INTERACTION NOTES

NOTE 464

APRIL 1988

Electromagnetic Penetration of Narrow

Slot Apertures Having Depth

Larry K. Warne and Kenneth C. Chen

Sandia National Laboratories, Albuquerque, NM 87185

ABSTRACT

The problem of electromagnetic penetration of a narrow slot aperture in a thick,
perfectly conducting plane is reduced to the solution of Hallén's integral equation with an
equivalent antenna radius. The depth and width of the slot are assumed to be small
compared to both the length of the slot and the wavelength. The equivalent radius is
evaluated in terms of the solution to the transverse static problem. Simple approximations
for the equivalent radius are also given. Hallén's integral equation is solved by both the
Galerkin method with piecewise sinusoidal basis functions and by King's three—term
method. Large slot depth—to—width ratios give rise to vanishingly small equivalent radii
and thus large antenna resonance quality factors. The axial magnetostatic dipole moment
of the slot is derived by means of Hallén's iteration method. A simple correction to the
static field distribution in the slot is also given. This correction allows the depth to

become somewhat larger relative to the wavelength.
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I. INTRODUCTION

Electromagnetic penetration of apertures in thin, perfectly conducting planes has
been studied in considerable detail. References can be found in the books by Lee [1] and
Van Bladel [2]. However, apertures always have some depth, and many times, the depth is
larger than the width. For example, Figure 1 shows a bolted joint between sections in the
outer conducting shell of an object. The aperture has a length of approximately the bolt
spacing because the conductors tend to bow when the bolts are tightened. The tortuous

depth route is many times the width of the aperture.

Apertures that are infinitely long in thick, perfectly conducting planes have been
considered by Harrington and Auckland [3]. Seely [4] has considered arbitrarily shaped
apertures, which have small depth compared to the wavelength, in perfectly conducting
planes by a modification of existing zero depth moment method codes. Seely's results show

increasing slot quality factors with increasing depth.

This paper considers the slot with finite length, ¢ = 2h, shown in Figure 2. The
transverse dimensions, width w and depth d, are assumed to be small compared to both the
length £ and the wavelength A. A plane electromagnetic wave impinges on the slot from
the half spacey < — % The problem is reduced to solving Hallén's integral equation with

an equivalent antenna radius.

The problem is symmetrized in Section II by allowing a wave to also impinge from
the half spacey > % The "even" excitation of the slot is dominant in the width and depth
limits being considered. The field "local" to the slot for the "even" excitation is the same
as the field in the transverse static solution corresponding to a cross section of the slot.

Section III briefly reviews this two—dimensional static solution. Section IV replaces the
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Figure 1. Bolted joint in the outer shell of a system. The conductors tend to bow between

bolts, creating a slot aperture having depth. ‘H
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Figure 2. Rectangular slot aperture with length much larger than the width and depth. A

plane electromagnetic wave impinges at an angle 00 with respect to the axial or z direction.



slot by a magnetic cylinder antenna of appropriate equivalent radius, evaluated in terms of
the transverse static solution. Section V introduces and gives the solution to Hallén's
integral equation (which determines the magnetic current along the antenna or
equivalently the voltage along the slot) by means of the Galerkin method with piecewise
sinusoidal basis functions and by King's three—term method. Section VI determines the
axial magnetostatic dipole moment of the slot by Hallén's iteration method. A simple
approximate solution of the "odd" problem, the addition of which allows the depth to

become somewhat larger relative to the wavelength, is carried out in section VII.

Appendix I gives a more rigorous derivation of Hallén's integral equation and the
equivalent antenna radius starting from the integral equations of the narrow slot with
depth [5]. A comparison is also given of the Galerkin solution to the "exact deep" integral

equations and the approximate solutions mentioned above.



II. FORMULATION

A wave impinges on the slot in Figure 2 from the half space y < — % with fields

(1)
inc _ ik.r
H™=H e="= (2)

where H = (k x E_)/(wp,) and E_ are the vector amplitudes, k =k e + kygy + ke, is
the wave vector, r = xe + ygy + ze, is the position vector, w is the radian frequency, and

time dependence e 19 is uged throughout.

The problem is scalarized by the following procedure. The fields can be expressed in

terms of the electric vector potential [6]. However, because the slot is narrow
kw << 1, w << ¢, (3)

the small axial electric field EZ, at the faces of the slot, y=+d/2, 0<x<w, may be ignored.

A magnetic surface current density [7]

K. =-nx(E,—E) , (4)

where n is the unit normal pointing from region 1 to region 2, on the surface of perfect
conductors at the slot faces may replace the tangential electric fields. Because E_is set to
zero by conditions (3), the magnetic surface currents are z directed K The integral
representation for the electric vector potential A, in terms of these surface currents [7] thus

has only a z component A ez The fields generated by the slot can thus be described by Aey



alone.
The fields are obtained from the electric vector potential by means of [7]
D=-VxA, , (5)
and H=-Vp +iwA, , (6)

where the magnetic scalar potential, O is found from

V A, =iwp€ o, (7)

and the constitutive relations are
D=¢ E , (8)
and B=u H . (9)

The incident axial magnetic field excites the dominant modes of the slot, where

Hinc —H ei_lg I (10)

Z 0Z

and Hoz is the incident axial magnetic field amplitude. These modes account for the major

penetration of the narrow slot.

It is convenient to symmetrize the problem by allowing a wave to impinge on the

slot from the half space y > % The odd and even short circuit (with the slot shorted) axial



magnetic fields can be written as

ik.r

ek -1y ok (x+de)

d
2

oz ’

(11)
ik..r, ik.(r—de d
= H, Iy ok (T mdey)y g
wherek’ =k e — kygy + k e . The top () sign gives rise to the "even" problem, since
E_is even iny, and the bottom (+) sign gives rise to the "odd" problem, since E_ isodd in

y. The field (11) evaluated at the slot faces yields

s¢__yinc  _  d
I—Iz _Hz Y =3
. 12)
inc _d (
1HZ ,Y—g )

0 od .
. —ik & k 0
where H!ne — [H e l y2] e1 “0%%
OZ

)

k = wJuoEo is the magnitude of the wave vector, 00 is the angle of incidence with respect
to the z axis, and conditions (3) have been used to discard the x dependence. Notice that
the quantity in parenthesis is the incident z component of the magnetic field at the center

of the incident slot face.

The short circuit axial magnetic field (12) corresponds to a short circuit electric

vector potential

SC _ ,inc __d
Ay =Hheg Y= "3 (13)
__Ainc _d
T F ez YT




oo d
-ik &
; lH e y2 .
where Aélzlc=—i 0z l cikzcosf

.2
w sin“f
Figure 3 shows a cross section of the slot and depicts electric surface currents K = n
x H, where n is the outward unit surface normal on the conductor. The "odd" problem has

very small slot electric fields when the conditions
kd << 1,d << ¢, (14)

hold. Notice that the slot may be shorted in this case without appreciably affecting the
flow of surface current. The "even" problem, however, does result in substantial electric
fields in the slot. This is obvious from the build up of surface charge on the slot walls in

the "even" problem.

