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Abstract

This note addresses the contribution of exciting waveforms and filter
characteristics to the response of some ideal black box. Taking the
excitation, filter, and response in norm sense, various characteristics of the
excitation are examined for their effect on response. We find that the
frequency spectral characteristics of the excitation waveform are very
important for this purpose. This is true whether one is considering some
ideal excitation specification, or one is considering a set of damped

sinusoidal excitations.
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I. Introduction

The relationship between time and frequency {or Laplace-transform)
domains is elementary in modern electrical engineering. Its general formalism

is expressed in terms of the Laplace (or Fourier) integral (two sided) as

f(s) = [ f(t) e 5t dt
f(t) = 55 [ fls) et ds
t = time (1.1)
S =0+ Jw = complex frequency or Laplace-transform variable
Br = Bromwich contour in strip of convergence of two-sided
Laplace transform (i.e. for @ < @< g+)
~ = Laplace transform
| Now this transform is extremely powerful in linear systems or systems e

which can be approximated as linear. In addition if the system can be
approximated (in time regions of interest) as time invariant, then the
fundamental property is the convolution property

F{t) = g(t)o f(t)

- [ g(t-t') f(t') dt’
[ g(t') f(t-t') gt

-

o = convalution
(1.2)
g{t)o = convolution operator
f(t) = excitation
F(t} = response
In complex-frequenrcy domain this assumes the elegant form
F(s) = g(s) f(s) (1.3) o

While these relationships are fundamental for electrical engineering,
they are sometimes obscure. There is an integral relationship between
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frequency and time domains, but this does not necessarily give a simple
relationship. In order to simplify this relationship let us restrict the

forms of f(t) and g(t) so that a small number of parameters characterize
them. In addition let us consider the norms [6] of these to further reduce

the number of parameters which characterize the response.

As a common example f(t) can be considered to be one or more damped
sinusoids corresponding to a few pole pairs in complex-frequency domain. A
similar approximation can be given to g(t). With such canonical forms norms
can be computed and appropriate norms and hence bounds can be found. As is
discussed lTater such general restrictions on the forms of f(t) and g(t) can

reduce the integral relationships to algebraic ones.




I11. Black Box f{lodeiled as Linear Filter e

As indicated in fig. 2.1 consider some general black box modelled as a

transfer function ?(s) from some input port with excitation Vil) giving a
signal (incident wave) VEZ) at some other port with

(2) - Trey ytl)

viT(s) = T(s) Vi (s)

v = 1) o v P (2.1)

The variables here are combined voltages (waves) as linear combinations of
voltages and currents of the form [1]

v (t) = v(t) + RI(t) (2.2)

where there is a resistance R to normalize the combination [3]. As in
fig. 2.1 these waves propagate in 2 directions with subscripts

+ ropagation to right ' (2.3) a
prop
~:::%>propagation to left

Now let us assume that VEZ) can be neglected because either:

a. Zt = R making the reflection zero from Zt , or

b. ng)is terminated to the left in the black box, including any
transfer (of significance) to the left through the black box

One candidate for such a "black box" is the constant resistance filter
discussed in [5] which approximates condition b.

While this black box is modelled as linear, this need only be interpreted
in the looser sense of "linearity to failure" discussed in [2]. In this case
the termination on the right approximates the "failure port" discussed there
[2]. Our concern is the characteristics of the signal arriving there
(including in norm sense), and the relation of this signal to tiie signal

(wave) exciting the black box.

Now let the exciting wave be given by a set of poles as _ e
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FIG. 2.1 BLACK BOX MODELLED AS LINEAR FILTER




Dy = 1w e ® ), sy =1 v s 17! C(2.4) ®

fa a ” +
n 41

Re[sa] < Q0 for all ¢

with all poles for Imls ] # 0 occurring in complex conjugate pairs so that
Vil)(t) is real valued. OtNhﬂe more general types of waveforms are also
possible one can also represent some such types of waveforms as distributions
of poles (such as branch integrals [7]). So let us take (2.4) as a canonical

type of exciting waveform.

Next consider the filter which represents the black box. Let us

similarly represent it as
~ ) 1
T(s) = T+ ¥ TB [5—58]
B (2.5)
Re [sé] < 0 for all g

with ail poles for Im[s!] occurring in complex conjugate pairs. In time
domain the corresponding function (as distinct from convolution operator) is

s t ‘!’

