (EFIE) in terms of the unknown surface

!

current on the scattering structure.
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Figure 1. General Thin-Wire Tetra-Arm Scatterer Geometry with
Incident Field Excitation.



This EFIE is reduced to a set of linear equations through the

application of the method of moments. In particular, a Galerkin procedure,

where both the expansion and testing functions have been chosen as constant
pulse functions, was used in the generation of all of the data presented
here. The form of the matrix equations (showing the dependence on the
complex frequency variable, s = Q + jo , explicitly) is

Z(s) 1(s) = V(s) (1)

where

N
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m

system impedance matrix

I(s) = unknown current coefficient vector
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voltage excitation vector

A typical element of I(s), i.e. im(s), represents the Laplace
transformed current at the mth zone on the tetra-arm scatterer. Similarly,
an element of the excitation vector V(s), i.e. vn(s), represents a zone
length times the tangential component of the incident electric field ( a
voltage) at the nth zone on the tetra-arm scatterer. An element of E(s),
i.e. z n(s), gives the contribution to the voltage at the nth zone from an

s

assumed unit current on the mth zone. Equation (1) essentially states that

the current distribution on the body must be of such a form that the
incident voltage at any zone on the scatterer is exactly canceled by the sum
of the voltages at that zone caused by the currents in that zone and in all

of the other zones on the tetra-arm scatterer.

Since the system admittance matrix is the inverse of Z(s), poles of the
response become those complex frequencies which drive the determinant of
E(s) to zero. These poles are the natural frequencies of the scatterer since
they are the frequencies for which the body can have a response (in Laplace
frequency domain) with no excitation in the form of an incident wave. Poles
must occur in the left-hand portion of the complex plane to insure a
decaying response, and except for poles on the real axis, they must occur in
conjugate pairs to insure a real time domain current or charge induced on
the scatterer.Since the body loses energy due to radiation (or scatter), no

poles may reside on the jw axis.




The induced current on the radiator (or scatterer) may be expressed in

the Laplace domain as [6]

- _ o _t -
I(s) = f(s) z ? BQ’. Ma A(s) (2)
a a
which may be rewritten as
; M
I(s) = f(s) } ca(s) B (3)
a a
with
s = the complex frequency of interest
o = the ath natural resonant frequency
£(s) = the functional form of the excitation { f(s) = s |
for a step function }
A(s) = the vector impulsive excitation { V(s) = f(s) A(s) }
ﬁa = the ath natural mode vector (normalized such that
the complex magnitude of the largest element of ia
is unity)
ﬁz = the transpose of the ath mode vector
_ . -1 _ <t dZ -
Ba = the normalization constant { Ba = Ma [ as ] S=;1a}
a
_ : s s _ =t <
Ca(S) = the coupling coefficient { Ca(S) = B, M A(s) }

In the next section, the various SEM parameters as defined above are given
for several specific thin-wire scatterer geometries and comparisons of the

commonalities of these parameters for these various configurations are made.

III. Numerical Results (Comparisons of SEM Parameters of Several Geometries)

Several different scatterer geometries are to be analyzed using the SEM
approach, and the pertinent SEM parameters of these various geometries are
to be presented and compared. All of these various geometries may be defined
from the general geometry shown in Figure 1. Subsequently, the general
scatterer as defined by this figure will be referred to as the general 4-arm

star configuration. A number of specific scatterers which have been



previously analyzed using the SEM may be considered as special cases of the
general 4-arm star. These various cases are: (I) isolated straight wire,
( £1=82=L/2, a =a_=a, 91=92=1t/2, ¢1=0, and ¢2=1t ), (I1) isolated bent wire,
( £1= L/2, 22= L/2, a =a =a, 91=92=1t/2, ¢1=0, and ¢2=f;' where £ is the bend
angle, £=n is case (1) and £=n/2 or £=3n/2 is the L-wire ), (I1I) planar sym-

metric tri-arm, ( £1=£2=£3=L/2, a1=a2=a3=a, 61=92=93=1t/2, ¢1=0, ¢2=21t/3, and

¢3=41I/3 }, (IV) planar symmetric crossed wires or tetra-arm, ( £1=

1 2 3 & 1
¢4=31r/2 ). Two additional cases of interest which will be addressed are:

