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Abstract

In the general formalism of electromagnetic topology the propagation
through and reflection from subshield penetrations of signals is important.
This note considers the characteristics of 1linear filters and nonlinear
devices idealized as norm limiters which can be used at such penetrations.
Both frequency-domain and time-domain concepts are employed to limit undesir-
.able signal penetration and reflection.
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i. Introduction

In the general development of electromagnetic topology in quantitative
form, the volumes ({layers, sublayers) and surfaces (shields, subshields) are
assigned scattering matrices to transport the signal vectors (N-waves) through
these entities. lnder suitable assumptions concerning the effective attenua-
tion of signals through the subshields and effective termination of the sig-
nals incident on the subshield penetrations, one obtains the good-shielding
approximation in which the transport of signals through the system is written
as a product of matrix blocks (in frequency domain) 12,87.

Norms have been introduced to scalarize the matrices and vectors in a
bounding sense. These have been used in frequency domain [2,3,4,6,7,8] in the
context of the BLT equation for transmission line networks, the good-shielding
approximation, and general linear-system btounds. The use of norms nas been
extended to time domain for both functions (waveforms) and convolution opera-
tors [5,9].

Mostly norms have been associated with linear problems, but with the
use of norms of- time-domain entities one would like to extend their use to
situations involving nonlinearities. In one paper this is begun by introduc-
ing the concept of linearity to failure [5]. In another the restriction of a
nonlinear element to being passive alliowed one to obtain bounds on the system
response in a 2-norm sense in both frequency and time domains [7].

It is common practice to desfgn certain kinds of nonlinear elements,
such as diodes, spark gaps, etc., into systems to 1imit the passage of tran-
sient signals. Considering norms in a linear-system context applies to such
things as filters to attenuate signals in frequency and time domains. One
would like to incorporate such nonlinear protection devices into the norm
context in some way so that both linear and nonlinear devices could be evalu-
ated on some common basis, and perhaps combined in useful Ways.




II. Concept of a Norm Limiter

Let us now introduce the concept of a special kind of nonlinear device:
that will be called a norm limiter. In essence this device will 1imit one or

more norms of a waveform transmitted past this device. This can be written as

|1yc(t)|[ <A T (2.1)

where the subscript ¢ reminds us that the waveform V.(t) is a combined voltage
of the form
Vo (E) = v(t) £ R I(t)

(2.2)
R>10

with the sign chosen depending on the direction of positive current flow
(+ meaning bropagation in the direction of positive I on conductor (terminal)
with positive convention)., As discussed in [6,7,8], R is chosen as a constant
(frequency-independent) resistance to obtain desirable properties for the
2-norm of certain scattering matrices (bounded by 1.0).

Note ‘that the particular norm to be used has not yet been specified.,
The common p-norm for time domain waveforms is

1
vl = (U7, v (o] at)® (2.3)
with the special case of the =-norm as
o]y = sup V()] ' (2.4)

where isolated values of V_(t) are excluded from consideration [9]. In (2.1),
since more than one type of norm may be under consideration, the subscript on
the norm symbol || || can also be applied to the norm limit 4.

Conceptually let us represent our norm limiter (symbol NL) as a two-
port network as in fig. 2.1A. With voltage and current conventions as indi-

cated the waves are constructed as
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vV, o(t) = vV, (t) - R I.(t)
1,2 A 1 (2.5)
Vz’l(t) = V2(t) - R Iz(t)
VZ,Z(t) = Vz(t) + R OI(t)

Consistent with previous papers the positive wave direction is in the direc-
tion of assumed signal propagation into the system (to the right in fig. 2.1).

Note the symbolic inclusion of termination resistors of value R on both
sides of the network. This is so that no reflections from the norm limiter on
either side can reflect again back to the norm limiter, If this were not the
case then the nonlinear character of the norm limiter could make matters much
more complicated. So for present purposes let us assume that effective imped-
ances, at least approximately R, are present on both sides of the norm Timiter

and used to define its properties. Now we have

V2,2 =0 ' (2.6)
“but we assume for the (orginal) wave incident on the norm limiter
Vl,l £ 0 (2.7)

which can be modeled by an equivalent source (not included in fig. 2.1) if

desired.

Applying (2.1) to the situation and conventions in fig. 2.1A, then the
norm limiter is described by

Hv, ()] <A (2.8)

2,1
If the norm limiter is passive (supplies no energy) then we have

‘lvz,l(t>l’2 < llvl,l(t)‘|2 - (2~9)

An interesting question is under what circumstances equality in (2.9) applies
for the 2-norm, or for any other norm for that matter. One can envision that
the NL might. have the property that for “small" signals (in norm sense) the NL
might completely pass the signal with no ref]ection‘(vz,l(t)) and no attenua-
tion, i.e., with




V., . (t) = V. . (t) ' : (2.10)

2,1( 1,1(

In addition the NL might have the property that it gives no change to V1 1(t)

untess
t\vl’l(t)|| > A (2.11)
in which case

|‘Vg’l(t)" = A (2.12[

Such a special norm limiter might be referred to as an ideal NL, with of
course the particular norm specified.

