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Abstract

A lumped-junction matrix method is derived for the reduction of a compli-
cated network of branching cable bundles to an equivalent uniform section of
multiconductor transmission line between two lumped junctions. The Tlumped
junctions are represented by matrices that entirely characterize the conduc-
tors beyond the uniform section. It is shown that reflections generally favor
the existence of differential propagation modes rather than common modes on
conductors with significant mutual capacitance, and the degree of coupling
between conductors in breakout boxes used for current and voltage measurements
on shielded wires is calculated, A rate-equation approach is also derived for"
the calculation of the average energy flow into the various branches of a mul-
ticonductor transmission line,
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I. INTRODUCTION

Predicting the vulnerability of aircraft and satellites to EMP invoives
objects. Satellites and aircraft are geometrically complex to the extent that
exact analysis of the propagation of electromagnetic energy from one region'of
the device to other regions is impossible, This work emphasizes the coupling
of e1ecfromagnet1c energy into the cables and its propagation along them.

Two approaches have been applied to the problem of the propagation of
pulses along the cable bundles. A computer code that uses lumped-junction
techniques” to obtain the signals on multiconductor transmission lines has been
used to treat tubes of the cable bundies as if they were individual conductors
(Ref. 1). Simpiified geometries have been treated to obtain approximate peak
currents, The second technique involves the use of semi-empirical set of rate
equations to evqluate the average energy flow. The lumped-junction MTL model
treats interference effects and calculates waveforms, but the lack of a
detailed knowledge of the cable topology, as well as the simplification of the
actual topology limits thé extent to which the waveforms are expected to
agree, It is possible to work backward and determine:conditions that are pos-
sible within the available knowledge of the cable configurations, whicﬁ would
provide waveforms that agree.qua1itatively with the experiment. The rate-
equation approach is an attempt to obtain approximate average agreement while
either ignoring or averaging frequency-dependent interference effects.

This report is organized into five sections. Section II is a development
of the lumped-junction matrix method of multiconductor transmission-line (MTL)
- theory. The salient assumptions. and simplifications are discussed in this
section, Section III is a demonstration that the physical principles that
govern the propagation of electromagnetic pulses on MTLs favor the existence
of differgntial propagation modes in the cqple bundles.

1. Gardner, R, L., J. L. Gilbert, and L. Baker, Analytic Treatment ofCable
Bundles with Large Numbers of Component Wires, AFWL-1R=-83-32, Air Force

Weapons Laboratory, Kirtland Air Force Base, NM February 1983,
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Because reflections tend to enhance differential modes over common modes, it
is unlikely that the magnitudes of the differential modes can be bounded using
measurements of bulk cable currents. An estimate of the magnitude of cross-
talk of wires within the breakout boxes is included in Sectwn IV, Section V
is a rate-equation formulation of the enérgy flow on MTLs.
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I1. FORMULATION QF MTL THEORY FOR APPLICATION
TO THE FLTSATCOM EXPERIMENTS ‘)

First, the current in a driven, infinite MTL is obtained. The equations
derived in thié section, Equations 1-28, are all in the frequency
domain; that is T = T(w) and V = V(u). The differential equations for a
driven MTL are (Ref. 2, p. 98) ) :

ﬂ41 TT=C . (1)
%+MEV=@ ' | (2)

H

where T is the current vector, V is the voltage vector, L and E:are the induc-

tance and capacitance matrices, respectively, and G and Dc are the current and
voltage source terms, These are combined to given an equatfon for the current

2= db —
S+ kfT=2- 0 TE (3) *
dx °
where : - : ' :
k =w/v )
l —- — ——
;éf = TT

This treatment assumes a single propagation velocity for the sake of sim-
plicity, because the cable configurations are not known im emough detail to
evaluate numerous propagation modes.

Assuming negligible losses in the line, the field at point xf due to a
source at point xg is obtained using the shift theorem for Fouwrier trans-
forms (see Fig. 1). A traveling wave is shifted to an earlier time which
accounts for the distance from the source by multiplying it by exp(- fkle

s') Therefore the particular soluticn of Equation 3 that corresponds to
the fields driven by the sources has the form

2; Frankel, Sidney, Multiconductor Transmission Li’ne Analysis, Artech House, .
1977. .
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Figure 1, Infinite MTL with source point xg and current
measurement point xf.