T(E) =T s(t) + 3T, e u(t) | (2.6)

which we also require to be real valued. Another constraint which may be
imposed on the filter is passivity, in which case we require [5]

‘;(jm) < 1 for all w(real) (2.7}

For poles near the Jw axis this requires

TB‘ [-Re[s'sj]_1 <1 for all g as Re[sé] > 0 (2.8)

Also note the presence of the constant term (for a finite number of poles)
with ‘
0 <7t <1 (2.9)

o

This term allows for the possibility that the filter function tends to some

positive constant (instead of only zero) as w + « .

With distinct poles in Vil) and T (i.e. SOt # Sé for any o,B) we have B

using partial fraction expansions




|]‘

V(Z)(t) =7 TBVG [sa—s8

+
a,B
1 sét
+ 7 TBVa[sB—sa] e u(t)

as B

t
Ay T s -stI7h) v e u(e) + TN (e)

a

-1 s;t
+ g [3 Va[ss—sa] } T8 e u(t)
a
~ ‘ Srt : o
) T(sa) Va e 8 u(t) (excitation term)

8 u(t) (filter term) (2.10)

Here we have separated the response into two parts identified as the
"excitation term" and the "filter term". In complex-frequency domain this is

J(Z)(S) =7 ?(s ) V [s-s 171 (excitation term)
+ . a’ a a
+ S‘ V(l) 1 1 -]. :
(s') T [s-s'] = (filter term) (2.11)
§ + B B8 B

Look now at the forms of these results. Consider first the excitation
term. Basically each pole s of the excitation has its amplitude (residue)
scaled by ?(s ), i.e. by thg transfer function of the filter evaluated at
each natural %requency of the excitation. This is a generalization into time
domain (and complex-frequency domain) of the usual concept of a filter. The
filter attenuates the excitation, but now does it pole by pole (including

damped sinusoid by damped sinusoid).
Consider second the filter term. The filter itself contributes potes

sg to the response. Each such pole has its amplitude (residue) scaled by
: ; .




Vil)(s%), i.e. by the spectrum (in complex-frequency domain) of the
excitation., HMNow the filter contributes to the response its own set of damped

sinusoids in time domain. It is important to note that each such filter pole
is very dependent on the excitation. If the excitation, for whatever reason,
has a "notqh“ in the spectrum at or near some sé , then the corresponding
damped sinusoid wiil be similarly reduced in the response Vi )(t). If

V(l)(t) is interpreted as some environmental specification for testing

+
purposes, then it is important to consider its properties in a frequency

context so that there are no significant "notches" since such would result in

a significant under test.



II1. Residue MNorm and «-Norm

As discussed in [0] one can define a residue norm (or r-norm) as the sum
of the residue magnitudes for functions characterized by poles. Provided the
poles are all distinct (and not too close to each other) this form of the
residue norm approximates the s-norm.  The r-norm can be generalized to
include cases of higher-order poles, branch integrals, and closely spaced
poles [6].

Considering the case of distinct (ant not closely spaced) poles we have

the r-norm of the excitation as

Dol -1y, (2.1
Similarly for the response we have
ﬂ612>(t)”r =¥ T(sa) ‘va’ (excitation term)
e -~
. +}B' ‘Vél)(sg)i lTB' (filter term) (3.2)
Expanding this we have from (2.10)
TR AP [N A BTN I B
< {|T| * max 2 'TB‘ lsa'séi—l} v,
e ] s el G
T >0 |

o

Considering the filter as a convolution operator, note first that the

delta-function part has the norm as the identity convolution operator

Hs(t)o“r =1 (3.4)

' Then using [6] for the residue norm of a convolution operator with (3.4) we

have




ﬂT(t)oﬂ < [T+ max 2 IT

‘ (-Rels,11™t (3.5)
8

r B

by adjusting s with Re[sa] < 0. Considering the possibility of equality

a
consider a specific excitation as a single pole pair matched to the maximum
‘TBI {-Re[sé]}'l in the sense of

Re[s 1 =20
b . (3.6)
Im[sa} = Im[sB]
In this case equality holds and
, . Ferr-l
. [T(t)o] = T_+ nax 2T, | {-Rel’s 1} (3.7)

