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Abstract

Electromagnetic topology has qualitative and quantitative aspects, both
of which are explored in this note. EM topology is developed in a hierarchi-
cal form and associated topological indices are defined. The dual graph or
interaction sequence diagram is also discussed and used to structure the BLT
equation describing signal transport through a system. Partitioning the BLT
equation leads to a supervector/supermatrix description. This is solved under
appropriate assumptions in a form known as the good-shielding approximation
which is discussed in some detail.



Prologue

“leave all hope, ye that enter."
Canto III (Inferno)

"Let us go for the length of way impels us." Thus he entered, and made
me enter, into the first circle that girds the abyss.
Canto IV (Inferno)

Thus [ descended from the first circle down into the second, which encom-
passes less space, and so much greated pain that it stings to wailing.
Canto V {Inferno)

I am in the Third Circle, that of the eternal, accursed, cold, and heavy
rain; its law and quality is never new.
Canto VI (Inferno)

Thus we descended into the fourth concavity, taking in more of the dismal
bank, which shuts up all the evil of the universe.
' Canto VII (Inferno)

The Divine Comedy
by Dante Alighieri
Carlysle-Wicksteed Transiation




-

Section

II
IT1

IV

V1
VII
VIII

IX

X1

X11
XIII
XIV
XV

Contents

Abstract

Prologue

Introduction

Volume/Surface Hierarchical Topology
Supervectors and Supermatrices

Supermatrix Inverse

BLT Equation for Transmission-Line Networks

BLT Equation for the Case of No Tubes

General Form of the Good-Shielding Approximation

Partitioning the Terms in the BLT Equation for Application
of the Good-Shielding Approximation

The Off-Diagonal Blocks
The Diagonal Blocks

The General Term in the Good-Shielding Approximation in
Terms of Elementary Matrix Blocks

X
max

1

The Good-Shielding Approximation for X

The Good-Shielding Approximation for i
Solution for the Good-Shielding Approximation
Summary

Appendix A: Norms of Supervectors and Supermatrices with
One Non-Zero Block

Appendix B: Supermatrix Inverse of Special Matrix Blocks
Appendix C: 2-Norm of Blocks of Scattering Matrices

References

19
28
35
42
44

51
55
57

59
69
73
75
79

80
84
87
92




I. Introduction

Electromagnetic topology is concerried with the ordering of the electro-
magnetic response properties of an electromagnetic scatterer (in general a
quite complex scatterer) according to appropriate topological descriptions
(decompositions) of the scatterer. This division is accomplished by the
definition of volumes and boundary surfaces that partition the space occupied
by the scatterer. ‘Some of the surfaces (or parts thereof) are chosen to
correspond to shield walls in the scatterer (system) [12,16], so that electro-
magnetic topology is also (at least in part) shielding topology. Correspond-
ing to the volume/surface topology one can define a vertex/edge topology (a
graph) which corresonds to the transport of signals between volumes through
the surfaces; this graph is the interaction sequence diagram [12,1,13,161].
One can use such topological concepts to obtain guidelines for system harden-
ing (with respect to undesired electromagnetic environments) by identifying
penetrations and controlling them in the sense of controlling the passage of
undesirable signals through the shielding surfaces [2,4,6,7].

These developments in electromagnetic topology have been primarily
qualitative in nature in the sense that, while discrete topological entities
are identified (with associated symbols and indexing), the quantitative elec-
tromagnetic response of the complex scatterer is not considered in this topo-
logical context. A previous paper [5] briefly discussed the use of EM
topology for decomposing the system scattering matrix. The present paper goes
into greater detail concerning this matter.

Beginning with the toplogical representation of a system in terms of
volumes and surfaces, the hierarchical aspects of the topology are represented
in terms of appropriate symbols with indices (subscripts). Then supermatrices
and the BLT equation are introduced and applied to the topoiogical description
of an electromagnetic scatterer. Fundamental to this is the wave indexing on
the interactior sequence diagram., This leads to a partitioning of the scat-
tering matrix at five levels. This partitioning also leads to a supermatrix
which is quite block sparse. This is used to define a good-shielding approxi-
mation; in this case the supermatrix equation has a useful approximate solu-
tion in which the control by the shields of the signals passing through the
shields is exhibited. Norm concepts are then used to bound the internal
signals by a product of terms with each term corresponding to the electro-

magnetic behavior of appropriate topological entities.