The fields in the vicinity of the slot in the "even" problem are static in nature when
conditions (3) and (14) hold. The strategy for choosing an equivalent antenna radius, for
the "even" problem, is to replace the slot by a simpler structure having the same "local"
electrical properties. To do this, we need the "local" transverse static solution to the slot

problem.
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Figure 3. Cross section of rectangular slot aperture and two different parities of excitation

with respect to the depth. The "even" problem has significant displacement current inside

the slot.
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III. TRANSVERSE STATIC SOLUTION

Figure 4 shows the slot cross section. The slot voltage in the "even" problem at a

position z is

V(z) = va E, dx, (15)

where the integration is, say, over the incident slot face y = — % The "local" transverse
electrostatic problem can thus be taken as having the left conductor (x<0) at electrostatic

potential V and the right conductor (x>w) at electrostatic potential 0.

The Schwarz — Christoffel transformation [8] can be used to transform the region
surrounding the conductors in the z = x + iy plane of Figure 4 to the upper half of a Z; =
Xy + iy1 plane. An exponential transformation can then be used to map the problem into
a strip domain with uniform field (Note that the antenna mode consists of equal and
opposite charges on the left and right conductors. Introduction of a second incident wave
reflected in the x = w/2 plane [5] allows the problem to be decomposed into an antenna
problem driven by the axial magnetic field and a problem driven by the transverse

magnetic field and normal electric field). The electric field is given by

where the electrostatic potential ¢ can be taken as the imaginary part of a complex

potential W
wo=ImW . (17)

12

-



y
{L

Figure 4. Rectangular slot cross section and electrostatic potentials for the "even"

problem.
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The complex potential from the conformal mapping is

_v,A
W=— en(q) : (18)
where [9]
!
2= [ A0-D02%))  +w-if (19)
1 5 dz
%1

and ay is an arbitrary real constant. The usual principal value is taken for the branch of
the square root of each linear factor in the integrand of (19). The parameter p is

determined from the transcendental equation [9]

o4 - _2B(p) = (14p> ) K(p') )
w 2 ’
2E(p) — (1-p")K(p)
/2
where K(p) = | L (21)
J 2 .2,
o {1-p“ sin“@
T2 | ———
Ep) = | 1192 sin%6 a0 | (22)
(o]
are complete elliptic integrals of the first and second kinds, and
p =11 - p*. (23)
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The constant C, is determined from p by means of the relation [9]

K(p) —2E(p) . (24)

Figure 5 [9] shows a plot of p and — C; /w as a function of d/w. The asymptotic
limit [9]

(2+7d/w)

p~4/e ,d/w>>1, (25)

is also shown. The value of p approaches unity as d/w - 0. The quantity —Cl/w
approaches 1/r for d/w >> 1 and the value 1/4 for d/w - 0. Expansions for p and —C, /w

that give accurate results over the full range of d/w are given in Appendix II.

Figure 6a shows the "local" electrostatic field lines. Figure 6b shows the

corresponding orthogonal magnetostatic field lines.

The electric field can alternatively be derived from the z component of the electric

vector potential by means of (5) and (8) where we may take
A, =—€,ReW. (26)
The magnetic field may be determined from a magnetostatic scalar potential Y

where we may take

15
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Figure 5. Parameters of conformal mapping solution of the electrostatic slot problem.
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Figure 6. "Local" fields surrounding the slot are static in the "even" problem. (2)

' Electrostatic field generated by the potential difference V.
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Re W , (28)

and the voltage V, in (18), is replaced by the total magnetic flux per unit length d, passing

through the slot in the y direction

5= (B, d
= X .
Js,

19



IV. EQUIVALENT ANTENNA RADIUS

Consider the structure shown in Figure 7. The cylindrical surface is a perfect
magnetic conductor. The two half planes are perfect electric conductors at different
potentials. The exterior field at points distant (compared to the width) from the slot of
Figure 4 is nearly identical to the field in Figure 7. Of course to make these exterior fields
the same, the coordinate system in Figure 7 must be aligned with the center of one of the

+

slot faces y = + %, in the slot problem of Figure 4, depending on which half space, y 2t

%, is being considered. We wish the antenna properties of the structure in Figure 7 to be
the same as those of the "even" slot problem. The "local" fields of the "even" slot problem
are approximately TEM [10]. If the "local" capacitance per unit length and the "local”
inductance per unit length are made to agree with those of the slot, by choosing an

appropriate equivalent radius, a, in Figure 7, then the antenna properties of this structure

will be the same as those of the slot.

Let us choose a distance R characteristic of the extent of the "local" region such

that
kR << 1,{>>R>>w . (29)

Figure 8 shows the slot with the distance R marked on the left conductor. The
charge per unit length Qp, on the left conductor (out to the distance R on the exterior of
the slot and including the interior wall of the slot), can be found by integrating the normal

component of D over the metal surface. Using (5) and Stokes integral theorem this charge

is

20



X

0

P

Figure 7. Perfect magnetic conducting cylinder of radius a sandwiched between two perfect

electric conductors at different electrostatic potentials.
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Figure 8. Rectangular slot cross section with distance R shown. The distance R is much
larger than w, but much smaller than the slot length and the wavelength.
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QR=—ié€-Q€, (30)

where the contour, C, bounds the surface over which the charge is desired. Because A, has
only a z component, from (30) we obtain

QR:Aez(z=—R——i%)—A z=—R+i%) , (31)

ezl

where the subscript z has the meaning of axial coordinate, whereas the argument z has the

meaning of complex location z = x + iy in the transverse plane.

The electric vector potential in (31) is obtained from (26). Expanding (19) at the

locations indicated in (31) yields the asymptotic relations [5]

R _ .d
ZleTj'l ,Z—_R,‘i‘lf 5 (32)
C
1 . d
erVR,_ ,Z:—R—lg , (33)

where R is large (compared to w) and positive. Using (32) and (33) in (18) the electric

vector potential (26) can be evaluated in (31) to give

QR~2EO¥€H[ R ] (34)

The local capacitance per unit length is simply
CR = QR /V . (35)

23



The charge per unit length, out to a radius R, on the left conductor of Figure 7 is

R
Qp = 2€, [ B, dp=2¢, Yo | (36)
a

where p and ¢ are cylindrical coordinates, E é is the electric field in the lower half space,
and the factor of 2 accounts for the upper surface of the conductor. Comparing (34) and
(36), or the corresponding capacitances per unit length (35), we can make them equal by

taking the equivalent radius to be
a=-C; ip . (37)

This choice of equivalent radius, of course, also makes the "local" inductances per

unit length,

Lp=8/1g , (38)

equal. The current IR, out to a large distance R on the left conductor, including the

interior wall, is found from

IR:(JJﬂ.(gzxp)dZ , (39)

where the contour C extends over the left conductor surface, and n is the outward unit

surface normal on the conductor.

Two limiting forms of the equivalent radius can be found from limiting values of p

24
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and —C/w as

a"\'%v' 7%_’0 ) (40)
and using (25)
d
(1+5)
a~%w/e 2w ,% >> 1. (41)

A useful approximation to the equivalent radius can also be derived by considering
Figure 9. The electric field surrounding the slot in a very thick plane is compared with a
uniform interior field and the exterior field surrounding a slot in an infinitely thin
conducting plane. The charge deposited on the conductors is well approximated by the
composite uniform—thin slot field distribution. The thin slot exterior charge per unit

length can be obtained from the limit (% - 0) of (34) as

\
QS =S wd - (43)

aw¥e V. (44)

One way to compare the approximation (44), and the exact formula (37), is to

compare the fatness parameter

25
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Figure 9. Electrostatic field surrounding a very thick slot. The exterior field surrounding
an infinitely thin slot and an interior uniform field are superimposed.
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) a=2m2 , (45)

using each of these two values for a. The reason for comparing € is that the fatness
parameter is essentially the form the equivalent radius takes in slender antenna theory [11].
The fatness parameter is labeled as ap when (44) is used in (45). Figure 10 shows the
ratio of Qap to the true Q for a slot with typical dimensions. The error in using
approximation (44) is typically quite small. In fact, using (41) and (44) in (45), we obtain
d

=>>1 . (46)

ey _
Q-0 ~20(g =13,

27
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Figure 10. Ratio of antenna fatness parameters for typical slot dimensions.

is
ap
determined from the approximate equivalent radius, whereas 2 is determined from the
exact equivalent radius.
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V. ANTENNA SOLUTION

Figure 11a shows a magnetic scattering antenna for which the tangential
components of the magnetic field vanish on the surface. Figure 11b shows a cross section of
the same antenna carrying total magnetic current I . If the magnetic current I is taken
to be

I, =-2v, (47)

then the "local" azimuthal electric field in the lower half of Figure 11b,

-1

By= 57, » (48)

is identical to that of Figure 7. The electric field in the upper half of Figure 11b is minus
that of Figure 7.