I(x) =

|
O'\x

2
(aG + @ﬁt) exp(ik(x = xo))dxO +./. (§§ + dﬁb) exp(-ik(x - xo))dxo(4)
X

* The substitution of Equation 4 into Eduation 3 gives

x N
1(x) = & f exp{ ~ik(x - x)))(Ty(xg) + vE B(xg))dxy
) .
£
+ f exp 1k(x = x))( Ty lxg) + VT T(xy))dxg (5)
X

Equation 5 includes waves traveling in both the positive and negative

directions.,

If the driving fields have an extent that is small compared to the minimum
wavelength of importance in the problem, Equation 5 may be rewritten



T(x) = exp( -ik{x - xo))[Tz(xo) + TC(XO)) 8(x = XO) ‘ .

+ exp( Tk(x = x3))(T, (xq) = To(x5)) e(xq = %) (6)
where 6 (y) = 1 for y > 0 and 8(y) = 0 for y < 0 and T, = [Djdx' where D =
vCG and T(‘ =[§Cdx'. Equation 5 or _6:-gives the current at location x of a

driven MTL.

A current waveform on an' MTL may be decomposed into two traveling waves,
A simple junction, at which the capacitance and inductance matrices of the MTL
change abruptly, may be characterized by complex frequency-independent reflec-
tion and transmission coefficients acting on the traveling wave amplitudes.
Figure 2 illustrates a junction on an MTL. The current to the left of

the junction is T and the current to the right is Tp. The capacitance
matrices of the two sections are EL and ER‘ For the sake of illustration,
it is assumed for now that a traveling wave moving from left to right enters

—_—

the end of the MTL. A reflection matrix "E and a transmission matrix T are

defined as follows, .
T - F T+
IR = T\I_L (7)
T =RT} (8)

The reflection matrix is

— — — - -— _1 .

R =(Ty -TIT +T) (9)
and the transmission matrix is

(10)

||

=T+

=)

A constant propagation velocity for all modes has been assumed, The conven=-

tion for current used here and in the rest of this report is that positive

current always moves from left to right. Of course, traveling waves that go

from right to left exist, but positive current within them moves from left to

right, ‘ .




Having derived the reflection and transmission matrices of a single
junction, it is now useful to develop the concept of the lumped junction. For
the purpose of treating the propagation of electromagnetic waves along cables,
it is useful to use lumped junction techniques. The junction is treated as a
localized element with a comp]ei-frequency-dependent-Eéfiecfivity. .A length
of cable with an arbitrary number of sections, each section having uniform
properties, may be represented as a 1Qﬁpéd junction; Interference effects
between return waves reflected from discontinuities along the cable are

treated exactly.

"Consider the cable shown in Figuﬁe 2a. A pd1se I* propagates to the
right, and reflected waves return from'junctions Ja and Jb, causing current I-
to propagate to the left. Although lengths La and Lb are different, Jb is
still treated as a single junction, The entire circuit to. the right of Ja may
be represented by a single complex currept reflection matrix, RT for the
lumped junction, Figure 2b. The reflection matrices for currents arriving
from the left and right side of J; are ﬁ}g and ﬁ}l, respectively, as illus-
trated in Figure 3a. The transmission matrices are 312 and ﬁ;l. Equations
relating the current vectors to the left and right of Ja are, '

- _F T -

3= T2 L + Ry 15 (11)
- _ — -4 — -

I =R T +T I3 (12)

A propagation matrix, P, may be defined to propagate T; and TE' to obtain T;'
and TE, respectively. For the case of totally degenerate propagation modes,
which is .assumed in this study because the exact cable configurations cannot

be treated,

mn = Smnexp(-ikz.) (13)

where z, is the length of wire n between Ja and Jb, k =w/v, and v is the

propagation velocity along the cables, The remaining equation used to obtain

the Tumped reflection coefficient Ry is
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Figure 2a. Junction and terminations of wires of an MTL. Ja and
Jb are the junctions. .
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Figure 2b. Two junctions may be represented as a Tumped junction.
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Figure 3a. Schematic of an MTL with two junctions, showing the
definition of the traveling-wave currents. Positive
current is always defined to be to the right, but
.‘. traveling waves go in each direction.
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I
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1
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Figure 3b.