If we look at the reflected wave vy z(t), first note that for small
3
signals an ideal NL has

V1 2(t) = 0

*

(2.13)
l|V1,2(t)l‘ =0

However, for larger signals, for which the NL becomes operative and the trans-
mitted wave is limited as in (2.12), there is a reflection with

\!1 ,Z(t) # 0
(2.14)
l‘vl’g(t)li =9 >0
If the NL is passive then we have
|]vl,2(t)1|2 < 1|v1,1(t)1‘2 (2.15)

and more generally, including the energy of both transmitted and reflected

waves,

v, 0115+ vy Lo 5 vy ()15

2 (2.16)
2 . 2
Oy + by < [|vy ;(©]13




Now an NL can take various forms., Figure 2.1B shows a parallel NL
which might 1imit the voltage (V1 = V?_) across it. Similarly fig. 2.1C shows
a series NL which might 1imit the current (Il = I2) through it., However, this
is only a small sample of the possibilities. Note that at least in these two
forms the NL is bilateral, i.e., signals incident from the right are also
transmitted to the left with a norm limit A; this kind of NL is s}mmetrica]
with respect to "forward" and "reverse" directions. ’



III. Some Kinds of Norm Limiters
Considering now the physical realizability of norm limiters, there are . ‘
various simple idealized networks that one might consider.

A. Voltage Limiter

Corresponding to the paraliel norm limiter in fig. 2.1B one might
design the NL to limit the voltage (V2 and hence Vl)‘ This can be accom-
plished in various ways. One simple way is a voltage clamp as illustrated in

fig. 3.1A. In this case

12 (3.1)

assuming ideal diodes and voltage sources. Note the symmetry of the network
so that the voltage is limited to zV,. This network need not be symmetrical:
all that is required is that V2 is limited both + and - with the largest

magnitude defining the limit.
Now it is not V? exactly which is the transfnitted wave, but .
V2 (3.2)

(8 = V(0 - RI,(E) = 2V, (1)

so that our limiter is characterized by

||V2,1(t){l@ <2y = A (3.3)

Then 2VO is the proper number to use.

In more general terms this ideal voltage limiter is characterized

by
= Vl,l(t) for Hvl,l(t){la= < A
¥y 1 (%) ‘
= A for “Vl l(t)H°° > A
=0 for ||V, ((8)]], <2
Vy,2(8)

- t‘vl,l(t) - a| for |lV1,1(t)‘|m > A

- e - - - R - - L e it ey s e -
- e e g = v L
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Fig. 3.1. Some simple norm limiters



= l‘vl,l(t)||m for |IV1’1(t)"m <A )
“Vz,l(t)‘lm ) (3.4)
A for ||V1 l(t)Haa > A

0 for 1|v1’1(t)||°° <A

ilvl,z(t)"m
= llVl,l(t)lla - A for |‘V1,1(t)||¢ > A

Thus, while the transmitted wave has =-norm limited by A, the reflected wave
has =-norm limited by H\!1 1(t)|{m - A if this is positive.

The scheme in fig. 3.1A is not the only way to achieve such a
voltage limiter. A spark gap firing at tVO achieves the same w-norm. Of
course the spark gap should be ideal in the sense that any delay in firing
once ¢ VO is reached is negligible, and the arc resistance is negligible.
While a spark gap can achieve an =-norm, it does not do the same thing to the
yaveform .as a clamp.. After the spark gap fires, then lel is reduced
to << Vo until the incident wave (Vl’l(t)) is small enough that the arc is
quenched and the gap recovers.

There are other norms of V2 1(t) that one might wish to achieve via
a parallel norm limiter, However, such an NL may be more complex than the
above,

B. Current Limiter

Corresponding to the series norm limiter in fig. 2.1C one might
design the NL to limit the current (iz and hence Il) in some norm sense. As
in fig. 3.1B this might be an ideal fuse for which

(3.5)
“Iz(t)|'2 <7

Here T has units Ast/2.  The square of this 2-norm times a resistance (say of
the fuse) is an energy, and may represent the energy deposited in the fuse

10
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(for a sufficiently short pulse). (Under other conditions the fuse might be

designed for the =-norm of the current.)