£2=23=£4=L/2, a =a_=a_=a =a, e =92=93=94=1t/2, ¢1=0, ¢2=1t/2, ¢3=1t, and

(V) nonplanar pseudo-symmetric tri-arm, ( £1=£2=£3= L/2, a =a =a _=a,
91=92=93=0.392n, ¢1=0, ¢2=2n/3, and ¢3=4n/3 where £=0.608nr is the ' common
bend angle), and (VI) nonplanar symmetric tetra-arm, ( £1=£2=23=£4=L/2, a =

a2=a3=a4=a, 61=93=0.6961t, 62=64=0.3041t, ¢1=0, ¢2=1t/2, ¢3=n, and ¢4=31t/2

where £=0.608m is the common bend angle between each of the four arms ).

The SEM parameters (natural frequencies, natural modes, and coupling
coefficients) have been determined for the six cases defined above using the
methods outlined in Section II. In all of the data to be presented
subsequently in this paper, the two parameters, the length-to-radius ratio
(L/a = 200) and the number of moment method zones (N/L = 60) remain
constant throughout the data. Table 1 presents the first several natural
frequencies for the six specific scattering geometries defined above.
Figures 2-4 show plots of the natural modes which accompany the fundamental
and second harmonic natural frequencies given in Table 1. Figures 5-8 pre-
sent coupling coefficients for these natural modes produced by linearly po-

larized unit amplitude plane waves incident at specific angles of interest.

Rather than comment specifically on each element of the data presented
in Table 1 and Figures 2-8, it is the purpose of this paper to point out
the various commonalities which exist in the data and to suggest that such
commonalities represent a simple way to view the more geometrically

complicated scattering structures as combinations of simpler geometries.

First it is interesting to observe that some of the natural frequencies
(and concomitant natural mode vectors) of Case (IV) (see #1, #2, #5, and #6)
are identical to some of those found in Case (I) (see #1 and #3). (This has

been pointed out by several investigators previously [ 4, 7, 8 1).




Table 1. Comparisons of Natural Frequencies (sL/c) for

Several Geometries of Interest.

I.Isolated Straight Wire II.Isolated Bent Wire
(1) -0.257 + j2.875 (1) -0.257 * j2.875 (&=n)
(2) -0.220 * j2.946 (&=2n/3)
(3) -0.205 * j2.975 (£=0.608u)
(4) -0.174 £ j3.043 (§=n/2)
(2) -0.379 + j5.934 (58) -0.379 * j5.934 (&=m)
(6) -0.443 * j6.049 (§=2n/3)
(7) -0.484 * j6.090 (£=0.608mn)
(8) -0.611 * j6.160 (&=n/2)
(3) -0.466 * j9.012 (9) -0.466 * j9.012 (&=m)
(10) -0.502 * j9.207 (&=2n/3)
(11) -0.534 = jg9.264 (£=0.608n)
(12) -0.616 * j9.334 (&=n/2)
I11.Planar Symmetric Tri-Arm IV.Planar Symmetric Tetra-Arm
(1) -0.220 + j2.946 (&=2n/3) (1) -0.257 £ j2.875
(2) -0.220 £ j2.946 (2) -0.257 * j2.875 (&=n/2)
(3) -0.042 + j3.220
(3) -0.274 * j6.322 (&=2n/3) (4) -0.313 £ j6.672 (&=n/2)
(4) -0.502 % j9.207 (&=2m/3) (5) -0.466 * j9.012
(5) -0.502 * j9.207 (6) -0.466 * j9.012 (&=n/2)
(7) -0.589 * j9.771
V.Nonplanar Symmetric Tri-Arm |VI.Nonplanar Symmetric Tetra-Arm
(1) -0.205 * j2.975 (&=.608) (1) -0.208 * j2.975
(2) -0.205 + j2.975 ) (2) -0.205 £ j2.975 (£=0.608m)
(3) -0.174 * j3.043 _ (3) -0.205 = j2.975
(4) -0.174 *+ j3.0a3 (&"/2)
(5) -0.330 * j6.412 (£=.608n)| (4) -0.167 + j6.644 (£=0.608mn)
(6) -0.538 + j6.610 (&=n/2)
(7) -0.534 * j9.264 (&=.608m) (5) -0.534 * jS.264
| (8) -0.534 + j9.264 ) (6) -0.534 + j9.264 (£=0.608m)
(9) -0.617 £ j9.334 (E=n/2) (7) -0.534 + j9.254
(10) -0.617 * j9.334




For certain unique excitation conditions, the "crooked mode” of the crossed
wires is not excited. When this happens, the frequencies and modes which are
excited are simply those of the isolated straight wire. Specific excitations

produce identically zero current on some but not all of the scatterer arms.