The entire network to the right of Tube 1 may be

characterized by a single reflection matrix, R

11

T



T; =77, 7T} | (14) "II’{

The equation for TE is obtained using Equations 11, 12, and 14,

-,-.__: =

1R I - (15)
where

R =R+ Ty |FRA)L-Fy M T (16)

T 12 21 b 21 12 .

Any number of junctions may be represented as a lumped junction by recursively
applying Equation 16,

The matrix 3&2 is obtained using Equation 9 and the other matrices of
Equation 16 are related to R&é as follows, -

Ro1 = -Ry2 (17)
T&z =T + Flz, (18)

Thus, a network that consists of junctions connected by sections of MTL with
uniform properties may be represented by a singie reflection matrix ﬁ% to
calculate the waveform of an excited adjcining section of MTL,

The waveform on a driven section of MTL between two junctions is now
obtained, An MTL with junctions at x = 0 and x = & is shown in Figure 4, A
current probe is located at x = x5 and exciting fields act at x = xg. We
assume an inductively driven source current Iz and a capacitively driven
source current T.. Because inductance-driven currents travel in the same
direction just below and just above the driving point, whereas capacitance-
induced currents travel in the opposite direction, the source current for the
positive traveling wave is S* =T, + TC and the source current for the nega- - .

tive traveling wave is S= = TA - I Some interesting results of the

12
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difference between capacitive and inductive drive for certain cable geometries
are discussed in Reference 3. First equations for I%(0) and for T-(2) will be
obtained in terms of Ra’ Rb, S*, and S=, then the current at the probe loca-
tion will be obtained, where Ra‘_and Rb are the lumped reﬂec‘:.tion matrices for
the networks attached to the ends of the MTL section, Equations for the cur-

rent at x = 0 and x =¢ are,
TH(0) = RyT-(0) (20)
T-(1) = RgT*(e) (21)
THL) = B@)THO) + P - x)F (22)
T-(0) = P)T-(2) + F(x )T ‘ (23)

where P(d) is defined in Equation 13. Equations 20 through 23 are solved
for TH(0) and for I-(2),

- TH0) = [T - RyPe )%BE(Z)]-I %A[%'(z)'ﬁﬁ(é - x)(T, + Tp)
+ B x)(T, - TC)} | | (24)
- I =5 = Sle=l= ==
-(a) = [T - §FfFe)] - RFe R, - T
+ P(s - xJ(T, + TC)] _ (25)

The total current at Xp is then obtained,

Tx,) = %(xp)ﬁm + Pe - xg T() + 3(xp‘- x)(Ty * Tpdolx, = xg)

+ %(xS - xp)(I;jz - To)e(xg - xp) (26)

3, Tigner, J. E., M. J. Schmidt, P, N. Setty, and S. T, Ives, "The Excitation
of Multiconductor Bundles of Wires by Electric and Magnetic Cavity
.Fields," IEEE Trans. on Nuc. Sci., Vol. NS-27, p. 1542, 1980.
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Figure 4, Section of MTL between two junctions., The excitation occurs
at xg and the current is measured at xp.

where 6(y) = 1 for y > 0, and 6 (y) = 0 for y < 0. Equations 24 through 26
give the current that will be measured at a prabe location if_ the cable
excitation may be treated as if it were at a point,

Equations 24 and 25 are modified to apply to extended excitation by
integrating over localized source Tocations. For the treatment of extended
excitation, the current source is represented as a current per unit length,

R Do =& (27)

where'D'L =vC § in Equation 5 above. The equation for the current due to the
extended sources is

T(x,) = 'E(xp)mm + Ple - x) T7(0)

X g
- p _ . _

+ f pr- xJ)(D + Dgdx + f T>'(xs-xp)('D'L-’D'C)dx (28)

] *p

where
— — — — —— — — .‘ l —-—
T+H0) = T-Rp)RF0) R, PR, f Blo - x ) (x) + Dolx,))dx,
0

g
+f Plx (T (x) - Dulx))dxg
0

14
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and

The current vector at any location between the two lumped junctions of an
MTL may be obtained using Equation 28. If the current within a section of the
MTL that is represented by a lumped junction is needed, it may be obtained by
exciting the end of the cable represented by the lumped junction with the
waveform obtained using Equation 28, '