The electric vector potential due to the current I [7], in Figure 11, is

approximately

h
Ao, =& I I (z7) Glpzz)dz” (49)
—h
ei kR
where G(p,Z,Z/) = IR >

2

R=1p + (z2)°

The approximation of assuming the current is confined to a zero radius filament has been

29
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Figure 11. Magnetic scattering antenna of radius a. (a) Scattered magnetic field near the

antenna.
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(b) Scattered electric field generated by the magnetic curre
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made in (49) [12]. Hallén's integral equation is obtained by requiring the total axial
magnetic field, consisting of the sum of the incident field (10) and scattered field, to vanish

on the surface p = a. The scattered magnetic field can be determined from the formula

(50)

H =1 [iz+k2]A

y
z  wp € az2 ez

where the scattered potential (49) is used in (50). Integration of the differential operator in

50) yields Hallén's integral equation
g

ikRa
€ I (z°) % dz’ = ——Ainc(z) + C_ coskz
o { m 47rRa ez o

+ C, sinkz (51)

where C_ and C, are integration constants, R, = JaQ + (z—z’)2 , and the incident

electric vector potential at the antenna axis is

inc i ikzcoséd
Ay, (2) = ———5—H, %% (52)
w sin”é

o
The constants C_ and C, are evaluated by requiring

I_(+h)=0 . (53)

The scattered field resulting from the cylindrical structure in Figure 7 can also be

represented by the magnetic current (47), in the illuminated half space y < 0. The total

32
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axial field (50), where A, 18 now the sum of the scattered potential (49) and the short
circuit "even" problem potential (13) (upper sign), again vanishes on the cylindrical surface
p = a. Hallén's integral equation (51) thus also forms the basis of solution of the "even"
slot problem with equivalent radius (37), and relation (47) yielding the voltage along the
slot. Note that the short circuit potential of the "even" slot problem (13) is identical to
the incident antenna potential (52), provided H oz I (52) is interpreted as the axial
magnetic field at the center of the incident slot face. Of course, as a result of condition
(14) there is little difference in phase in the slot depth, but nevertheless the figures will be
labeled to reflect the phase reference of H , being at the center of the incident slot face.

The solution to (51) will be carried out by two standard methods.

King's three—term method [13] represents the solution to (51), for normal incidence,

as
. nOHOZ .
I (z) =—idr xQ [\pdD (coskz — coskh) —1%,07
(cos%kz — cos%kh)} , (54)
where Q=Yyp [\I’dUR coskh — \IIU(h)] + i\IldUI\IID(h) ,

and 7 ={u O]Eo is the impedance of free space. Integral representations for the various ¥
parameters are given in Appendix III. The ¥ parameters were evaluated by numerical
integration; however, it should be noted that for the examples given, these integral
representations can be approximated for small radius a in terms of standard sine and cosine

integrals.
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The Galerkin method with piecewise sinusoidal basis functions [14] represents the

solution to (51) as

1(&=) I F(@), (55)
n=-—N

where Im , are coefficients and the basis functions are piecewise sinusoidal

. _ sin(kz — kz_,) )
' =Sk, —kz_) 0 197 <%
sin(kz kz)
n+1
=Sk, — kz.) * %0 $%<7Zn41 (56)

= 0, otherwise.

Appendix IV gives the linear system from which the coefficients Imn are determined . The

axial locations z,, lie along the antenna interval with

Zy(N+1) = 1B

Linear spacing

where A = h/(N+1), was used in the examples.

Appendices IIT and IV also give formulas for the power radiated by the magnetic

current on the antenna. By symmetry, resulting from conditions (3) and (14), the radiated

34



power is approximately twice the transmitted power

P 2 P (59)

rad — “ *Ttrans

Figure 12 gives normalized center voltage Z\T;iTOI)_ magnitude and normalized
O 0Z

[; d , where S _ = % | HOZ|2 , for two slot examples. The value of
S

radiated power

(o]

antenna parameters, % or (2, identifies each of the two examples in Figure 12. Many sets of

slot parameters (;Ne— , %
d

case, - = 0, is listed in Figure 12. The number of basis functions in the Galerkin method

) correspond to each of these antenna parameters. The particular

(2N+1) was chosen to keep the spacing A no smaller than roughly four radii. The incident
wave impinges normally (#_ = 7/2) in all examples. The agreement between the King
three—term solution and the Galerkin solution is quite good. The graphs in Figurc 12 were

gkh _ 5

terminated at an abscissa o = D because the three—term method is only alleged to be

valid up to this point {15].

Figure 13 gives the normalized center voltage magnitude and normalized radiated
power from the Galerkin method for a slot with various depths. The peak values of the
resonances are nearly independent of the depth, because the reactive components of the
antenna, which this parameter strongly influences, cancel out at the resonances. The
voltage and radiated power are greatly reduced away from resonance, as the depth

increases relative to the width.

Notice that the value of kd, for the case % = 25, in Figure 13, approaches unity at

the upper end of the -151% r

will be demonstrated in Section VII that these results still give a reasonably good

ange. This violates one of the conditions (14). Nevertheless it

approximation to the slot voltage. This is not too surprising if one considers that the first
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Figure 12. Normalized center voltage magnitude and normalized radiated power for two
slot examples. Both the Galerkin solution and King three—term method are shown. (a)

Center voltage magnitude Q = 8.76.
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Figure 13. Galerkin solution for normalized center voltage magnitude and radiated power

for a slot with £/w = 500 and varying depth. (a) Center voltage magnitude.
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/4

d >>1and g >> 1, does not occur until kd » 7 [16].

depth resonance of a slot, with w
Figure 14 gives the normalized center voltage magnitude and normalized radiated
power for several useful values of the fatness parameter §2. Notice that the approximate
fatness parameter from (44) and (45) has the simple form
_ 44 d
Q&p =2 Zn(w—) + WW y (60)
where the first term is the exterior thin slot contribution and the second term is the

uniform interior field contribution.

Duality may be invoked to relate the magnetic current I  along the magnetic
antenna to the electric current I along an electric antenna (both currents are defined to be

positive if directed in positive z)

Im(z) _I Z (61)
ﬂO [o)/A EO 0Z ’

where EOZ is the z component of the incident electric field at the center of the axis of the
electric antenna, and the angle of incidence §  must be the same in both electric and
magnetic cases. Note that it is also possible to find an equivalent thin slot, by the same
approach as taken in Section IV, and then use Babinet's principle [17] to transform to a

strip and finally to an electrical antenna [12] with equivalent radius.