This interesting observation was pointed out quite explicitly by Baum
several years ago [9], and it has been elaborated on and identified most
recently [10,11] as a spatial (or "modal") filtering technique for
efficiently describing, differentiating, and categorizing unique classes or
sets of geometric (as well as electrical) similarities and degeneracies. In
these analyses, Baum et al. have identified the situations where certain
modes of the scattering structure(s) may or may not be excited in terms of
scattering structure modes (and excitations) which are symmetric or
antisymmetric to some convenient (and in many cases obvious) plane of
symmetry. The designation as symmetric modes in this referenced work
corresponds directly to the excitation scenario where only the “crooked
mode” 1is produced in geometries such as the crossed wire. Likewise,
excitation situations which result in identically zero currents on one or
more extensive regions of a scatterer correspond to the aforementioned
antisymmetric modes. However, in this paper, the symmetric mode distributions
will be labeled as '"crooked mode" cases and antisymmetric modes will be
labeled as "zero mode" cases for convenience and consistency with the other

analyses of specific scattering geometries previously cited.

Another careful look at Table 1 reveals that some of the natural fre-
quencies (and concomitant modes) of Case (III) (see #1, #2, #4, and #5) are
identical to some of those found in Case (II) (see #2 and #10). Again it may
be pointed out that for certain unique excitation conditions, the "zero
mode" of the planar symmetric tri-arm is simply the mode of a bent wire with
a bend angle of 2n/3 (120°). Additional calculations not included here
indicate that the "zero mode" natural frequencies (and associated natural
mode functions) for the nonplanar symmetric tri-arm geometry (this
additional geometry results when the three arms defined in Case (III) are
pivoted toward the +z-axis by equal angles with the common pivot point re-
maining at the origin ) are identical to those observed in the isolated bent
wire case for the appropriate geometrical parameters choice. Direct evidence

of this for one specific choice of angles is discussed below.




Additional commonalities apparent in Table 1 relate Case (V) (see #1,
#2, #7, and #8) where £=0.608m (109°5) to Case (II) (see #3 and #11) where
£€=0.608n (109?5). Again the symmetry of the nonplanar tri-arm geometry
exhibits "zero mode" natural frequencies which are identical to those of the

appropriate isolated bent wire.

Another common set of data in Table 1 exist between Case (VI) (see #1,
#2, #3, #5, #6, and #7) where £=0.608n (109?5), Case (V) ( see #1, #2, #7,
and #8) where £=0.608=n (109?5), and Case (II) (see #3 and #11). This is a
most 1interesting situation because iIf one examines the natural mode
functions for the nonplanar symmetric tetra-arm scatterer, two "zero mode"
vectors are found. However, neither of these "zero mode" vectors alone can
account for the commonality found with the nonplanar symmetric tri-arm
structure. This is easily explajned if one observes that the sum of one of
these "zero modes" and the "crooked mode" (both of which possess the same
degenerate resonant frequencies) produces nonzero current on only three
of the four arms, thus mimicking the the behavior of a three-arm scatterer.
Thus some of the natural frequencies of the nonplanar symmetric tetra-arm
are identical to those of the simpler structures although the natural modes

of the more complicated structure are not those of the simpler structures.