If we also impose the passivity requirement of (2.8) for poles near the
Jw axis this gives

fr(t)o] <1 _+2 (3.8)

r

There are other points one can make concerning the r-norm as in [6]. One
can consider higher order poles and closely spaced poles as well as more
general types of terms such as branch integrals. Most interesting is the case
of the close approach of two poles appearing in a convolution. As discussed
in [6] there is a term, which in current notation, is of the form

sét sat
[TB e u(t)] o [Vu e u(t)}ur

1 2

1 IT | (3.9)
e -Re[sé]-Re[sG] B

which characterizes this case. Including the conjugate poles and noting that

* *
the cross terms between sé and s , and between sé and s , are
a o

negligible, we see that the term ZITBI {-Re[sé]}'1 in (3.7) is replaced by e
(2/e) ‘TBl {—Re[sé}}'1 as Re[sa] + 0. So as poles come closely together (for
10
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poles near the Jw axis) there is a factor of e-1 which is included in

HT(t)oﬁ .

For comparison to the r-norm results consider the closely

related «norm. As shown in [6]

UOC IS I

o«

i lms)y ey e 8 u(t)}‘dt
® St

=T v 1lT,e ’ U(t)‘ dt (3.10)
0 8

Now considering the case of only one significant pole pair, and that near the

Jw axis, we have

® s't £ S.¥t
HT(t)oﬂ =T + [T e® +7 ef | 4t
© © 5 B B
« Rel[s,]t [Lsedt & -1 [s:t
=T + [e 8 T8 e M8 7 o M78 dt (3.11)

0

Re[sé]t
Assuming that Im[sé] >> Re[sé]l then the term e changes negligibly

during one cycle of the oscillatory term in the integrand. Noting that

cos [Im[sé]t]‘ has an average value of 2/g we have

fee] o

IT(t)o), =T +—i- ‘Tsl{-Re[s'Sj}'l (3.12)

for poles near the jw axis. Note the factor of 2/% in comparing this result
to that of (3.7) for the r-norm so that the infinity norm is less than the

r-norm 9n this case.
The reader can note that since [6]

IT(t)o], = [T(t)], | , (3.13)

The above results apply to the l-norm of the filter as well.
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IV. 2-Norm

Taking a different tack consider the 2-norm related to energy. Remember
first the Parseval theorem as discussed in [4(Appendix B)]. Briefly stated

this is

(4.1)

ﬂf(t)uz,t ='}§§ "F(j“)lz,m

where integration over time t is distinguished from integration over frequency

w. More generally we have

o

- 5%3 é f(s) f(-s) ds (4.2)
r

provided F(S) and ;(-s) have a common strip of convergence containing the
Bromwich (Br)} contour parallel to the jw axis in the complex frequency
plane. Note that in this form the integrand ?(s) ?(-s) is an analytic
function of s (except at singularities) allowing for contour deformation in

the s plane.

Consider first the excitation as in {2.4). The 2-norm is then given by

)2 - = [ vV (s) vt () as (4.3)
r
Require for the moment that
Re[sa] <b <0 for all a (4.4)

then there is a strip of convergence of the integrand in (4.3} of width 2b
centered on the Jjwo axis. Deforming the Bromwich contour to the left note
that as |s| + « the integrand is 0(s-2) and the integral is 0(s-1) which is
zero for the contour at infinity. As the~;0ntour sweeps by the poles Sa in
the left half plane there is a residue Vavil)(-sa) giving

MO - 1y, 8es, | (5.5

o

12



‘ If now we restrict the excitation tovorﬂy one pole pair ( s with its
a
conjugate), then we have ©—

PO 2 -1, s + 7, T
-2 ke (v v (s )]

Re [Vz[-s ]‘1 +
o [0}

v fF [-Rels 217

2

v v |2
= _Re[sa } - b (4‘6)
a Re(s 1
a
Mote that the second term is dominant for lRe[sajl << ’Im[sa]‘, in which case
we have
(1) "i/e ‘
.0y = [y, | (oRels ) (2.7)

Similarly consider the response as in (2.10) and (2.11). The 2-norm is

given by
(2) 2 _ 1 7(2) 2(2)
i 03 = 7 [ T ) ds (4.8)
Requiring for the moment that
Re[sa] <b <0 for all «
Re[sé] <b < Q for all B (4.9)

s =5 for all a,8
o B8

there is a strip of convergence of width 2b centered on the ju axis. Agdain
deforming the contour to the left there is no contribution from =. As the

contour sweeps by the poles s and s8 in the Teft half plane we get
o

13




iZ}(-s ) (excitation term)
a

S ooy 1ol (6
+ é v, (sB) TBV+ (—sB) (filter term) (4.10)
Note as in (2.10} and (2.11) the response is separated into a direct and a
filter term corresponding respectively to s and s'. However, in contrast to
. o
(3.2) for the r-norm in the case of the 2-norm we have the square root of the

sum (or sum of squares if you will).