The "local" fields of the slot are found from the static solution, (16) and (27), once

V(z) is known. From Faraday's Law
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Figure 14. Galerkin solution for normalized center voltage magnitude and normalized

radiated power for several useful values of the fatness parameter Q. (a) Center voltage

magnitude.
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ffg.gg:iws[g.gds, (62)
C

applied to a contour perpendicular to the slot cross section, of differential length, the

magnetic flux per unit length is

B(z) =~ L Vo). (63)

The "nonlocal" fields of the slot can be determined from (5) through (9), where on
the illuminated side of the slot the scattered potential is (49), and on the unilluminated
side of the slot the potential is minus (49). The antenna coordinate system in (49),
however, must be interpreted as having its origin at the center of whichever particular slot

face,y = + %, corresponds to the half space of interest, y2 + d
5
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VI. MAGNETOSTATIC DIPOLE MOMENT

Figure 15 shows the low frequency short circuit magnetic field impinging on the
plane conductor and penetrating the slot. The dominant penetration of the slot at low
frequencies involves the axial magnetic field. Bethe hole theory replaces the aperture in a
plane by an equivalent dipole moment. The fields generated by the aperture in the far zone
of the aperture are these dipole fields. The axial magnetostatic dipole moments of the slot
with depth are shown in Figure 15. An asymptotic solution for these dipole moments will
be given in terms of the large parameter Q.

The magnetic scalar potential, resulting from the magnetic charge per unit length
q,, along the dipole of Figure 11a, can be written as an integral [7]. Using the filamentary

approximation for low frequencies we obtain

where R =Jp2 + (z — z’)2. Because the axial magnetic field must vanish along the

antenna surface we obtain from (27) a static Hallén type equation

i
=
o
—_
N
~—
l
N
f

(65)
o a

, ha,(z)
— m dz’ = —¢
m l 4 7R m

where R, = ,la,Q + (z—z’)2 , Hy,, s the axial component of the incident magnetic field at
the antenna axis, and there is no integration constant on the right side of (65), because by
symmetry the magnetostatic potential and magnetic charge per unit length are odd with

respect to z. Following a static form of Hallén's iteration procedure [18], we add and
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Figure 15. Magnetostatic field penetration of the thick slot. The equivalent axial

magnetostatic dipole moments are shown.
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q,,(2)
substract Z%Tf; to the integrand of (65). This yields approximately

2
[+ (1 —f?)] q.,(2) + - dz’

vdmpz H o . (66)

Regarding  as a large parameter, (66) may be solved iteratively to generate an expansion
for qppye The zero order solution retains only © on the left side of (66). The first order

solution is thus

dmp, 2 1 2°

The potential exterior to the slot is (64) on the illuminated side of the slot, but
minus (64) on the unilluminated side of the slot. The same comments regarding the
coordinate system in (64), as discussed at the end of Section V, apply here. Thus in the far

zone, r>>h, the potential is

h
P d
(pmNIgl———Z 3 {qm(z’)z dz Y2t - (68)
T

Inserting (67) into (68) gives
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where the short, circuit field is Hic =2H_, and terms of order 1/Q in the parenthesis have

been dropped. The magnetostatic potential of a dipole of moment m is

m.r
Oy = 3 - (70)

Comparing (69) and (70) we may write the dipole moment as [1]
_ sc
m=-2a H"ve, (71)

where the polarizability o is given by

The fatness parameter Q is (45), with equivalent radius (37).

51



VII. "ODD" PROBLEM

The solution to the "odd" problem will now be estimated assuming conditions (3)
and (14) still hold. The axial component of the magnetic field in the slot, away from the
ends z = +h, is approximately the short circuit magnetic field, as illustrated by Figure 16a
(angles near grazing incidence are not being considered). From the bottom sign in (12), the
value is

ikzcosd =
H =H e o (73)
where the amplitude H __ is now assumed to be the incident magnetic field at the center of
the incident slot face. Figure 16b shows the slot cross section with a contour for

application of Faraday's law (62). The approximate result for the "odd" part of the

voltage across the slot (15) is therefore

V(z) = —wp  y w H,, eikzcosﬂo , —

TN

(74)

The "odd" contribution (74) thus forms a small correction to the "even" voltage discussed

previously.

Figure 17 shows the curves % = 10, 25 from Figure 13a compared with those
obtained by addition of (74) at the unilluminated and illuminated slot faces, y = + d/2.
The agreement is quite good except in the vicinity of the minimum where the "even"

center voltage becomes small. There is some deviation between the "even" voltage and the
kh d

"combined" voltage near == 3, for v 25. The quantity kd approaches unity in this
region and one of the conditions (14), upon which both the odd and even solutions were

based, is violated. Nevertheless, because the discrepancy is still rather small, it is
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Figure 16. The magnetic field in the "odd" problem. (a) The magnetic field away from the
ends of the slot is approximately the short circuit magnetic field. (b) Contour for

application of Faraday's law.
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reasonable to infer that the exact solution is very close to these results. See the results at

the end of Appendix I for a confirmation of this assertion.
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VIII. CONCLUSIONS

The problem of electromagnetic penetration of the rectangular slot aperture shown
in Figure 2 was reduced to the solution of Hallén's integral equation with an equivalent
antenna radius. The conditions (3) and (14) are assumed to hold for this approach to be
valid. The equivalent radius was evaluated in terms of the solution to the transverse static
problem giving equation (37). Approximations for the equivalent radius were also found,
see equations (40), (41), and (44). The solution of Hallén's integral equation was
illustrated by King's three—term method and the Galerkin method. The low frequency
axial magnetostatic dipole moment and polarizability were derived by means of Hallén's
iteration method. Note that the theory of the long antenna [19] can be applied to

determine the voltage along slots that are several wavelengths long.

Generalizations of these results can also be easily accomplished. For example, the
approximate formula (44) for the equivalent radius, also applies to the slot cross section of
Figure 18 provided that d>>w. This tortuous depth route is perhaps a reasonable
approximation to the cross section of Figure 1. The effects of the slot bends may also be
included. Figure 19a shows a right angle bend. The uniform field interior charge per unit

length is

Y 2) . (75)

< _
Q Veo(w—1 W,

unif —
A correction due to the corner can be obtained from conformal mapping and is given by

< A< A< _V W1 Wo  Wo Y1
AQT=Q "~ — Qunif = <€ [2(@ arctanw—1 + Vv—l arctanvv—Q)
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- g(% + Vv:—?) + 20{d (14w w2 1+ we/w?) /4)] (76)

where dl’ d2 >> Wy, Wo, and Q< is the actual interior charge per unit length. Figure 19b
shows a generalization of the slot of Figure 18. The above formula can be applied to each
of the two bends of Figure 19b, as long as they are well separated. Because the slot is very
thick, the exterior plus fringing (at the face edges) charge per unit length can be obtained
from the limit (d>>w) of (34) minus (43). Generalizing this charge per unit length to two

different end widths yields

QF ~ 26, ¥ tn [RL] . (77)
2 WiWg

Applying these results to Figure 18 we obtain the more accurate equivalent radius

o
R

- S

=

2
®

VB
O+——p.
5

[oR

v

A

(79)

The factor in the denominator (er/2), of course, assumes that the slot is perpendicular to
each half space at s=0,d. Gradual variations of d and/or w with the axial distance lead to
a varying equivalent radius a(z). The equivalent radius (37) also applies to the hatch
aperture of Figure 21. Introduction of the equivalent radius (37) can thus incorporate

depth in existing zero depth magnetostatic polarizability formulas for hatch apertures [1].
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TORTUOUS PATH

Figure 18. Slot with tortuous depth route.
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RIGHT ANGLE BEND

Figure 19. Geometry for slot bend corrections. (a) Single right angle bend in the depth.
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TORTUOUS PATH

(b) Generalization of tortuous depth route to several different widths.
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SLOWLY VARYING WIDTH

Figure 20. Slot with slowly varying width in the depth direction.
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RECTANGULAR HATCH APERTURE

Figure 21. Rectangular hatch aperture having depth.
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The induced current on a wire behind an electrically small slot aperture, having depth, can

be easily determined [1] from the polarizability (72).