Now it is not 12 which is the transmitted wave, but

V2,1(t) = VZ(t) - RIZ(t) = ZRIZ(t) (3.6)
so that the NL is characterized by
Hvz,l(t)u2 = R||1,(t)]], < 2RT = & (3.7)

Then 2RT is the proper number to use. Then this ideal fuse is characterized

by

<

ot

S
u

v, ,(t) for "Vl,l(t)|l2 <A

1,1(
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0 for ||V1,1(t)‘|2 <

o l!vl,l(t)"g for ‘lvl,l(t)l|2 <A
||V2,1(t)]|2 = : . . (3.8)
{ A for ||V1,1(t)]|2 3 A

(0 for "Vl,l(t)llg <A

v, L1,

211/2
] /

[livl,l(t)‘|§ - A for ‘lvl’l(t)tlz > A

Thus, while the transmitted wave has 2-norm limited by A, the reflected wave
has 2-norm limited by [HV2 1(t)[\§ - A2]1/2 if this is positive.

The above example is only illustrative. There may be various NL's

realizable in the series sense.
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Iv. Combining Norm Limiters with Filters in Electromagnetic Topology

Let us now look at the possible role of norm limiters in the context of
EM topology. As indicated in fig. 4.1 let us consider a simple form of EM
topology only divided down to sublayers and subshields [2,8]. The equivalent
graph (interaction sequence diagram) is a graph (bipartite) which is a very
simple form of graph known as a tree.

Now consider what happens at a subshield. The interaction sequence
diagram in fig. 4.18 shows all the signals incident on and passing through a
subshield by two edges, one on each side at each subshield vertex in the
graph. This allows for numerous signals passing through various kinds of
penetrations (conductor penetrations, aperture penetrations, and diffusion
penetration). Another paper [4] discusses measurement techniques for the case
of conductor and aperture penetrations.

Let us then concentrate on the canonical problem of a single conductor
penetrating a subshield as indicated in fig. 4.2. Note that the norm limiter
and filters (on both sides) are considered to be at and part of the subshield.
The geometry of thié penetration (shch as coaxial) is s%gnificant, but not

"part of the present.considerations.

As discussed in section 2, to characterize the NL.there is assumed to
be a resistance R as the impedance "seen" by the NL on both sides. This will
be an important consideration in the design of the filters, to be discussed

later.

Since for small signals the NL is assumed to have no effect, then the
filters are associated with any signal attenuation on ’passing through the
subshield. Such attenuation may be minimal for signals in the pass band of
the filter, while strongly rejecting other frequencies. 1If, in time domain, a
signal passes through a filter with a norm exceeding that allowed by the NL,
then the NL reduces the norm to the allowed value. Of course, the waveform
and associated frequency content may be conéﬁderably altered in this case, but
that is an inherent characteristic of such fonlinear devices.

Considering only the filters, then one can compute the transfer func-
tion (perhaps in a bound or norm sense) through the system subshields as a
function of frequency. Alternatively one can compute the norms of filters for

12
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transmitting time-domain waveforms., tinfortunately, in this sense the filters
are rather good transmitters (as will be seen later). However, the NLs can
compensate for this time-domain problem.

The idea, then, is this. Consider a cascaded set of filters with one
or more NLs as indicated in fig. 4.3. Begin with some signal designated as a
source S (in time-domain-norm éense) either outside the system, or incident on
some subshield within the system. 0On going through a filter the bound is
“reduced" to STl' On propagating through the NL the signal bound is either
STl or A (the NL ;haracteristic), whichever is less. On passing another
filter the bound is multiplied by the filter norm TZ’ etc.

This is a somewhat simplified view involving a single signal propaga-
tion path. In actuality all the signals passing through a subshield are to be
considered and bounded on the transmitted side.

15
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V. Constant-Resistance Filters

For our special type of filters the impedance looking in should be R
for all frequencies. The input impedance in general depends on the load
impedance on the other side of the filter. Since a constant resistance R
appears in our scattering variables let us assume that the load impedance is
R. Since we would like the filter to terminate signals in the volume in a
resistance R for purposes of the good-shielding approximation [8], let us then
consider what is known as a constant resistance filter which'has input imped-
ance R from each side when the other side is terminated in R [10].

1,2 = 5,0
of electrical symmetry, let us consider a network with physical symmetry as

well [10]. As illustrated in fig. 5.1 we begin with a physically and elec-
trically symmetrical network with conventions as in fig. 5.1A. Here we have

Since our filter will also be reciprocal (7 which is a kind

(Vn) = (Zn’m) (Tn)
(TU) = (V0 (M)

CARER AR
71,1 = 72,2 (input impedances, symmegry) (5.1)
21,2 = 72’1 (transfer impedances, reciprocity) '
?1,1 = 72’2 (input admittances, symmetry)
71,2 = 72’1 (transfer admittances, reciprocity)

where a tilde ~ indicates the Laplace transform (two sided), making these

variables functions of the complex frequency s.