To verify the method, a known waveform will be obtained. An MTL with two
lines and a grond is illustrated in Figure 5, The resistance of the ground
terminations is matched to the impedance of each cble so that no reflection
occurs at any of the four wire tremination. The capacitance matrix of the
middle section of MTL is '

. -[/3.7 3.8

. o-11 . | o (29)
3.8 2.4

Cs

and the capacitance matrices of the two side sections is

3.7 0

=T, = 107 (30)
0 2.4

B

16




The reflection matrix is found using Equation 9,

. 0322 -0.34
R, =R = (31)
-0.22  0.34 . :

The reflection matrix is independent of frequency because the terminations are
impedance matched., If reflections océhbred at the terminations, interference '
effects would distort the measured pulse shape, and R would be frequency
dependent, The pure differential mode, (1,-1)//2, is an eigenvector of the
reflection matrix for this case, With the diagopa1 elements of the capacitance
matrix the same on both sides of the junction, The eigenvalue of the reflec-
tion matrix is 0.56,

The length, ¢ of the cable between the two. junctions.was. chosen to be
12 m. A short (11 ns) differential-mode pulse shown in Figure 6 was launched
by a capacitor driver at the center of the wires, The propagation time for
12 m is 40 ns, so éveny 40 ns a pulse that had reflected from a junction once
more than the last pulse was detected at a.current probe. The amplitude of .

“each. pulse was 0,56, (the calculated eigenya]ué'of the reflection matrix), as

large as the preceding one,” Thus, Figures 7 and 8 are results of calcula-
tions, using Equation 26, that are in agreemént with a simple calculation.
Note that the application of Equation 26 to this problem is nontrivial because
the decomposition of the pulse into a frequency spectrum was followed by the
operation of a matrix that contained all muitiple reflections from both junc-
tions. Then the result was transformed to obtain the time dependence,

A discussion of the influence of sections of cable bundles that loop away
from the ground plane is appropriate. Such loops introduce significant
inductances, which partially reflect current waves that strike them., A loop
in a transmission line may be represented by inductors and a capictor inserted
in the line as shown in Figure 9b. It is expected that these loops impede the
flow of electrical energy between the sections of a cable bundle on the two
sides of the loop if short current pulses are driven.

17
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Figure 8, - Current of wire 2 measured at the probe location
shown in Figure 5,

The reflection factor is found to be

iw [-21_ +ulL% o+ (L) Zc]
R = 32

2L (1 - w2L0) + 2l - WwL% + (L v)

(32)

where 2L is the inductance of the loop, C is the capacitance of the wire in
the loop, L, is the inductance per unit length of the transmission line on
each side of the loop, and v is the propagation velocity for waves on the
transmission line. The capacitance of the wire in the loop is related to its

inductance as C = x2/Lv2, where x =ar and r is the radius of the loop, which
is assumed to be semicircular.

19
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The reflection coefficient is

iw E(-Z + (kx)z) + Lixz/q

. (33)
A (1 - (k08 + ial(2 - (k0)F) + fuldx/L

R =

where k = w/v is the wave numbe;. As-an example, we consider a cable bundie
attached directly to ground with an inductance per unit Tength of

L= 2x 10=7, and 2L = 1 x 10-8& for the loop inductance. The average

wave number for a very short pulse, intended to test the SGEMP response of a
system, would be about k = 12 m~1, and we assume x = 0,15 m. For these
values, to an acceptable accuracy, Equation 32 may be written,

.- iL((kx)? - 2) )
2L (1 - (09 /k+ 12 (k0)F) - |

where L is half the inductance of the loop. The magnitude of R is

’R‘ = {ZLW(l - (1<x)2)/'[Lk((k><)2 - 2)]}2 +1|"1/2 , (35)

.For these values of L,, L, and k, tRl = 0,99, Clearly, this process must be

treated, It should be pointed out that 0.99 is not a good estimate for the
average reflection coefficient, because 'R‘ decreases very rapidly with
decreasing k.,

21




IIT. ENHANCEMENT OF DIFFERENTIAL PROPAGATION MODES OVER
COMMON MODES OF TUBES WITHIN A CABLE BUNDLE .