The rectangular slot problem was symmetrized and split into "even' and "odd"
parts with respect to the depth. The "even" part is dominant in the limits (3) and (14),
and is modeled by Hallén's integral equation. A simple approximate solution to the "odd"
problem was found by means of Faraday's law. The addition of the "odd" solution relaxes

the requirement that kd be very small compared to unity.

A rigorous splitting of the generalized problems mentioned above into "even" and
"odd" parts is not always possible. However, as long as the slot cross section is small
compared to both the slot length and the wavelength, the "local" fields are approximately
static and Hallén's integral equation with the equivalent radius describes the major
inc

penetration of the slot. The "even" excitation (Ex even with respect to y) still

dominates and the above derivation for the equivalent radius is valid.
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APPENDIX I. INTEGRAL EQUATION DERIVATION OF EQUIVALENT
ANTENNA RADIUS

This appendix gives a mathematical derivation of the equivalent antenna radius

starting from the integral equations for the slot with depth.

Part A formulates the "exact" integral equations under the restrictions that kw<<1
and w<</, so that the electric field component along the length of the slot may be ignored.
The integral equations are derived for both the "even" and the "odd" parity of E _ with
respect to the depth. Part B makes use of the conditions kw<<1 and w<</ to further
simplify the integral equations. Part C approximates the integral equations in the
additional limits kd<<1 and d<</. Part C also gives the dominant odd solution. Part D
defines the equivalent antenna radius by comparison with Hallén's integral equation. Part
E determines the equivalent radius in terms of the "discontinuity" of interior and exterior
static electric vector potentials at the slot face. This "discontinuity" is evaluated in Part I’
by use of the analytic conformal mapping solution. Part G simplifies the integral equations
of Part B when the depth is much larger than the width but otherwise unrestricted. The
integral equations of Part G can be used to investigate depth resonances [16]. Part H gives
a comparison of the Galerkin solution of the integral equations of Part G with the Galerkin
solution of the integral equations of Part D using the equivalent radius of Part F. Part H

also gives Hallén type zero order solutions of the "even" and "odd" integral equations of

Part D.
A. "Exact" Integral Equations

The limits kw<<1 and w<</{ are assumed to hold. The tangential electric fields at

the slot faces, y = + %, can thus be replaced by z directed magnetic currents by means of
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(4). The magnetic currents generate electric vector potentials satisfying the Helmholtz

equation [7]. The vector potentials exterior and interior to the slot can be written as

where

and

where

d
Ag, M = 2, g [ Kmpt) G7(m 1) ds” vz 5, (80)
+

4 d s ’ 7
sz(x ’ifvz )ZiEx(X ,:"_7,2 )
d d
AS D=6 [ [ K ()6Sr)ds,—§<y<§, (81)
S, +5_
W o
G<(£,£’) = - 2 Z €, zv%cosn;:x cosL.IX sinm?(z’—i-h)
m=1 n=0

d ,
sz(x’, ig, z’) = IEX(X’, to5 2 )
2 mr,2 nm\2
max
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Here € is the Neumann number (equal to 1 if n=0; equal to 2 if n>1), and S 4 are the slot

faces at y’ = i% ,—h <z’ <h,and 0 < x” <w. The function G~ is the free space
Green's function and the factor of two, in (80), accounts for the magnetic current image in
the planes y = + 521— The function G< is the Green's function satisfying Neumann
boundary conditions on the faces y = + —2(1 and walls x = 0, w and Dirichlet boundary

conditions on the walls z = +h.

The excitation of the slot is split into even and odd parts with respect to the depth
coordinate y. We therefore assume the short circuit potential (13) excites the slot.
Matching the z component of the magnetic field (50) at the facey = — % leads to
integro—differential equations for E_. The resulting integral equation for E_"even" with

respect to y is

I mn , nmT nw_, ’ ’ —
sm—z—(z+h) sm7(z +h) COS—X COS—X ]dx dz’ =

~A2(2) + C; sinkz + C} coskz (82)

where R =J(x—x’)2 + (z—zi’) ,

inc

z) is given below (13). The integration
ez (2)IS g g

C¢ and Cj are integration constants, and A
constants are taken to be independent of x so that HX and Dy are also continuous at the

slot faces.
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Strictly speaking we are not permitted to additionally require continuity of HX, and
thus Dy, at the slot faces. This results from the fact that the small electric field
component E_ was ignored at the slot faces. However the existence of exact solutions to
the integral equations in this appendix will not concern us. As in the case of Hallén's
integral equation, we assume that the integral equations will provide us with asymptotic
approximations in the limits being considered. Alternatively, the differential operator of
equation (50) may be applied to these integral equations, and only integrated after the
transverse dependence has been eliminated. This alternative procedure leads to identical

results.

The integral equation for Ex "odd" with respect to y is

h w ikR ol d

, _d _,\le o 1 coty =

< [ [2E =52 (R 2 hy L L & Tmn
~h o m=1 n=0 "mn

sin%l(z+h) Sin%lr(z’—kh) cosn—xx cosé’v—”x’]dx’dz’ =
~A"%(z) + CY sinkz + C! coskz | (83)

€z

where C and CT are integration constants independent of x.

The electric field vanishes at the ends of the slot
E_(x +d +h) =0 (84)
x\*r 2’ I ]
which is used to find the constants Cé and Ci or C'c; and C'l'.
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B. "Approximate" Integral Equations

Because of the conditions kw< <1 and w<</{ the interior propagation constant can

be approximated as

Yo ¥ I+ 0 # 0 (85)
Using (85) along with the identity [20]
0
2 sin%lz sin%lz’ = g Nz—=z"), 0<z,2" <, (86)
m=1
and the product approximation [12]
E (x,~ %2 % V(@) f(x) ,h—|z] >>w | (87)

where V(z) is the slot voltage and the transverse field distribution, f(x), satisfies

w
f f(x)dx =1 |,
(o]

equation (82) reduces to

h
bt tan vy
- J:z V(z) [W 2 —— m2 sing(z+h) sing (2’ +h)
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w
+ ] 1) {TH(H) 7 W s, o527
o

n=1
}dx']dzf = —A12%(2) + C{ sinkz + C; coskz , (88)
where Tm = J ( )

The exterior term in the kernel is approximated as [11]

h kR iklz—z"] _
Vi) g2 da { e
h
+ V(2) }[%‘:' , (89)
b dz’ 2 2
where {R— m4(h"—2")]-2n|x~x"|, h—|z [>>w . (90)
Applying (89) and (90) to (88) yields
h Naik|z—2z7 | @ d
\% ~V ,
—€, )!] 2[ (z i?r{z%’ 2y V(z*) E:~?,\il\1"~:;;~-~sm7—(z-i--h)
- m=]

sin'gfz +0)] da’ ~ €0 V(z) mfa(h? - 2

o
€, nr d
+ -2 V(z) f x)[f | x—x’ |2 2 tanh(= ) sl T
n=1 n w
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DTy ]dx” = mc(z) + Cf sinkz + C coskz . (91)

The above procedure applied to the "odd" equation (83) yields

%Ozz[um%j

® cot Y, d

z’) 2 7\7‘/7‘( smT( z+h)

dz’ — o V(z) fn[4(h2 - z2)]

sin%(zf+h)] So
27
€ W ® nr d
2V [ 1) [fnlxx] =2 ) coth (g W) coslTx
o] n::]_ n
3 n n
cos™ T/ Jdx = ~A"%(z) + C; sinkz + C, coskz . (92)

Conditions (84) become

V(+h) =10 .