I, Volume/Surface Hierarchical Topology
A. Basic scatterer topology

Let us first review some of the topological concepts [16] which
will be used in later developments. Consider dividing three dimensional
Euclidean space E5 into some set of volumes {Va} where § is some alphanumeric
index set which we choose in some convenient form(s). Let each VG be an open
set, not including its surface boundary. Let V; be the closure of V6, i.e.,
including its boundary surface to form a closed set. Then we require

E3=L6JV;

(2.1)
V. for 6§ = &'

VcﬁV6|= 8

0 (the null set) for & # &'

Associated with this volume decomposition of space we have a set of
, + . . .

boundary surfaces {55;6'}' The closed set‘SG;s. (i.e., 56;6' with its
boundary curve(s)) is given by

+ ot + ot .

Syis = Vs M Vi Sgr,g for 8% 8 (2.2)

One can expand the use of superscripts from + meaning the closure
of a set (inclusion of the boundary) to - meaning the "opening" of a set in
the sense of removing the boundaries. Note that such boundary removal is

defined to remove only those points necessary to produce an open set. Thus we

can write
+ - + + 9=
Seisr = [Ssie0] = [V [ v5] (2.3)
One can define boundary operators for volumes as

S(V

6) boundary (surface) of V6

(2.4)
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and for surfaces as

c(s

boundary (curve) of 55,5.

+
= 35;5' - 55;5‘ (2-5)

+

5;6')

where these boundaries are not necessarily connected, but may consist of sets
of disjoint surfaces and curves respectively. Here, subtraction (-) is taken
in the set theoretic sense which is also expressable as intersection with the
complement (e.g., '56;8' = rw 56;6' ), where complement 1is with respect to
the Euclidean space, i.e.,

AlJ3R E, for any AC Eq

1

Al a=0 (2.6)

m
1

0 (the null set)

Now we have

S(Vg) = S(Vy) = &Tia Shis
- N
=V} [Suﬁ Vi)
= vy (] (g5 - V]
= Vi - v, o (2a)

giving several representations for the boundary of a volume, Note that S(Va)
produces a closed surface (or set of tlosed surfaces) for any volume,
i.e., S(Vs) has no boundary curve

c(s(vy)) =0 (2.8)
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Similarly, if P represents the boundary operator for curves, giving the set of

end points, we have

P(C(S )] =0 for s # 6 (2.9)

6;6')
since the boundary of 56-6‘ js in general a set of closed curves (i.e., no end
points). ‘

These concepts are illustrated in fig. 2.1A where the index set §
takes on Roman letters a,b,c,... for this basic form of the scatterer topol-
ogy. Remember that this is a two-dimensional representation of something that
is three dimensional and can have a more complex clustering of volumes V6 than
is depicted here. If we let Va be the scatterer exterior, then the outer
boundary surface of the scatterer is

+ +
sv) = sevhy = Ut (2.10)
S#a g

One way to construct a graph equivalent to our volume/surface

topology is to make a transformation
volume « vertex '
(2.11)

surface « edge

This leads to the graph in fig. 2.1B as a representation of the volume/surface

topology in 2.1A,

Another type of graph one can use is the bipartite graph [14,15] in

fig. 2.1C in which we have the transformation

volume ~ vertex type A

surface « vertex type B (2.12)
A1l edges connect A vertices to B vertices

B vertices connect to exactly two edges

In effect the B vertices (surfaces) are "two sided" (per (2.2)). The edges
(branches) represent the transfer (connection) of electromagnetic signals
hbetween volumes and surfaces, while the vertices represent the transfer of
electromagnetic signals through the volumes and surfaces. Figure 2.1C does
not have labels on the edges; each can be labelled by the vertices to which it
is connected. Later a wave-indexing scheme with two "wave" indices for two
directioné (orientations) for each edge will be introduced.




A.

B.