Such a symmetrical network is bisected along a symmetry plane P as
indicated in fig. 5.1B by what is known as Bartlett's bisection theorem
[10]. 1In symmetric excitation defined by

V1 H V2 . Il = 12

there are no currents in branches crossing P, Equivalently such branches

(5.2)

crossing P are cut there. This gives symmetric input impedance and admittance

as

17
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1 2
(5.3)
1, T
v l._2.% . 91
Sy=v —v Y1,1+Y1,2 ZS_Y
1 72
In antisymmetric excitation defined by
V1 = -V2 . I1 z -12 (5.4)

there are no voltages between branches crossing P {(or better between nodes
placed in these brackets on symmetry plane P), Equivalently, P is made a
shorting plane on which all branches are connected together, This gives anti-
symmetric input impedance and admittance as

¥ v
I
zas = Y - ¥ Zl,l 71,2
1 2
(5.5)
1 1 :
. -1 _ 2 _ _ oyl
Vas VIV Yl,l - Y1,2 - Zas
iV

Schematically these are indicated in fig. 5.1C. Note that this kind of
network symmetry can be considered as a special case of an electromagnetic
symmetq} plane discussed in [1], in which case all the electromagnetic param--
eters split into symmetric and dntisymmetric parts.

Reconstructing the impedance and admittance matrix elements from the
symmetric and antisymmetric terms gives

- _ 1

71,1 ) 72,2 =5 (2, + T,]
y A S N S

1,2 2,1 2 -Tsy as

(5.6)

~ -N ——]'.N

Y1,1 - Y2,2 T2 |:Ysy * Yas]
V. o=9, ==Y -7._1
1,2 2,1 2 -'sy as
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Now apply the above to a constant resistance symmetrical filter shown
in fig. 5.2A. For the general results (5.1) and the constant resistance
condition give

Vo = L1201 * 11,110 = Rl
. . (5.7)
v t
.2 _ 2 -1
T z-5=.-"--= 71’2[R + 21,1]
Yy L

where T is now the transfer function of the network. Also from (5.1) and the
constant resistance condition we have

Vi =Lyt v 400 = R
=i -4 ™Y
Ro=T -2 =T - R T (5.8)
1,1 - 41,2 1,1 " i,2 1,1 .
C 2 %2 x2 5 e ~
RT =2y 1 =Ly o= (2 1+ 2 o121 - 29 5]
= Zsyzas
This last condition is put in symmetrical form as
11
_Sy _3s _
2y .2 (5.9)

showing the reciprocal relation of these impedances when normalized by R.
Returning to the transfer function we have

oy 5 ry oLy -1
T =T, - TllZg, + R+ ]
3 7
- -2 e
-Zas Zas Zas
T2 rrcksuyz o, Ly, el
=[(R)-1][(R)+2R+1] _ (5.10)
20
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Removing a common factor gives

~r ~

Z Z
T2y
1 Z
= [1--2801 +___gs]-?- (5.11)

These results can just as easily be expressed in terms of the corresponding
admittances.

Now apply these results to a symmetrical bridged-T network in fig.
5.28, a common realization of the symmetrical network discussed above [107.
Fig. 5.2C shows the decomposition of this network according to its symmetry
plane. This gives

[ 14

sy = 2'a * 2'Zb
, (5.12)
7 171
Zys = 7a/fﬁg = 2=
Zza +

a4

c

Imposing (5.9} for a constant-resistance filter gives

(5.13)

A common 3o0lution of this has [10]
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For this solution the transfer function is

7
Telie e e )t

b
With Z_ and Z. as p.r. (positive real) functions, i.e.,
Re{Z (s)] » O for Refs] > 0
Re[zc(s)] >0 for Rels] > 0

then the transfer function is a b.r. (bounded real) function, i.e.,

[Re[T(s)1] <1 for Rels] < 0"

and more generally in this case

[T(s)] <1 for Rels1 < 0

23
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VI. Time-Domain Norms for Filters

A recent paper addressed norms of convolution operators [9]. In an
electrical-engineering sense a filter can be considered as a convolution
operator in time domain. One can define the properties of a linear, time-
invariant filter in complex-frequency domain by a transfer function as

Voue(s) = TV, (s)
V., = wave incident on filter (input) (6.1)
VOut =z wave transmitted through filter (output)

In the present context the waves are normalized by a resistance R as in the
previous sections, and the filters will be of the constant-resistance type so
that there is no wave reflected from the input,

In time domain (6.1) is

Vo ()

out

T(t) o V. (t)
. fg T(t -t )u(tt )t

convolution (6.2)

(o]
1]

The filter is now characterized by a transfer operator T{t)o. As indicated
above, this is not a function of time but an integral operator with integra-
tion over t' involving T(t-t'). Note in (6.2) that integration is taken to
begin at t'=0 which is a way of stating that T(t)o is assumed to be a causal

operator (no V before V. ). In our later examples T(t)o is also taken to

out

be passive (provides no energy to V but may absorb energy from Vin)'

out’
Using norm concepts (6.2) provides the bound

HVoue (O < TITCe)of ] [ vyate) ] (6.3)
where || || indicates any of various possible norms: For the p-norm [97 gives
the general result N