A final set of common frequencies (and associated modes) are given in
Table 2 along with other natural frequency data for an interesting geometri-
cal tetra-arm configuration which may be described as a modification of Case
(IV) where the two arms lying along the tx-axes are pivoted up toward the
+z-axis (¢1 and ¢3 remain the same as defined in Case (IV)) and the two arms
lying along the *y-axes are pivoted down toward the -z-axis (¢é and ¢4
remain the same as defined in Case (IV)). It may be observed from Table 2
that when the pivot angle is 0.16667n (30°), the zero mode natural frequen-
cies of the tetra-arm are identical to those given in Table 1 ( Case (II),
#2 and #10) for £=2m/3 (120°). Similarly, when the pivot angle is 0.19591n
(35?264), the zero mode natural frequencies of the tetra-arm are identical
to those given in Table 1 ( Case (II), #3 and #11) for £=0.608=n (109?47),
and when the pivot angle is 0.25m (45°), the zero mode natural frequencies
of the tetra-arm are identical to those given in Table 1 (Case (II), #4 and
#12) for €=n/2 (90°). Indeed, it may be stated (and observed in Table 2)

that the zero mode natural frequencies for each of the tetra-arm cases are



Table 2. Natural Frequencies (slL/c) of the Nonplanar
Symmetric Tetra-Arn.

Pivot Angle zero#///éfooked second harmonic zero#///éfooked
rad/(deg) mode mode mode mode
o . -0.257 * j2.875 | -0.313 = j6.672 | ~0.466 * jS.012
(0) -0.042 *+ 33.220 ~0.589 £ j9.771
0.02778m | -0.256 + j2.876 | -0.306 % j6.671 ~0.466 * jS.018
{5) -0.047 + j3.214 ~0.595 + §9.761
0.055§6n -0.253 + j2.882 | -0.287 * j6.668 | ~-0.466 * j9.036
(10 ) -0.061 * j3.197 ~0.609 *. j9.731
0.08333m | -0.248 * j2.892 | -0.260 * j6.663 | -0.467 * j9.064
(15 ) -0.083 * §3.170 -0.628 * j9.677
0.11111m -0.240 % j2.906 | -0.228 * j6.657 | ~0.472 + j9.104
(20°) -0.110 * j3.133 ]_-0.639_*_j9.597_
0.1388Sm | -0.231 % j2.824 | -0.198 * j6.651 ~0.482 * j9.153
(25°) -0.141 %+ j3.088 -0.633_* j9.494
0.186§7n -0.220 £ j2.946 -0.176 £ j6.646 | ~-0.502 * j9.207
(30 ) -0.173 *+ j3.035 ~-0.599 + j9.380_
0.19444n | -0.206 * j2.973 | -0.167 * j6.644 | -0.532 % j9.261
(35 ) =0.204 * j2.978 =0.538  j9.269
O.ISSan -0.205 * j2.975 | -0.167 * j6.644 | -0.534 + j9.264
(35.26 ) -0.205 + j2.975 -0.534 * j9.264
0.22222r | -0.191 * j3.005 -0.176 * j6.645 | ~0.573 * j9.307
(40 ) ] -0.231 + j§2.917_ | -0.458 + j9.178
0.25000n -0.174 + j3.043 -0.210 ¢ jB6.646 | -0.616 * j9.334
(45 ) -0.253 + j2.859 -0.375 * j9.118
0.27728n -0.155 + j3.087 | -0.272 %= j6.641 -0.647 %= j9.338
(50 ) -0.270 + j§2.795 ~0.305 _* j9.095
0.305§6n -0.135 £ j3.139 | -0.363 * j6.616 -0.647 £ j9.330
{(55.) -0.282 + j2.739 _ -0.268 * j9.107
0.33333r | ~0.114 * j3.200 | -0.471 * j6.555 | -0.608 * j9.328
(60 ) -0.288 * j2.687 -0.287 + j9.142
0.36111n -0.092 + j3.273 | -0.571 * j6.449 | ~-0.532 + j9.353
(65 ) =-0.289 + j2.641 | -0.376 * j9.167
0.38889n | ~0.070 * j3.362 | -0.636 + j6.311 -0.430 % j9.427
(70) ~0.287 + j2.603 _ -0.521 + j9.128
0.41667n ~0.049 + j3.476 -0.652 * jJ6.168 | -0.312 * j9.570
(75°) -0.280 * j2.576 -0.644 * j9.001
0.44444n -0.029 + j3.837 | -0.624 * j6.039 | -0.190 * j9.821
(80 ) ~0.269 +* j2.564 -0.680 * j8.847

# indicates double degeneracx for these zero mode poles
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the same natural frequencies as would be determined for the appropriate bent
wire configuration. (Note that the full-wave, second-harmonic mode natural

frequency is not the same as that of the bent wire configuration.)