Now restricting the excitation to a single pole pair { sa and its
conjugate) and the filter to a constant term plus a single pole pair ( sé and
its conjugate) we have

WO = 1s) v Te-s) W s )y 5T VT v (s
P sy 1o Tesy v sy e VI sy 1 Tst) v sy

2 Re[?(sa) Va ?(—sa) GEI)(-SG)] (excitation term)

+ 2 Re[gﬁl)(sé) T ?(—sé) Gﬁl)(-sé)] (fitter term} (4.11)

In order to simplify the results let us consider the special case that
s and sB are near each other and near the ju axis, giving

a>
- t << 1
S sB S ,’SJ
* | \ ’
-5 - s} << |s |, |s
o 8 B (4.12)
. *
0< -s =-s = =2Re[s ] << [s l, s“
a o o o 8
* *
o' et - _ ' << '
0 < Sg ~Sp 2 Re[sB ] Sl 158

Then considering the excitation term in (4.11) we have

14




~

® T(s ) v T(=s ) v (s )

a o a

R
14

l"']- * 1

+ - -

{T_ Ts[sa 58] + Ts[sa sB

T T 1 *]'1
+ -5 -g' + ~s -5

(T, * Tpl-s -s.d -5, Sg 1 )

S *_-1
V{V[Ii-s-~s ] +V[-s=-5s]17}
a o a a a a 6]

[sa-séj'l [-sa-sé*]-l }va

-1

4

)TBIZ IZ [-2Rels 1] (4.13)

~

2Re[;(sa) v, ;(fsa) VEl)(-sa)]

IRERIAE o .
=._jE;E;;i——~ Re[[sa-ss] [-sa—sB

Similarly the filter term in (4.11) gives

) T, (st 1 (s

V<1)(s' 5

® te

_ \ -1 * . *o-1
= {Va[sg-sd] + Vu [sB-sa] }

4
w0

, -1 LI |
{Va[—sg-sa] + Vaf-sg-sa] }

T{T + 7T ' ]‘1 + T*[ ! *]‘l
aT, + Tol-sp=s, st Sg75g

n

\VGJZ [s'B-sa]'1 [-sé-s:J'l ITBIZ [-2 Re[s'sj]'1

~ (4.14)

Troeny vl
) T, Tl W (s

Re[gﬁl)(s

Ny




sa and sé interchanged. Based on the form of these results we can say that o
which of these two terms is dominant depends on how small [Rels ]| and
R . a

|Re[sé]| are relatively speaking.

Combining the excitation and filter terms we have

PR « 1 1 et oo e

[s_+s;] 7 [Rels 11713

* * * - *
- ,T ’2 v ZRe[[Sa'ssj[Re[553ESa+53] ) RZ[sa][sa+ZB 1]
R o l* ]
Re[sa]Re[sB]‘saﬁB r lsa-ssf

212 [sZ—sé*] Rel's +s![s)-s ]
- TB VO‘. Re 1 t* 2 | 2]

Re[sa]Re[sB] 'sa+s8 | 'sa-ssf

Rels +s']
= - ’T ‘2 v |2 a_ B s +s'|7? (4.15) e

3 a a B

Re[sa] Re[sé]

Note that the outermost Re operator has been unnecessary since its argument

has been shown to be real (and positive). Then we have

T Vv -Rels +s']
2 1/2
"vi )(t)uz AL [*@l_ ¢ a B,/ (4.16)
‘s +s! { Re[s ] Rel[s']
a B o 8
as a rather compact result under the assumption of singie pole pairs for
excitation and filter with poles closely approaching each other and the jw

axis as in (4.12).