[T(t)olly < [IT(E) |4 (6.4)

showing how the p-norm of a convolution operator can be bounded by the 1-norm
of the corresponding function.
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Special cases of the p-norm of such a convolution operator are (9]

[1T(t)el ]y = T,
Tl = [T < 1T ] (6.5)
HTee)ell, = [IT(0) ]

which gives equalities instead of bounds. Note that if our filter is passive,
then if Vin is a CW signal then for all s = ju (w real)

0 < |Tiw)] < 1 (6.5)

since the output and input waveforms are normalized by the same resistance

R. Applying this to the 2-norm in time domain we have
0 < [[T(t)o[[z <1 (6.7)
For the 2-norm in (6.3) this gives

l‘vout(t)‘lg < |lvin(t)‘l2 -(5-8)

which is a statement of filter passivity in time domain.

25




VIL. Frequency-Independent Attenuators

A special case of 2 constant-resistance filter is one with a frequency- .
independent transfer function, i.e.,

T(s) =T
(7.1)
0<Txg1l
so that
T(t) o = Ts{t) o
s§(t) = delta function (7.2)

[Z.8(tdt =1, e>0
Now for any operator norm, the norm of a delta-function operator is

[fs(t) o £(t)[]
f(t)=0 () ]|

ARGNE ‘ (7.3).

sup -
f(t)=0 ||f(t)]]

[ Js(t)o]]

=1

with appropriate smoothness requirements on f(t)3

§{(t) o f(t)

f(t) (7.4)
Then for frequency-independent constant-resistance filter we have

HTtede| | = [[Te(t)e|] = [T [ls(t)ef] = [T] (7.5)
This applies to the p-norm as well as others.

There are various realizations of symmetrical, constant-resistance,
frequency-independent attenuators. As 1indicated in fig. 7.1A, there is a
symmetrical bridged-T form as in section 5 with

, A - . : e e
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‘ Fig. 7.1. Symmetrical, constant-resistance, frequency-indgpﬁendent attenuators



Another common form is the symmetrical pi network in fig. 7.1B.
Terminating one side in R and requiring the impedance at the other side to be
R gives for symmetric and antisymmetric parts

~

ZSy = RZ
Rly (1 .2 41 7
2as RZ//(E_J [ﬁg +'§;I
From (5.9) we have
1 =Z.Y.E§§._, R s Ryl [R_2.+ 2% °
R R "~ 2 R2 R1 RZ RIRZ
| 2 (7.8)
L .2
22T RR,
1
relating Ry and R,. From (5;11) we have
Ro
r " 1
R =-—-R—-—-—-——— (7.9)
2
R

Yet another common form is the symmetrical tee network in fig. 7.1C.
Terminating one side in R and requiring the impedance at the other side to be
R gives for symmetric and antisymmetric parts '

1. =R

sy 3t 2R

4
- (7.10)

435 = Ry

From (5.9) we have

28




relating R, and R,. From (5.11) we have
3 4

29
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VIII. Canonical Constant-Resistance Bridged-T Filters

. A. Low-pass Filter

Consider the simple low-pass filter shown in fig., 8.1A. The

constant-resistance constraint in (5.14) gives

L

i“-= RC, (8.1)
The tﬁansfer function is
| -1 sbe. -1
T=[1+sCR]™" = [1+—=7] (8.2)
which is quite simple in form.
In time domain we have
.t
. RCb
T(t) = -jygg**‘ u(t)
(8.3)
|[T(t)[[1 = [3 [T(t)]dt =1
So for the p-norm we have .
t[T(t)ol{p <1 (8.4)
For special cases we have
[T(edoly = [IT(e)of], = 1
(8.5)
[[T(t)o]|, = max|Y(ju)| = 1
w

B. High-pass Filter

As in fig. 8.1B we have a high-pass filter. The constant-
resistance constraint in (5.14) gives

Tz— = RCC (8.6)

The transfer function is

Telisgr =g (8.7)




A. Low-pass Filter

@ > .