C. "Shallow" Depth Integral Equations
The additional limits kd << 1 and d << £ will now be imposed on the integral

equations of Part B.

Use of the approximation
tany (94)

Do &
P24
CT=%
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along with the identity (86) in (91) yields

h L,(Z,)eik|z—z’|
o 2rjz—z” |

. ~V(z) 4. _ ;; V(z) t[4(h%-2%)]

€ w ®
d d
+ 2 V(2) [ 16e) [l | —5w—2) tanh(2F &) cosPTx
o n=1 n

nwT , , inC ’ ’
COS— X ]dx = —A,, (z) + C{ sinkz + C/ coskz .

Use of the approximation
d

©OtYmz 2/d d (96)
26
Tm Yoo
along with the identities [20]
® m7x
YOS 1 r cos[(mb/a)(1- 12Dy
m=1 m2a2 ~ b2 2’ 2ab sin(#b/a) x| <2,

and (86), in equation (92), yields

h ik|z—=2"

dr[z-z" ]

—V(z) _coské(1- JL'[Z_'J) — cosk(z+z")
2kdw sink{

€
V(z’)} dz’ — 52 V(2) af4(h® — 72|
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m

® T d
+;‘lV(z)vff(x') [anx~x’ —dr 5y coth(z™ 3)

o n=1 n

cosn—ax cos%x']dx' = —A;IZIC(Z) + CY sinkz + C! coskz . (98)

The validity of approxmations (94) and (96) hinges upon the assumption that the
unknown voltage does not vary appreciably over distances of order d. The solution of the
"odd" equation, (98), violates this assumption near the end points, h—|z| < d.
Nevertheless, interior to the interval, equation (98) does yield the correct solution. In fact

(98) also yields a good approximation to the end behavior in the examples of Part H.

The dominant term in the kernel of the "odd" equation (98) is the second term

kdw sink?

h zZ’
coskf(1 — J7—L) — cosk(z+z")
€ ‘[ V(z’) dz’ =

——Aérzlc(z) + Cj sinkz + C] coskz . (99)

The solution to (99) is

d

V(z) ~ iwp, W 5 H, eikzcost, (100)

)

where H _ is now interpreted as the incident axial magnetic field at the center of the
incident slot face. The solution (100) can be found by applying the operator (f2+ k2) to
0z

both sides of (99). The fact that (100) violates the end conditions (93) can be corrected by

retaining smaller terms in the kernel of (98).
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D. Definition of Equivalent Radius

Consider Hallén's integral equation for a magnetic scattering antenna

h .
A A1kR .
€ { In(z)e 2y, - _ Aérzlc(z)

R,
+ C1 sinkz + C_ coskz , (101)
where [ (') =—-2V(z') , (102)
() =0
Ra:Ja2+ (z—z')2 ,
A(i;rzlc(z) __1i "oz kzcosd, (103)

w sin20 ’
(o]

and 6 is the incident wave direction with axial magnetic field amplitude HOZ. Using (89)

and (90) this equation becomes

2r|z—z" |

iklz—z’
—£, I1["(2’) e klma| v dz’—g—;V(z) tn[4(h%—22)]
€ (104)

+ W—o V(z) lna = —A(i;z]c(z) + Gy sinkz + C_ coskz .

Comparing (104) with (95) we see that the choice of equivalent radius
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w ®  tanh(zX _(l)
fa= [ f(x) [€n|x—x’ _dr_,y 2 W
n=1

o}

nmT nr_,] ..,
COS— X COS— X ]dx , (105)

reduces equation (95) to Hallén's integral equation, provided H, in (103) is interpreted as

the incident axial magnetic field at the center of the incident slot face, as in (13).

The solution (100) to the approximate "odd" equation (99) is a good approximation
to the "odd" problem when the observation point is several depth and width measures from
the ends of the slot, z=+h. A very small part of the interval is excluded when the depth is
comparable to the width. When the depth is much larger than the width, it is of interest

to determine the form the voltage takes as the ends of the slot are approached.

Taking the limit d/w>>1 in the hyperbolic cotangent of (98) we see that equation

(98) can be replaced by

c hI () eikRa_coské’(l— J%—_z_’_{) — cosk(z + z7) dz’
o m\? 47R : 2
B a 2 kdw sink{
= —A'DC,) 4 O sinkz + C coskz (106)
- ez 1 o ’

where the equivalent radius in this "odd" "very thick" case is

w

fha= f f(x") [(’nlx—x’

0]

0
dr 1 nm
—6———22 I—'I_COS—WX

n=1

w
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cos%x’]dx’ . (107)

E. Equivalent Radius in Terms of "Discontinuity" of Static Potentials
The integral equation for the static problem of Figure 4 is formulated by matching

the electric vector potential at the slot face y = — (21‘ The static electric vector potential

satisfies a Poisson type equation. The solution exterior to the slot is

k)

1
where G (pp’) = — 57 tnlp—p’

p=xe + ye, is the position vector, and C_ are the slot faces y’ = + (21— and 0<x’<w.

The electric field component in the x direction is "even' with respect to y. The
potential (108) is thus odd with respect to y. The potential interior to the slot in Iigure 1

can be found by separation of variables in Laplace's equation as
[¢ )
< _ - DT nw
Ag (o) =¢€, E A sinho Ty cos—ox + € Ay (109)
n=1

where matching tangential E at the slot face, y = — %, yields
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The tangential electric field derived from (109), of course, vanishes on the walls x = 0, w

Matching the normal component of the electric displacement Dy aty = — % yields the

integral equation

. (110)

or
€ w s nr d
—OJ' n | x—x’ _dr_, Z tanh (T3 ) cosh Ty cos™lx -
T 2w — w W
o n=1
dy 4.
E (x,—5)dx*=C, , (111)
w
where [ E(x, - dx' =V, (112)
(o]

and 0<x<w. Comparing (105) and (111) we see that the equivalent radius for the "even"

problem is
T Ca T > d < d
fha=g¢ —V:?V[Aez(x’_§ _Aez(x’_?)] : (113)
0
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The "very thick" "odd" problem requires use of the "very thick" static problem
shown in Figure 22. The potential in the half space y<0 is given by (108) with C_ now

interpreted as the surface y=0. The potential interior to the slot is

0 —NnmT
w7
< nr w
Aez(g)=e0 z A cos—xe +E, ALY, (114)
n=1
9 W
where A == , nmw., 3.,
n nﬂlEx(x,O) cos—x dx’
1W
Aoz—WJEx(x’,O)dx
[o]

The integral equation at the slot face is

< > _
Al (x0)—AT (x0)=-C_ , (115)
or
W 0
E_oJ' E_(x,0) [€n|x—x’ —2 2 %cosﬂ%x’ cosn—gx]
o n=1
dx* =C, , (116)
w
where J Ex(x’,O) dx' =V . (117)
O
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Figure 22. Very thick slot geometry.
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Comparing (116) with (107) the equivalent radius in the "odd" "very thick" case is

ha=Ty [A:Z(x,O) - A:Z(X,O)] ~ 2—3 : (118)
(o]

F. Conformal Mapping Evaluation of Equivalent Radius

The conformal mapping solution given in Section III can be used to evaluate the
"discontinuity" in electric vector potential in equation (113). The exterior electric vector

potential can be written as

AZ () = A@) + A2 (R, -9 —a_ (R, (119)

where Aez(z) is the conformal mapping solution (26), and R is a large positive quantity.