It is informative and enlightning to observe the nature of the coupl-
ing of the various natural modes to the individual geometrical structures as
a function of the specific electromagnetic excitation scenario. This infor-
mation helps in understanding which set of excitation conditions contributes
to the existence of the various crooked modes and zero modes which are set
up on the scattering structures. For example, coupling coefficients given by
previous investigators [1,2,4] have shown that the fundamental natural mode
of the isolated thin wire |is excited by  Dbroadside incidence
{ 9p= /2, ¢p= 0, 6.

inc
(full-wave resonance) is not excited by this broadside incidence. Data given

= n/2, ¢1nc= n/2 , whereas the second harmonic mode

in Figures 5a-5d for the planar symmetric tri-arm geometry indicate that for
excitation arriving at the incident angle and incident polarization where
the exciting electric field is orthogonal to arm 1, no current is induced on
arm 1 whereas non-zero currents may exist on arms 2 and 3. This situation
was previously designated in Figure 3a as the "zero mode" configuration
for the planar symmetric tri-arm. The current mode where non-zero currents
exist on all three arms simultaneously (coupling coefficients as shown in
Figure 3b) may be designated as a type of "crooked mode" similar to that
found in the planar and nonplanar tetra-arm (crossed wire) cases. In this
case, component "crooked mode" currents flow from arm 2 and arm 3 onto arm
1. Note that the amplitudes of the natural mode functions in Figure 3b dis-

play the superposition of these two "crooked mode" components quite clearly.

The coupling coefficients for the planar symmetric tetra-arm (planar
perpendicular symmetric crossed wires) scatterer are shown in Figures 6a-6d.
As has been discussed already, the coupling coefficients which produce
the "zero mode" and the ‘"crooked mode" distributions are clearly
demonstrated. It is also apparent that this configuration does not lend
itself to a geometrical decomposition into a pair of 90° bent wires. This
can be explained since there is no conceivable excitation which would induce
currents on any two mutually orthogonal arms without also producing current
on the other mutually orthogonal arms, i.e. superpositions of "crooked

modes" and "zero modes" will not yield currents with this nature.

11
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(sL/c = -0.313 +j6.8672).
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Two other geometries which yield Iinteresting sets of coupling

coefficients are the nonplanar symmetric tri-arm and the nonplanar symmetric

tetra~arm. Figures 7a-7d and 8a-8d present these coeff;cients for the cases
which excite the "zero mode" and "crooked mode" components, respectively.
Since the "zero mode" case is essentially just that of an isolated bent
wire, it 1is expected that the natural frequencies and associated mode
functions are Jjust those already given for the arbitrarily bent wire (the
first entry in the second and fourth columns of Table 2.) Note that the
situation given in Table 1, Case (V), #3, #4, #9, and #10, and Table 2,
pivot angle of 45°, represents three mutually orthogonal wires and a pair of
mutually orthogonally 90° bent wires, respectively. In each of these two
cases it is possible to excite "zero mode" currents on two of the arms
without exciting currents on the third or third and fourth arms,
respectively. Thus both of these structures have natural frequencies and

natural modes which are identical to the isolated 90° bent wire.

It should be pointed out that the coupling coefficients for the Case II
configuration (the isolated bent wire) are inherently included in the coef-

ficients previously presented for the planar and nonplanar symmetric tri-arm

configurations where the existing natural mode is the "zero mode".

IV. Conclusions

In the preceding sections SEM parameters for several different
geometrical scatterers have been presented. Various commonalities which
inherently exist in these SEM parameters have been delineated. The
relationships between these various parameters and the pertaining electrical
and geometrical conditions have been presented and discussed. It is the
opinion of the authors that additional insight into the fundamental nature
of scatterers such as were addressed in this limited analysis and enhanced
utility of observations such as these presented here may be useful to other
investigators who proceed along similar lines of investigation for more
complicated (and/or more practical) scattering or radiating antenna

geometries.

16
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