Predicting the vulnerability of aircraft and satellites to EMP involves
the analysis of the electromagnetic phenomena of gébmétricaTTy complex
objects. Of particular interest are bundles of cables running throughout the
systems. Unfortunately, exact cable bundle configurations are not available
and, moreover, it is unlikely that the cable bundles of any two devices would
have the same characteristics for the propagation of pulses. In attempting to
develop statistical models to bound the properties of the induced waveforms, -
it is useful to obtain an intuitive grasp of thé'connection between the bulk
current and the current on individual wires or on groups of wires within a
bundle, We will derive some propertieé of the simplest nontrivial
configuration that bears on this problem, two wires in the presence of a
ground conductor, as shown in Figure 10, The response of this system to an
electrical excitation is obtained in terms of a two dimensional capacitance

matrix.

The form of the BLT equations (Ref. 4) suggests that our conclusions may
also have some validity for the analogous situation in which wire 1 and

Wire 1

: :::::::Ci
Cma Cla CZ / —I;—-’
Cm =0 i
R
¥ » C!
I ~__ 2
\
44— Wire 2
I
L

Figure 10, Infinite 2-wire transmission line with a junction.

-~

4, Baum, C.,E., T. K. Liu, and F, M., Tesche, On the General Analysis of
Multiconductor Transmission-Line Networks, Interaction Notes, Note 350,
Air Force Weapons Laboratory, Kirtland Air Force Base, NM, November 1978.
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wire 2 are cable bundles, with capacitive coupling between the individual
wires of each bundle. Then our two dimensional equations are supermatrix
equations with elements that are nxn, nxm, mxn, and mxm dimensional matrices,
where bundle 1 is made up of n wires and bundle 2 has. m wires, The validity
of the approach of treating a cable bundle as a single conducting e}ement and
a formalism for doing so has been discussed 1in Reference 1,

Our purpose is to illustrate that reflections at cable junctions favor
differential propagation modes in the sections of the transmission 1iﬁe with~a
large mutual capacitance between the wires, One might suspect that this would
be the case because a differential propagation mode with a given current is a

* Tower energy state in a region in which the two wires under consideration are

strongly capacitively coupled than in a region with weak coupling between
them. The energy stored in a two-wire plus ground transmission 1ine is

2 : '
_ E ’ —T3T : .
i=1

where z is the coordinate along the Tine, V'is‘the voltage vector, T is the'
capacitance matrix, and the superscript T indicates the transpose matrix or
vector. The current vector of lossless conductors in a homogeneous dielectric
is're1ated to the voltage vector by tHe equation,

I =u E'v- ‘ (37)

where u is the velocity of propagation. To define the elements of the capaci-
tance matrices, we consider a transmission line consisting of two wires and a
ground as shown in Figure 10. To the left of the junction, the wires are
close together and have mutual capacitance (per unit length), Cu. To the
right of the junction, the mutual capacitance is zero, Capacitances to ground
are Ci and Cé to the right of the junction, and the diagonal elements of the
capacitance matrix for the section to the left of the junction are C1 + Cm and
C2 + Cm. The total capacitance to ground of the two wires to the left of the
junction is C1 + CZ‘ The capacitance matrices are ‘

23




o
"
3
3

%R

In terms of the current vector, the energy to the left of the junction is
obtained from Equation 36, ’

1\7T =-1 T 1 ‘ [2 2 ]
W= [dzf2\1 ¢t T 1%c. + 1%, + 21.1.C_|(39)
f<u2> ./ e, +cc+c)]12 el Tl

1 2

The energy is clearly lower if_I2 = -Il, than jf I2 = Il,_foq_the same value
of Il’ which demonstrates that the differential mode is a lower energy state
than the common mode in a section of line with nonzero mutual capacitance,
Crye '

For a mode with. the same currents, the energy to the right of the junction .
is ' :

- 1 2, 1200 ‘
u CICZ .