In another form

T | |V
| Tgl f*ai 1 1. RV (4.17)
fsa+38 , Re(sa] R6[583

HVE2)<t>Hz -

so that we can see the separate contributions of Re[saj and Re[sé] to the size

16
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of the 2-norm of the response. Substitutfng from (4.7) for the 2-norm of the

excitation as

oy [ ,
V], - ———-‘—T%gl— e Sf‘]‘}l“ Wi ], (4.18)
‘s +s£g i Re[sB]

o

we can note that the 2-norm of the filter (a convolution operator) is found by

maximizing the coefficient of uvil)(t)“2 giving

Imls ] = Im[s']
* 8 (4.19)

IT | Re[s +s']
sup é . {—-2 IB }
Re[sajso -Re[sa+sB] Re[ssj

1/2

R

uQLIP

= ’TBI {-Re[sg]}'l

Note that this is consistent with the more general results [6] for the 2-
norm of a convolution operator as

~

fr(t)o, - }T(jm) (4.20)

max

Considering the filter as in (2.5) for the case of a single pole pair we have

“T(t)o”2 = flax ‘T + T [jm-s']"l + T*[jw-s'*]'l (4.21)
e 8 B B B
-Letting s% be restricted as in (4.12) we have for the maximum
U Im[sg]
ﬂT(f)oﬂ x »T + T [-Re[s']]_l + T*[jZm -Re[s‘]]-1
I Vi o B B R max )
Re[T ] ImlT ]
UG Rl LA e S S S
-Re[sB] -Re[ssj
) TReLT.] = |T.[? 12 |
= {Too + 2 2. B~ 4 — 8 5 3 (4.22)
-Re[sé] [—Re[sé]]

17




Neglecting T in comparison to ‘TBI/[—Re[s;S]] reproduces the resuit in
(4.19).

18



V. Contribution of Excitation dand Filter to Response Norms

Looking over the foregoing results, let us make some observations
concerning the relative contributions of the excitation and filter to the
response as reflected in norms. If we now look at the norms discussed in
sections 3 and 4 we can see how the selecion of the excitation Vil)(t) for a

given filter operator T(t)o can influence the response V£2>(t), now

interpreted in norm sense,

Beginning with (2.10) we first observe that the damped sinusoids (in
time domain) are of two~kinds: those associated with sa (the excitation
poles) proportional to T(s ), and those associated with s' (the filter poles)
proportional to Jil)(sé), OLSo far this indicates how the gi]ter's natural
frequencies enhance the excitation poles, and how the excitation natural

frequencies enhance the filter poles.

In section 3 the relative contributions of the excitation and filter
terms are treated in terms of the r-norm, an approximation to the «-norm. As
indicated in (3.2) it shows that the excitation poles are again scaled by the
filter evaluated at the s . Furthermore the filter poles are also scaled by

[0 3
the excitation evaluated at the sé.

In section 4 the use of the Parseval theorem in the complex s-plane has
given exact representations for the 2-norm of the response in (4.10) and
(4,11). In this case excitation and filter terms combine as the square root
of the sum of the squares. However, these separate terms still have the
property that the excitation poles are scaled by the filter evaluated at
the s and -s , and the filter poles are scaled by the excitation evaluated at
the sz and -sg. Note that if the s, and sé are near the jy axis then

* . ! 1* T | (5 1)
-Sa ~ 5(1 ~ -Jm s —SB ~ S8 = -\]mB .
which with the conjugate pairing of the poles allows us to regard
the -s and -s' as approximately equivalent to other s and sé
o3 a a
respectively. However, this observation should be restricted to the case that

the s and s' are not too close to each other.
o2

Based on these observations for the norms considered there is an
important concept for the case that the s, and sg are not too close to each

19




other, but are both close to the ju axis.’ The response scales according to: 9

~

a. T(jma), the filter evaluated at the excitation poles, and

b. Vil)(jmé), the excitation evaluated at the filter poles.

Carrying the argument further note that even if the s are not near
~ o
the jw axis, the filter term still scales by Vil)(jmé) for sé near
the jw axis. In a more general case Vil (t) may be some specified environment

waveform. The present results show:

VIt is important that the excitation not be deficient in its
frequency spectrum, particularly if the Tocation of the jwé (the
frequencies for which the transfer through the filter is greatest)

are not known beforehand.