B. High-pass Filter

O— —e —Q
€. Band-pass Filter

. Fig. 8.1. Canonical constant-resistance bridged-T filter
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In time domain we have

t
RC_
5(t) - S—==— u(t) :
re, (8.8)

t

RC,

Tl = f5. IT(e) [de = [o7 s(t)dt + 2, & ¢

T(t)

So for the p-norm we have

HT(t)oHp ¢ 2 (8.9)
For special cases we have
HT(t)OH]_ = “T(t)o“u = 2
(8.10)
[[T(t)oH2 = mgx[T(jm)[ = 1

“ @
C. Band-pass Filter ;

Fig. 8.1C gives an example of a band-pass filter, The constant-
resistance constraint in (5.14) gives

7
o) R ;-1
7 = [SRCy * 5
b
7 sL
c _ ¢ 1
i o (8.11)
L L
c _ b _
T =RC » g =RC
The transfer function is >
R 4-1 R ,-1
T=[1+=]"" =1+ SRC, + Ef_]
‘Zb b
. (8.12)
sL
- _Cq-1 ~c L -1
= [1+ 77 [1+R+SRCC]




By defining

L
. _C .
tl = 3 RCb
(8.13)
Y |
2~ "¢ TR
then
- 1 4-1_1 s
T=11+ sty +-§E—} = -
2 Ls -+ oo
172 (8.14)
S S S
‘ t1 (s - sl)(s - 52)
where

1 1
S; o, = ommpmb [s o (8.15)
1,2 RN .

Qur case of interest is that of a narrowband filter for which S1
and S, are near the'jm axis as

1 ! 1 .
S 25—t ] -5 =Q,t ju
1,2 2t, y/,.tlt2 4t§ 0 0
*
S, = S
2 1 (3.16)
- 1 R 1 . '
Qo i e TS - Re. S damping constant
1 c b
y = N/l o1 N/_1 _ ;_{3_)2
0 tltZ At% LcCc 4 \Lc
= V/Llc* - L > = center frequency (radian)
b~b 4(RCb)‘
For a narrow pass band one needs
2
t R™C L
Lo . b ¢y (8.17)

t L 2

1 ¢ - R Cb

/L? /S |
= >R > [— (8.18)
Cc Cb
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which is effectively an impedance requirement on the reactive elements.

that
RS W R WA A Y LN B
By t2 2 t1 L 2 T;;
! LV
b S — [1 - 4——] = -5 -
t1t2 1 \/LCCC N/Lbcc
We also have
D R R e i
\/tltz \/Lccc VLbe
In time domain we have
s, t s,t
) 1 S ¢ L s, 6?2 (
T(t) = &~ u(t)
t 178
= Rels. ]t o Rels, ]t
HTe) ]| < L ‘lsl[ [ e 1T dt+ [s,] [ e 2
Js. = s,| t f 0
1 2V 71
1
. 2 B Vi
|'s s, |t T Rel's] T T 1
L2l JEE, "7 2
172 4ti -
t 1/2
2
-2 - 4]
4t2
Invoking (8.17) gives
HT(t)H1 <2
For special cases we have
[T(0)0] |, = HT(00]], %2
IT(Eds] ], = max|H(da)] = 1
W
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Note

(8.19)

(8.20)

(8.21)

.

{8.22)

(8.23)




‘ .

IX. Including Loss in Pass Band of Bridged-T Filters

A, General Case

As illustrated in fig. 9.1A we have decomposed 7b and 7C as

Zb = Rb//zb
Zc N Rc * Zc
Zé R Zé = reactive ihpedances

Then (5.14) gives an impedance constant

3 S - 2
Ry//ZLMR, + Zp] = R
Re, L v, r
R R - R e
A b Zb

Identifying resistive and reactive parts gives

B Rl
R R ~
Dl
R R~
So now Z; and Z, are related as Zb and Zc in (5.14).

The transfer function now becomes

7 R 7
Ci=1 c cq-1
IT=[1+'R—'] =[1‘+-§—-+§—]
"z|
_ o -1
=T L r g |
. ¢
Rc 1 '
Ty = [1 + 5777 = max |T(Jw) |
w
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A. General Case

O—
B. Low-pass Filter

C. High-pass Filter

o—
D. Band-pass Filter

Fig. 9.1. Bridged-T filters with Toss in pass band
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With the factor T, pulled out the result is like that in (5.15), excebt that R
is replaced by R + Re in normalizing 7& . Summarizing, the transfer function
peak is reduced to To and the filter time constants are changed by changing
R>R +R, in normalizing 7& . (Similarly, R » R + R, in normalizing 76 and

-1
T, can be expressed as [1 + R/R.] .
B. Low-pass Filter '

As in fig., 9.1B the low-pass filter with loss has

Lc
The transfer function is
sL
_ ¢ 4-1
(9.5)

R
Cqi-1

To = (1 + ¢

Comparing this to (8.2) note the shift in the time constant as well as the
amplitude. | ‘

In time domain we have

R+R
St
. R+ R L
T(t) = T, —/—= e © u(t)
- c
(9.7)
OO
So for the p-norm we have
[HTte)e ], < T, (9.8)
For special cases we have
HTe)ol]y = {T(0)o]], = T,
(9.9)
[|T(t)o|‘2 = max |T(jw)| = Ty
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C. High-pass Filter

As in fig. 9.1C the high-pass filter with loss has

L

b .
T = Rcc | (9.10)