Conditions that will frequently be satisfied are: C > Ci, Cm > Cé, C1
similar in magnitude to Ci, C2 similar in magnitude to CZ‘ For configurations
that satisfy these conditions, W will clearly be significantly lower than W'
for the differential mode, 12 = 'Il‘ This demonstrates that the differential
mode has a lower energy in a section of transmission line with strong mutual
capacitive coupling than in a section of line with no mutual capacitance,
unless the capacitance to ground is much larger in the latter section.

A general set of equations, known as the BLT equations (Ref. 4) is used
for the ahaiysis of multiconductor transmission lines. To solve for the
currents to the left and to the right of the junction, the BLT equations have
solutions that may be written in terms of reflection and transmission

matrices., .

24




We define reflection and transmission matrices, Rg, RL, TR, TL»

Conservation

Al

?

L

e
L L

I

+ TR I

R

——— 5
-

+ RR IR - T

T+
I

of charge and the continuity of voltage along a wire, together

with equations relating current to voltage in a multiconductor transmission
line may be used to obtain equations for the reflection and transmission

matrices,

ﬁL =
Rﬁ =
TL =

TR =

(T - T T
;El

T+F

T-F .

where T is the

identity matrix.

The elements of ﬁl are

Ri11

L22

L12

where

)
I

1 \ .
--D-[cm(cl+cl+c2-c2) +(C +C

] t 2
(G * Cp + C(Gy + G+ Cy) - G

25
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The off-diagonal elements are always positive, Both diagonal elements
will frequently be negative. In the example we discuss below, R_ has nega-
tive diagonal elements, and the properties we derive result from this feature.

The reflection and transmission matrices depend-on the relative values of
the capacitances, but all capacitances may be multiplied by the same number
without affecting them, We use the following capacitance values to illustrate
the properties of the reflection and transmission matrices at a jdnction.

= |='. ~
C - 0.4 Cm 3 C 0:6 Cm ' Ll

= Y
1 "0-6 Cm . C2-008 Cm .

1 2

These capacitances correspond to conductors that are quite close to the ground
plane. Using these values, we obtain

-0.242 0.316
0.421 -0.158 )

The eigenvalues and eigenvectors of this matrix are

0.70
-0.567 I =
\-0.72

0.61
0.79).

The physical interpretation of these eigenvalues is that they are the ampli-

‘1

0.167

[}
1}

Ao Iy

tude reflectivities of the current eigenvectors incident on the junction from
the left, The eigenvectors are not orthogonal. The matrices RR’ TR’ and TL
have the same eigenvectors as R, but their eigenvalues are different.

The eigenvector Ip, which has almost no bulk current, will tend to
remain to the left of the junction, since it has reflection coefficient 0,567,
while Ip is mostly transmitted. One might expect this to be the case,
because Ij is a lower energy state for a given current magnitude to the left
of the junction, while Io is not. A differential mode will tend to remain
din the part of a circuit with an appreciable mutual capacitance. A common
propagation mode does not strongly favor either side of the junction for the
case C; + C, = Ci + Cé. }

26




. The transmission matrix is :I'-L =T+ 'EL, where T is the unit matrix.
The eigenvalues of TL that correspond to T& and Té are

T . -

A o= 1+ Ay = 0.433

T _ -

Az"‘ 1 +A2_ 1.167 s

so a common mode has a much larger coefficient for transmission out of the
region where the wires are close together, than a differential mode.

It can be shown that in the Timit Cm » Cl’CZ’Ci’Cé the pure differen-
tial mode is an eigenvector of R with eigenvalue 1; the differential mode
becomes totally trapped in the—left section of the line. Our numerical
example above is not very extreme considering this possibility. The mutual
capacitance between. two sections of a cable that split into individual cables
_ would usua]iy be larger with respect to Cl,CZ,Ci,.and Cé t?an in the numerical
. example. For this case Al_would be larger and so would AI R 'Iead'ing to .
further enhancement of the differential mode in the segment with an appreci-

able mutual capacitance.

It is also interesting to consider a current vector approaching the
junction from the right, For the case of a pulse, only in one wire, incident
on the junction from the right, the current passing through to the left of the
junction will consist primarily of a differential propagation mode. The
eigenvalues corresponding to the transmission coefficients of current vectors

incident on the junction from the right are

T 0.70
AT 1,567 , corresponding to Il =
-0.72
and
0 , - 0.61\
A, = 0.833 , corresponding to I, =
2 ct . 2 0.79

‘ Suppose that a current pulse arrives at the junction only in wire 1,

27



()

In terms of the eigenvectors,

IT aI1 + b12

a = 0.79 b = 0.72 .