The interior electric vector potential can be written as
< _ < _ .
Aez(g) = Aez(z) + [AeZ(O,O) Aez(0+10)] . (120)

The bracketed quantities are constants relating the conformal mapping solution to the
interior and exterior potentials. The conformal mapping solution is analytic, external to

the metal, and thus continuous at the slot face. From (113),(119), and (120) we obtain

¢ > d <
ta=Zy AL (R —5) —AL(00) — Ayl (121)

where AA . = Aez(—R—i %) — Aez(0+i0). The interior vector potential (109) vanishes at

the origin. The exterior vector potential (108), at a large distance from the slot, R>>w, is
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€
AZ (R,—9~2VaR . (122)

The symmetry of the field in Figure 6a means that Ey(x,O) = (. This fact can be

used to find the location z = 0 + i0 in the z plane
z; =— 1/{p . (123)

Using (123) and (33) in the conformal mapping solution, (18) and (26), we obtain

eT —

AA =Y p[ R (124)
7r ?
Cl’lp

which from symmetry is also one half the charge between z = —R—i % andz=-R +1i %,

given by (34). The equivalent radius in the "even" case is therefore
a=-C {p . (125)

The "very thick" "odd" problem requires the conformal mapping solution to Figure
22. The transformation between the upper half of the z plane and the z plane of Figure 22

can be written as [21]

(126)

where {szl -1,
arctan{ = 7 + o~ ln(i—é%) ,
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and the principal branch is taken for each of the linear factors of the square root and the

logarithm.

The exterior and interior potentials are related to the conformal mapping solution

by means of
> > .
A7 () = A, (2) + [AL (-R, 0) — A, (-R +i0)] ,
< () = < B .
A, (0) = A, (2) + [AG,(0, R) — A, (0 +iR)] .
The equivalent radius in the "odd" "very thick" case (118) can thus be written as

o > < dr
fma= E;v [Aez(_R’O) — Aez(O’R) - AAeV] ~Bw (127)

where AA , = Aez(—R+i0) — A, (0 +iR).

\Y%

The transformation (126) can be expanded for R>>w as

z) ~ 2e—7rR/w—1 ,z=iR .

Using these locations in minus (18) and (26) we obtain

R, , R
AA Ly =€ L@ + i) (128)

eV =~
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From (114)
< €
Ag(OR) ~=_0y g

and Azz(—R,O) is given by (122). The equivalent radius in the "odd" “very thick" case

from (127) is thus

4
_ 2w w

G. "Deep" Slot Integral Equations

We now simplify the integral equations of Part B, (91) for the "even" case and (92)

for the "odd" case, when d/w>>1 but kd and d/{ are unrestricted. «
The hyperbolic functions in (91) and (92) are thus replaced by unity and the
transverse integration is carried out by means of the procedure used on the "very thick"

"odd" equation in the previous two parts of this appendix.

The "deep" equations can thus be written in the compact form

h ikR, 2 anvy 4
EO £ Im( [ + z 7V_V__2— S]n——g(z+h) Sinm%(z’—kh)
— m
sz’ = lnC(z) + Cf sinkz + C coskz (130)

for the "even" case; and for the "odd" case as
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h ikR, T cot 7y d
_].[I (Z )[T 2 —gﬁlzsmylr(z+h)sin%(z’+h)

m=1

427 = = AIR(a) + Cf sinkz + C} coska | (131)
where v = sz— (@lf)? , and the equivalent radius is in both cases

_ 2w
An alternative representation for the sums in the kernels of (130) and (131) can be
obtained by either beginning with an alternative representation for the interior Green's
function appearing in (81), or by use of the Watson transformation. The resulting integral

equations become

h 1kR . .
h—z_) siny (h+z )], ,
e, [,z )[ o siny (h—z Q%< dz
o 1 R, ~ & 2odd Y siny ¢
— q q
AIDC(2) 1 € sinkz + C7 cosk 133
— Ag, (2) + Cj sinkz + C( coskz (133)

for the "even" case; and for the "odd" case

h ikR . .
h—z_) siny (h+z )], .
€ I (z") [T € sm'yq( > q <’|dz
© I[ dw zeven 7. siny £
- q q
= — A2(z) + C} sinkz + C! coskz (134)

where T = Jk?— (%)2 . This representation is somewhat more efficient when kd and d/(
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are relatively small.
H. Solution of Integral Equations

The solution of the various integral equations in this appendix can be accomplished
by means of the Galerkin method described in Appendix IV. The only thing required is an

additive modification of the matrix elements G in’ These matrix elements are replaced by

the elements Gjn'

The "even" problem with "shallow" depth has been replaced by Hallén's integral
equation (101) and equivalent radius (125). The matrix elements of Appendix IV are thus

not modified for this case.

The "very thick" "odd" problem with "shallow" depth, equation (106), with

equivalent radius (129), uses matrix elements

G. =Gy — 1 [ F{@ Fy(2) dz . (135)

p(m) (136)

and the "deep" "odd" problem, equation (131), uses matrix elements

84



d
mt_7f“2 F(m)

~ 4
G_]n - Gjn ~tw 2 v jn ? (137)
m=1 ™
where
h
& 2
Fgrr?) = J Fj(z) 2 + k%) smg(z+h)
h
J F (z) sin%(z’—%h) dz’dz , (138)
—h

and the equivalent radius (132) is used for both "even" and "odd" cases.

The alternative integral equations (133) and (134) will be used here for the "deep"

case. The matrix elements for the "even" problem are

. o pla)
_ T n
Gjn - Gjn#aWE Tq 5107 ’ (139)

q,odd

and for the "odd" problem are

_ 4 n
Gjn - Gjn dw vy siny ? (140)
q,even 1 q

where
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h
an) JF(Z)(62 +k)JF

sin'yq(h—z>) sin'yq(h+z<) dz’dz ,

(141)

and the same equivalent radius (132) is used. The q=0 term in (140) is identical to the

contribution in (135).

To give some insight into the behavior of the "even" and particularly the "odd"

solutions, we give the crude Hallén zero order asymptotic solutions to.equations (101) and

(106). The zero order approximation [18] uses the crude approximation

h ikR,
J I.(z) eTsz' rQ L (2)
~h

Using (142) in (101) we obtain for the "even" problem

€ .
1221 (2) = — A (2)

1nc inc coskz

Ip,i k
+Q_[Aé20( ) AlnC(_h)} S]n Z ’

(142)

(143)

where the equivalent radius (125) is used in (45) to define 2. Of course (143) is not valid

near resonances where the next order is required.
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For the "odd" problem, once (142) is used in {(106), we then apply the operator of

equation (50) to solve the resulting approximate equation, yielding

4;3 e (%2 - a2)Im(z) =-H,"0) , (144)
where a= J%gw - )

inc, \ _ ikzcos@
H, (z) = H, e o ,

and again H _ is interpreted as incident magnetic field at the center of the incident slot
face.