The transfer function is

) ) 1 -1
T- Ts [1+ sCCiR + Rcl ]
(9.11)
R
c -1
To = [L+g ]
Compared to (8.7) similar shifts have been made as before.
In time domain we have
t
‘IR+RC[CC
- e
T(t) = T, 98(8) - FpvrTe ¢ u(t)
c-¢
(9.12)
HT(t)H1 = [ Tty dt =2 T
0
So for the p-norm we have
HT(e)olj, <27, (9.13)
For special cases we have
HT(t)oHl = [T(t)o]]_ =2 T,
‘ (9.14)

[[T(t)e ]|, mzx [ TCiw) | = T,

D. Bandpass Filter

"As in fig. 9.1D the bandpass has
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"Z't
b R -1
R = [SRCy + ]
, b -
7' sL
c_ ¢ 1
R—' - R +—S—RTE . (9.15)
L L
c _ __ll_
® TRy w7 REe
The transfer function is
7! sk
v -1 o 1 -1
TeT [1ag—2m]" =T [1+ + ]
R+ RC 0 R + RC s[R + RC]CC
‘ (9.16)
Rc -1
To= 1+
By defining
t! = "o
1~ R Ro
| (9.17)

té R + RC]CC

then the results are the same as in section 8C with t, + t. t2 +> té, and the

1 1’
factor of T0 in the transfer function.

For a narrow pass band for the filter one now needs-

t C
= [R + RC]2 IE <1 (9.18)

c

~ -

-

or

o]

/
/

J >R+ R, (9.19)

(e

c
showing the shift R » R + Rc'

In time domain the results of sectijon 8C carry over directly as

[|T(0) ], % 2 T (9.20)
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For special cases we have

[[T(e)e] |, = [[T(e)of| T2 T
(9.21)
[[T(t)e ]|, =

[
3
Y
>
—

P,
o
€

0]
._'

E. Some Comments

This special form of including Ry and R. in the bridged-T constant-
resistance filter then basically reduces the peak of the transfer function to
Ts
function can be kept the same except for a multiplication by T,.

< 1. By appropriately scaling the element values, the filter transfer

This simple scaling also manifests itself in the reduction of the
time-domain-operator norms to 2 To or To as appropriate. By choice of To then
one can reduce the time-domain norms for the filter to desired values. Note,
however, that this is done at a price; the transfer function in the pass band
(say for quasi CW signals) is also reduced to T,.
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X Mismatched Constant-Resistance Filters

In previous sections the constant-resistance filter has been considered
under the assumption that it is terminated in a resistance R at one port when
driven from the other port. With a constant-resistance filter attached to a
norm limiter one would like R to be the impedance connected to the NL. In
general, however, one may not have a resistance R connected to the NL, but
rather some other impedance associated with the complex electronic system into
~ which NLs and constant-R filters are installed. One may wish to know what

kind of errors such a mismatch introduces into the analysis.
A. Frequency-Domain Considerations

Consider the symmetrical bridged-T filters as in figs. 8.1 and
5.2. For frequencies in the stop band of the filter we have

7, -

Ly = Za = R . | (10.1)

T=0

irrespective of the load on the other side of the filter., Then in the stop
band of the filter a mismatched load has no significant effect. It presents
an input impedance of R 1in both directions for all frequencies, except
possibly those in the pass band,

In the pass band, however, things are different. As illustrated in
fig. 10.1 let us consider this mismatch in a §catter1ng-matr1x formalism. In
passing through the filter a wave vin is transformed to T vin . This wave is
scattered off some impedance designated as 7t which we assume to be- passive.
The reflection coefficient is

1, - R

P (10.2)

7t + R

The passivity of 7t assures for all s = ju

& <1 ' (10.3)
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O] O-
Vin Symmetrical T Vin
- —_— Constant- —_—
Zm — Resistance Zt
5T Filter aT
-— " -—h
o o

'Fig. 10.1.. Transmission and reflection through symmetrical
. constant-resistance filter
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from which we can define

a, = max |af < 1(10.4)

w
The wave reflected back into the filter is then 3 T Vin . On
passing back through the (symmetric) filter the wave is a ¥ V1n , or
v
_:ef] - 32
V.
m (10.5)
)
f ~ .
V1'n
Noting that
17| < T,
~ (10.5)
. ia' < ao
then
Y : i
refl 2
: GOTO <1 (10.7)
in
To the extent that “oTi is small compared to 1, then vrefl has negligible
significance and 7in at the filter can be approximated as R. In section 8 the

maximum transmission T, of the filter dis 1, so that it 1is required

that o « 1 or 7t = R for 7in to be approximated as R for all w. If as in

section 9 the maximum transmission T0 has To <1, then ang

then iin can also be approximated as R for all w, and the size of

< 1 and

passive 7, is not significant. However, if it is only known that Zt is

t
passive, then

[a] < o) <1 ' . (10.8)

and is it necessary that T, be constrained to be small enough that Tg can be
neglected compared to 1. Note that
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2
¥, = glroll . (10.9)

from which a desired degree of closeness of Zin to R can be interpreted as a
corresponding constraint on To.