The incident current is about equally divided between the two eigenvectors.
Multiplying the coefficients of the eigenvectors by the eigenvalues, the
transmitted current vector is obtained,

1.23
I. = . . L
T \-0.42
The current in wire 1 is much larger than the bulk current in the circuit, to
-the left of the junction, That is, the charge in wire 1 induces a charge in
wire 2 with the opposite sign, due to the mutual capacitance. This is an

example of a situation in which a current in a portion .of an MTL is much
larger than the bulk current in the MTL,

While this example does not address all the complicafed 1nterference
effects that také place in airplane and satellite circuits, it does indicate
that the measurement of bulk currents of cable bundles will not provide esti-
mates of individual wire currents in a simple manner because reflections at
the cable junctions favor the existence of differential propagation modes.
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IV, BREAKOUT BOX CROSSTALK

Breakout boxes are sometimes used in testing devices for EMP hardness.
Cables shields terminate at thefentry to the breakout-ﬁbx and the insulated
wires inside the coaxial cable shield continue on into the breakout box to the
interior box connector as shown in Figure 11, The Qorst case for potential
crosstalk corresponds to a pair of wires so close together that their
insulation touches over a distance of some 5 cm. That close configuration was
chosen for the example analysis which follows. '

The analysis was carried out using the methods developed in Reference 1
and are used regularly throughout the rest of this report in which the cables
or groups of cables are treated as tubes and the various diseontinuities in
the cable bundle geometry are treated as junctions., This methodology is
consistent with the formulation of the BLT equationv(Ref. 4), The specific
geometry is shown in Figure 11. Incident currents I in the coaxial cables
are shown on the left, Since the currents propagate within the coaxial cable
the exact path the cable follows as it enters the breakout box is immaterial

to the analysis. As the cable enters the breakout box the cable geometry is

treated as a junction with complex terminations to include the change in self
inductance. and capacitance as well as mutual terms to apéount for the cross
coupling, The values of the various impedance elements are calculated
entirely from geometric considerations with the following results.
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The inductance and capacitance per unit length, impedance, and the
propagation velocity of 1S20 cables, selected as an example are,

L, = 9.6 x 107 Hz/m

C, = 8.0 10'10 F/m ; ”
v=1,14 % 108 m/s

z, = 118

Within the box, shields on the cables have been removed .leaving only
insulated wires over a ground plane. Mutual coupling between- the wires is
calculated by assuming the wires have their insulations touching over a 5 cm
length and the wires are 5 cm from a ground plane, Effects of the other 5
sides of the box wére ignored. The self and mutual capacitances of the wires
found were

5.97 x 10°12

(@]
1]

F/m

C = 9.67 x 10~11

m

F/m

The capacitance matrix of the interior of the breakout box is then
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and the load impedance matrix for the terminations is

- Jwg
ZL RL + ;2- P2
-1

Rl 0 . Cs - 'Cm .
- Jug ,
= + 5 (45)

0 R v -C C

2 m S

The admittance matrices for the incident cables (subscript 1 in Fig. 11) and
the termination sections (subscript 2 in Fig., 11) are then

(46)

—
—

L]
<
(g

s

[

<

v, =z} (47)
Finally, the current transmitted into the junction is given by Reference 1

t -1 i
I = ZYZ(Y1 + Yz) YIV . . (48)

In order to estimate crosstalk only cable 1 was driven so that

. 1
v o= < > (49)
0

The measure of crosstalk chosen was IB/I%N Current Ig is that current which
results when a current enters on cable 1‘(11) and is reflected back out cable
2 (Ig). (From Kirchoff's laws Ig = Ig.) Note that this ratio has no limit
since an extreme case (if non-physical) is all of the current entering I}
could be reflected back as Ig.