The solution to (144), which vanishes at the ends of the interval, is

—i wp, dw inc
Im(Z) 1 -8 k2 dw sin20 [Hz 2
dir o

. H;nc(h)e—a(h—z) . H;nc(_h)e—a(h+z) ] ’ (145)

where the fact that ah>>1 has been used. The equivalent radius (129) is used to define Q2

for the "odd" problem.

We give one example at normal incidence to illustrate the "even" and "odd"

kb
/

solutions. The example is taken from the final value o = 3 on Figure 17 with d/w = 25

and ¢/w = 500.

Figure 23 shows a comparison of the "deep" Galerkin solution using matrix elements
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Figure 23. Comparison of voltage magnitude distributions for the "even" problem. The

Galerkin solutions to the "exact deep" integral equation and Hallén's integral equation as

well as the Hallén zero order solution are shown.
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(139) (NQ is the number of terms of the sum over q that have been included), the Galerkin
solution of Hallén's integral equation (101), and the Hallén zero order solution (143). Note

for normal incidence the final term of (143) is absent and no resonance occurs at kh = 3.
Figure 24 shows a comparison of the "deep" Galerkin solution using matrix elements

(140), the Galerkin solution of the "shallow" equation (106) using matrix elements (135),

Hallén's zero order solution (145), and the Faraday's law result (74) or (100).
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Galerkin "Deep” Equation (2x100 +1 basis functions, N=100) No=100
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Figure 24. Comparison of voltage magnitude distributions for the "odd" problem. The

Galerkin solutions to the "exact deep" integral equation and the approximate equivalent

radius integral equation as well as the Hallén zero order solution and the result from

Faraday's law are shown.
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APPENDIX II. PARAMETERS OF CONFORMAL MAPPING SOLUTION

The transcendental equation (20) can be expanded for large and alternatively small

d/w, yielding solutions [5]

32 1594 4021 6 . 407349 8 |
p~v [1 T3V t198” * 15367 T 65536 7

+ 20780 . ] , (146)
where v= 4/e(2+7rd/w) Jd/w>>1
and
prl—dv + 80 — {11 —4 ()3 + (3 -4 () ar?
(B -20m®) +6a’G N+ .., (147)

where v = JE ,d/w<<1 .
™
The intersection of these two approximations, with the number of terms shown, occurs at
d _ 06589225619 ,

at which point the relative error in the value of p is four tenths of one percent.

Corresponding expansions for the constant —C1 /w are
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C 2 _214_81 6 _ T0519 8

1 1
‘W‘”%P'&“@I 1987 ~ 19152"

_ 466405 10 _ 24499121 12 + .. ] :

3072 ml_ 0 (148)

and
C1 1 , vy L2

—{z—2a@N - (§+ 200!
(et + el (149)

The maximum relative error in —C1 /w, with the number of terms shown, at the

intersection point of the approximations for p, is six one—hundredths of one percent.
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APPENDIX III. KING THREE-TERM ¥ PARAMETERS

The ¥ parameters used in the King three—term method are defined by the integral

representations {13}

h

1 coskRa‘o
YiUR = TT@EHJ (coskz” — coskh)[ T;o__
-h
coskR
- —Iﬁah]dZ' s (150)
ah
. B ( SR
LY ——-——J coskz’ — coskz [—]r———
dul 1 — cos%kh “h ao
sinkR
— }dz' (151)
ah ’
h ikR,
Yap = L i J (cos%kz’ - cos%kh) [ eT(__
1 — cosykh 7y ao
ei kRah }d 52
— z’ , 5
IEa,h
h eikRah
¥y,(h) =J (cosker — coskh) Sp—— da’ (153)
—~h
h . ) o 1 kRa.h
\IID(h) = J (cos:,z-kz’ — cosﬁkh) —R—h— dz’ , (154)
h a
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where Rao=,Ja + 27,

5 2
Ry =122 + (b — 2))° .

These integrals can be evaluated numerically, or for very small a, can be approximated in

terms of standard sine and cosine integrals [5].

The power radiated by the magnetic current on the antenna can be evaluated by the
Poynting vector method [7]. Assuming the current (54) is concentrated along a filament at

the z axis, the radiated power can be written as [5]

p

2 T 2
rad = "o 1Hopl " 5= —5 [ [¥gp|” 2Ppp

K |Q|?
2
—2 %1 Yqur Prg + Yaur Pag | (155)

where

Prp = Cin(4kh) + 4 Si(2kh) coskh (kh coskh — sinkh)
—sinZ2kh |
1 . .
Ppg = 4 cos” gkh [Cin(3kh) — Cin(4kh))
31w .
+ 4 sin” 5kh [Si(3kh) + Si(kh)]

+4Si(2kh) [2kh coskh cos%kh - sin%kh (1 + 3 coskh)]
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' +2 cos%kh (cos3kh — coskh)

P = (4 + Scoskh)[Cin(3kh) — Cin(kh)]

G

+ 3(kh — sinkh)[Si(3kh) + Si(kh)]

+4Si(2kh)[kh(1 + coskh) — 2 sinkh] — 4

+ 2 cos2kh + %cos3kh + % coskh
Yipr i the imaginary part of YiD’ and Q is defined below (54). The sine and cosine

integrals are defined by

) X
Si(x) = J sint dt
t
(o]
X
Cin(x) = J_l — cost dt
t
o
Note that a much simpler formula can be obtained for Prad [5] by approximating the
scattered axial magnetic field, resulting from the magnetic current (54), by minus the
incident axial magnetic field and then using the EMF method [7].
)
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APPENDIX IV. GALERKIN ANTENNA SOLUTION

The magnetic current basis functions are the piecewise sines (56). Applying
equation (50) to Hallén's integral equation (51), and substituting the expansion (55), yields

the axial magnetic field equation

3 #
scatt, v _ i 2
H, (z) = frwp, 2 Imn( ? + k%)
n=—N
h ikRa
F (z/) & dz’ = — HI¢(3) (156)
n R a - zZ ’
—h
h
The application of the operator, j Fj (z) dz, where the asterisk denotes complex conjugate,
—h

to the magnetic field equation yields the linear system for L

n
_ N
! = —
Zmuuo 2 Gjn Imn - Hoz Hj ’ (157)
n=—N
h h ikR
where G. :J F.(2) (i+k2)J F (2) & dz'dz (158)
jn " ] 6z2 n Ra ’
J:_N, '70,"N ’
b ikzcosd
HJ.=J Fi(2) e dz . (159)
-h

The z integral of G‘jn can be eliminated by integration by parts yielding
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a. - SmUH_1 i-1
jn smUj,j_1 s1nUJ+1,J

1
An(Zj) + giﬁ'[r.‘; AH(Z]—-I)

where Uj,n = k(zj — Zn) ,

h ikR,
A (z) = j F (z7) T——kdz . (161)

The remaining z* integral An(z) can be evaluated in terms of generalized sine and cosinc
integrals [12], which can in this case be reduced exactly to standard sine and cosine

integrals [5], [12], [14].

To calculate the radiated power, the EMF method [7], in its complementary form, is

applied to a slender antenna, yielding

*

h
1 scatt
md_—gRg[H I dz . (162)

Using (156) for Hicatt and (55) for 1, we obtain
N N
* *
Pg= g—_mbz y ;mgme]. (163)
j=—Nn

Note that the system for I can be broken into even and odd parts (in the antenna

length) to reduce computation time [5].
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