Note that an experimental time-domain waveform that one uses for test
purposes is only an approximation to a specified waveform. It is quite
possible for the experimental waveform to be a good approximation of a
specified waveform in time domain, but a poor approximation in some.portion of o
the frequency domain. lLetting Via)(t) be some approximation of V&l)(t) so
that

w, (1) = vi (e - viP
(1) (5.2)
0 < |av, " (t)] ¢« vfor -m <t <w
(1

)
v << ViTA(t)
sgpi N |

This does not imply that Gﬁa)(jw) is non zero for some  for which gﬁl)(jw) is

nonzero.

As a simple example suppose

£ "t
V@) o v D) v e ® s ar e ® ] u(t) (5.3)

Then (5.1) requires for S, near the jyu axis
Al < (5.4)

as a constraint making the size of the damped sinusoid sufficiently small. e

20



Then set

0= W (u) + =R s A .
Jma - Sa Jma - Sa
~ *
i Vil)(jwﬁ NS S A
-Re[sa] JZwa - Re[sa]
~1),. A
= Vi )(Jwa) - (5.5)
Re[sa] ‘

So setting |Re[sa][ sufficiently small with

Rels,] - :(_b.’i__ (5.6)
vV, (Jay)
subject to (5.4) gives us a case for which Via)(t) is deficient in that it has
a poor frequency content (a notch) at s = jwa while departing minimally
from Vil)(t) in time domain. Other examples can also be constructed; the

above one merely has a simple form.

0f course we have now introduced excitaEion poles at S, and s: which,
if they are near the filter poles s' and sé complicate the matter
considerably. The case of such close approach of poles is treated in [6] and
in the previous sections. So the response is significantly changed from the
simple case of separate excitation and filter terms discussed above. In any
event the response is significantly changed in time domain by what one might
think is a small perturbation of a time-domain excitation which, however, has

a comparatively big effect in frequency domain.
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YI., CHOOSING EXCITATION TO TEST THE VARIETIES OF RESPONSE e

Now supposc one wishes to test a black box by some excitation waveform.
The question arises as to what is an appropriate waveform. Now if Vil)(t) is
to represent some waveform appearing somewhere within a linear system then
some filter (which represents such a system) tends to make VEI)(t) consist of
a set of damped sinusoids, although other shapes are possible.

Let us now take a single damped sinusoid of the form

Mgy = fv_e® + v e ®} u(t) (6.1)

as a canonical waveform. Now putting this into a black box characterized by a
filter ?(s) what should V and s be? Well, as the previous development
indicates, that depends og ?(s) ?f the behavior of Viz)(t) is important (say
in norm sense). If any s' are near the jy axis then choosing s near such
an s' can make a dramatic difference in ﬂviz)(t)u.
Now if small changes in So. can produce large changes in ﬂVE_Z)(t)., and if B
failure is dependent basically on uviz)(t)u for some norm, then it is
important to choose s in a way that maximizes the norm of the response. Let

a
us assume that "Vil)(t) , the excitation norm, is not to change very much for
such small changes in s . Then we can consider the ratio of the response norm

o
to the excitation norm. However the maximum this ratio achieves is just the

filter norm as

v ()] [rt)0 v (1))
sup - = sup - z HT(t)o"
vil)(t)zongETyEE;W Vil)(t)so "Vil)(t)" (6.2)

Thus one way to consider this problem is to see how close the ratio
approaches ”T(t)ou as a measure of how well Vil)(t) (and thus sa) has been

chosen.

Reviewing our previous results let T(t)} take the canonical form

It . . |*t
T(t) = T s(t) + [T es3 + T eSB bou(t) (6.3} e

c oo 8
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including only one damped sinusoid. Considering the case that 5

near sé let us define

HV SCI
T

with appropriate subscripts for the norm under consideration.

t)ol}t

From section 3 we have the «norm (and related r-norm) with
Rel[s 1 <0, Rels'] «
a B
IRe[saJI << |Im[sa]i |Re[s | << |Im[s' Ji

giving

LCIREERN

and for s not near sé

W] = 21T )1 vl 2w sl

and for s near sé (with imaginary parts equal)

(2) 1 4
V.o = [T 11V
I, I - -Rels}] - Re[s ] ol 1Vl

The filter norm is

[T(t)o] = T, + 2 |1 | (-Rels,]}”

als

Tyl {-elsyl} ™

provided T can be neglected compared to the second term.