An investigation of more realistic cases, however, revealed that crosstalk
can be a problem at high frequencies. The results of two sample cases is
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shown in Figure 12. The first case is for Ri = Rp = 100 @. This case
resulted in wire 2 carrying a maximum of 0.3 of the wire 1 current at 150

MHZ. At higher frequencies, the fraction may be larger, of course. The model
used here is not valid for frequencies above a few,hundfed MHz, however. As a
more pathological case, Ry was éhosen as 100 @ and wire é resistance. was
chosen as 10 Q. At high frequencﬁes the-two wires carried essentially equal
currents., It is clear from these calculations that breakout box crosstalk can

be a problem under certain conditions.
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V. RATE-EQUATION TREATMENT OF ENERGY FLOW

An approximate rate-equation treatment for the energy flow along a MTL may
provide the most accurate means of estimating currents on the shields of cable
bundles that are too complicated or not well enough characterized for an exact
treatment, Interference effects are ignored so that exact waveforms cannot be
obtained nor can resonant effects that are'high1y wavelength selective be
treated, It is important to néfe, however, that these effects cannot be
treated by other means unless the precise cahle geometry is known and modeled.

The energy per unit length stored in a traveling wave on a multiconductor

transmission line is
W=sT'7 | | . (50)
V ' .
and the energy flow is
s=T 7V : (51)
Therefore, for a single-mode MTL{ the energy is
W=TTT | . (52)

The energy transmission factor for trans%er from Tength L to length R, FiR,
is defined by the equation

S VNL/Z . (53)

R = FLR

where SLR is the rate of energy flow through the junction and WL is the energy
per unit length in both traveling waves on the left length of the MTL.

In terms of the right-traveling wave,

The currents TE and Tt are related by the transmission matrix %:
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b

= =, =1
T = 2T,(Tp + T)) (55)

But the energy to the left of the junction is

T+HT T-1 T+ (57).

For most cable configurations, as illustrated in the example in the Section
111, the eigenvalues of T will be very close to pure common, II = (1,1), and
differential, Ig = (1,-1), modgs. Using this qssumption,.ﬁhg_energy transmis-
sion coefficient for common modes is

TT/ Tl T
FC TTJTL T T, (58)

=TT 7T
=TT T

-1
R
and the coefficient for differential modes is

Flo =TT TT T2 T 1/1] T;! Td‘ (59)

It is appropriate to define the matrix

c
~ Fig O
Flp* g (60)
LR

A similar matrix fﬁL may be defined for the energy flow from the right section
of tine to the left section. F acts on vector W= (W_, W).

Rate equations for the energy flow in a transmission line will be derived
for a sample case in this section. A simplified cable bundle is shown in
Figure 13,

An energy S(t) is introduced into section M, entirely as a common mode.
The rate equation for the energy in section M is
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ﬁh(t) = Iy ﬁh(t) = (v/2) [;FMR W, (t) - Fup ¥ (t) + FRMIW (t)

- LN
+ Fiy WL(t)] + S(t-)<1> L ) (61)

where %h is a diagonal matrix with the-lengths of the two middle wires as its
elements and the dot represents the time derivative., The rate equation for

the energy in section L is

‘_[L fIL(t) = (v/2>[6 ?‘ML Wy(t) - T?LM FIWL(-t) - FLG WL(t)] (62)

where Qij = 1/2 for all elements. If half the wave]ength is short compared to ‘
the lengths of wire 1 and wire 2 to the left of the junction, then the expec-
tation for the returning current will be evenly mixed between common and dif-
ferential modes. Because there is no mutual capacitance in section L, the
energy is the same for a common mode as for a differential mode in that sec-
tion, Thus, Q puts half the energy in the common mode and half the energy in
the differential mode. The energy flow through the end of each wire is a
diagonal element of ElG' ‘

Similarly, the rate equation for the energy in section R is

7k Wﬁ = (v/Z)[ﬁ'?MR W, - FﬁM G'Wh - ?hG Wﬁ] (63)
The rate equations 61 through 63 may be solved for Wﬁ(t), Wl(t), and Wh(t).
The current in the differential mode, in the left section is

I, = [vzwd/Tgf‘Lle]l/z (64)

where Tﬁ = (1,-1), and the current in the common mode is
. - 2 T=1 1/2
I, = [v M/TEoL chl ~ (65)
T _
where Té = (1,1).
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The peak current is the sum of Id and IC, while the average current is the
root sum square of them.
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