B. Time-Domain Considerations

In time domain let us ;onsidér the. norms of the waveforms passing
through the filter. The incident wave is- characterized by "Vin(t)l\ or
[1vy 1(&)]] (using wave conventions as in section 2) as

Iivg’l(t)|‘ = IIT(t)OVI,l(t)I’ < IlT(t)OI} ]!Vl,l(t)ll (10.10)

on passing through the filter,

At the Toad there is a reflection. If the load is described by an
impedance (linear by definition) with a frequency-domain reflection coeffi-
cient 3, the transient reflected wave is in general rather complicated, but
some limits on its norm can be established. 1In section 9 various forms of
transfer functions are considered with time-domain norms limited to like 2a4
for l-norm and «-norm, and ad for 2-norm. This Ieadé to a;réf1ection norm of
order @

It is also possible to consider this load as nonlinear (as, for
example, an NL), and ipso factd not characterizable by an impedance. If the
nonlinear load is passive, then the reflected wave is still limited in 2-norm
as

|‘V2’2(t)|]2 < |tV2,l(t)||2 (10.11)

Considering now o as a nonlinear reflection operator with

V, o(t) = a(Vz,l(t)] . (10.12)

’

then for a passive a we have

|\V2,2(t)|l2 < "“‘!2 ![Vz,l(t)||2 (10.13)
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with by definition of the 2-norm in this special case
0< [falf, <1 - (10.14)

This, as one should see, is a generalization of the concept of norm in 2-norm
sense, being defined by the above .inequality. Note that merely passivity is
needed for (10.14). In particular cases the upper bound could be even less.

, On passing back through the filter the wave is reduced again to
’[Vl,z(t)li or ,\Vref](t)ll as

l\vl,z(t)ll = |\T(t}oV2,2(t)|l < [T(t)el] \]Vz,z(t)ll , (10.15)

Combining these results we have

Ve (1) = T(t)ola(T(t)oV, ()] (10.16)
which in norm sense gives
v t .
< Ve il < |lell ||T(t>o|x2 : (10.17)

where ||| has to be defined for the particular norm used since al ) is
possibly a nonlinear operator. In 2-norm sense we have

[IT(t)oH2 = T, = max |7 (dw) |
w o (10.18)
0 < ]‘a|’2 <1 (for passive af ))

giving

HVref'l(t)HZ

2 2
v SIP < |fall, T« T (10.19)
m
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€. Some Comments

Whether in frequency domain (assuming a linear Zt Y as in (10.7),
or in time domain (including the possibility of a nonlinear reflection
operator a{ )) as in (10.17) and (10.19), it is possible to make V., ¢y small

compared to Vi , at least in norm sense. If [|a|| is about 1 then it is

in®
. necessary that i[T(t)o[|2 be small compared to 1. The examples in section 9
show that ||T(t)o]| is like T, for the 2-norm, but as much as 2 T, for l-norm
and =-norm. In any event, the filter can be designed with T, small enough so

that the input to the filter looks almost like a resistor R.

There are various ways to introduce loss into the filter to achieve
a desired To with 0 < To < 1. One way to include loss in the filter is to
simply cascade a simple constant-resistance bridged-T filter (section 8) with
a constant-resistance frequency-independent attenuator (section 7). Alter-
natively, one can include 1loss in the constant-resistance bridged-T filter
(section 9) to achieve the same result.
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XI. Summary

So now we have the basic outlines of the combination of nonlinear norm
limiters (NLs) with linear constant-R filters at penetrations through
subshields. The filter stops frequencies out of the intended pass band from
penetrating, and also presents a resistance R on both sides in the stop band.

The NL can be characterized with load resistances R on each side,
provided that constant-R filters are used to isolate the NL from other loads,
and that in the pass band there is some loss indicated by not-too-large TO.

The constant-R filters can also be used to terminate the signals
incident on the subshields and provide some isolation from the Nis. This fis
particularly the case again for frequencies in the stop band of the filter for
which the filter looks like a resistance R. In time-domain sense one can
include a nonlinear device ({such as an NL, perhaps connected to yet another
filter on its other side). In this case, a passive NL can be characterized by
a nonlinear operator af ) with lla[[z < 1. By limiting To of the constant-R
filter to values sufficiently small compared to 1 the reflection off the
filter input can be made small enough (in—time-dohain norm sense) compared to
1.

In this paper only a single wire penetrating a subshield has been
considered: Perhaps various types of multiwire penetrations (and associated
filters and NLs) should also be considered.
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