is

(6.4)

(6.5)

(6.6)

(6.7)

(6.9)

Using the results for s near sé (with equal imaginary parts) we have
A

- Re f?’r{“l
-Re[sé] - Re[sa]

~.1_
2e
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(6.10)




This is maximized for Rels ] = 0 and as it varies away to say the same value
as Refs'] then , 1is cut ig half. So this Shows that as one approaches a
filter pole vari;tions of the order of Refs'] are important. Along

the jw axis this represents the width of the resonance peak. Note the
coefficient n/(2e),= .578 which is somewhat less than unity. This indicates
that some other waveform than our simple damped sinusoid could achieve a

slightly greater increase in the «-norm.

From section 4 we have the 2-norm with

Gl = wl rels 21172
| 1/2
T v -R
Viz)(t)ug _ [Tel | al els +s;] (6.11)
|s +s' | Rels ] Rels' ]
a 8 o B
yaq-1
T(t)of, = IT | {-Rels}]}
This gives
(2)
DI -1
Ny =TT fIr(eyol
2 “V+ (t)uz ‘
- 1sa+ sé*l'l {Re[sé] [Re[sOl + s;J}l/Z (6.12)
Letting
Im(s 1 = Im(s ]
o B (6.13)
Refs 1 =0
Ca
gives
n, = 1 (6.14)

as the maximum value of n2'
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. Rearranging we have

1 1
5 Re[s_B ] Re[sa+sB] .

'ﬂz"—'

T
!

B

_ Re[sé] Re[safsé] (6 15),

2 . 2 \
Re [sa+sB] + Im [sa-sB]

o
a

This allows us to see how ",
in (6.13). First, for matching imaginary parts we have

approaches unity as s approaches the conditions
a

Im[s ] = Im(s"]
o 8

Re[s! R -1
2 Relsgl (1 +,__3Ei91} (6.16)

nz—
Re[s +s'] Re[s!]
a B

»1 as Re[s 10
R o ]

Re[saj'= Ré[s%] o (6.17)
2 1
o o= =
2 2

Second, for pure imaginary s we have
o

Re[su] = 0 (6.18)
| Rez[s'] Imz[s -s']
2 N B - a Bl
"2 ey e e TRl
e"Ls, "Ls sy e sB
> 1as Imfs - s'1+0
o B
Note that for
|Im[s -s']| = [Rel[s']] (6.19)
a B 8

1

® w7
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So for 5 deviating from jIm[s'] in magnitude [Re[s!]| then o is reduced
to 1//2. This shows that for maximizing “Viz)(t)u we need s this close
LN o4

to jIm[s%].

These results then show:

It is important that to find the maximum response "VEZ)(t)M it is

necessary that the excitation natural frequencies s approach the filter
o3

. Otherwise the response

jIm[sé] to within an amount related to |Re[s&]
norm 1s significantly reduced.

Assuming that the s' for some black box are in general unknown a priori,

8
it is then necessary that the s should be varied such that
o

|Re[sa]] < [Re[sé]l for all s% (6.20)

This in turn implies that some lower bound be placed on the |Re[sé][ that one
may encounter in black boxes of interest. Furthermore, we need to select

samples of 5. such that

|a[tnls 11} < IReCs}]] (5.21)

where a[Im[s ]] represents the change in Im[s ] from one test excitation
o o
waveform to the next. This change might itself be a function of Imls J.
(o
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VII. Summary

Based on this simple model of a linear filter two important points can be

made.

For a particular‘specified environmental excitation Vil)(t) it is
important that its approximate realization V( )(t) be such that in

frequency domain V( )(jw) closely approx1mate v(l)(jw) for all  of

interest. In part1cu]ar Vi )(Jm) should not have notches (near
zeros) compared to v+l (jw) for all y of interest.

For damped-sinusoid testing one needs tc place some lower bound
on !Re[s'][ (perhaps as a function of ). Then fixing

lRe[sa]] < |Rels’ ]1 one needs to select a set of W, such

that |Aw | < |Re[s 1] in order to be able to excite the filter
suff1c1ent1y close to the Im[s'] (unknown a priori) so as to
approximate the maximum Hviz)(g)ﬂ across the frequency band of

interest.
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