C. Related bipartite graph (interaction sequence diagram)

Fig. 2.1. Scatterer Topology




This bipartite form of the graph will be very useful for our later
development., In these graphs the vertices and edges are labelled according to
the appropriate volumes and surfaces. These graphs can be referred to as
"interaction sequence diagrams" [12,1] thereby giving them a physical inter-
pretation, It should be noted that the volume/surface topology and related
graph topology are equivalent abstract representations of the same electro-
magnetic scattering problem. They can be considered mutually complementary.

B. Layers and shields

In extending the volume/surface topology into a hierarchical form
let us being with layers and shields as illustrated in fig. 2.2A., Let us

define
VX = Ath layer (or principal volume)
A= 1,2,...,Amax = layer index
S...r =S.,,., = A;r'th shield (or principal surface)
AsA ATGA
(2.13)
A3A' = shield index set
max 1 = shielding order = number of shields
Note that

shield, for A' =211
Syyt (2.14)
i 0 for A" # 2 £ 1

This property, as illustrated in fig. 2.2A, is associated with the nested
property of our definition of a shield. A shield is defined as a closed
surface and no two shields are allowed to intersect, i.e.,

+ -
Saia+l ~ Sx;x+1 = Syl T Yy (Q} Va1
(2.15)

S for A, = A

Al;A1+1 2
S, S. -
Apsagtl M Apidytl 0 for A, # A

1
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= layer

S

ysae1 = Shield

t

A. Vo]ume/éurface topology

1 2 1 2 1 2 1 2 1 2 1 2
T @T—S0= =0~ == =0=—=0
V . N

et e e e e e e
e 2 3 1 2 3 1 2 3 1 2

This bipartite graph is a path.

“

.B. Interaction sequence diagram

Fig. 2.2. Layers and Shields in Hierarchical Topology
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One might relax this last requirement a 1ittle in that shields might be
allowed to intersect with a zero measure (in a surface sense) as a set of
curves and/or points. However, it is necessary that shields do not cross,
i.e., one shield must be "inside" the other with no exterior points which is

Asa+l and Sx+n;x+n+l with
n>1 we would have V, .4 (\1 V, # 0 including non-zero in a volume measure

implied by (2.2) because at such a crossing of S
sense. So we require

VA+n+1 f~] VA = 0 (at least in volume measure)

nsz1
(2.16)

Vx+n is inside VA
$A+n is inside SA
where "inside" here means that V>\+n and Sx+n cannot be continuously deformed

to infinity without intersecting VA and SA respectively.

Note that our notation here is slightly different from that in
[16]. A is started at 1 (instead of 0) since A will later take the role of a

vector- and matrix-element index. Also note that layers are bounded by
precisely two shields, except for outermost and innermost layers, as

SA+m-1;A+m form = 0,1

+
N (2.17)
A Atm=1504m {5 Gtherwise

X # 1’Amax

Corresponding to the layer/shield topology there is an interaction
sequence diagram which is illustrated in fig. 2.2B. This is a very special
form of (bipartite) graph referred to as a path [14,15]. A path begins at a
vertex and ends at a vertex with no vertex appearing twice in the sequence.

Beginning from Vl and ending with V there is only one path in this net-

Amax

work. This follows from (2.15) and (2.17).

Note in fig. 2.2B that another index has been added. This layer-
part index y is used to divide a layer (principal volume) into three parts.
As one progresses along the path in the direction of increasing A, the

11




value u = 1 is assigned to the edge just after the vertex (symbol O) assigned

to a shield (principal surface} S the value p = 2 is assigned to the

A-1a2
Tayer VK (symbol @) itself, and the value u = 3 is assigned to the edge

connection to the next shield SA;A+1'

One can also define a dual-wave index
o=1,2 (2.18)

corresponding to the two different ({opposite) directions on each edge.
Various conventions are possible for which direction to assign ¢ = 1; fig.
2.28 has 1 to the right and 2 to the left, As the hierarchical topology is
developed the choice is more complex. In later analysis this dual-wave index
will correspond to waves propageting both directions in the system., For
now o = 1 corresponds to increasing A. Note that the introduction of two
orientations on the edges gives what might be defined as a bidirectional

graph.
C. Sublayers and subshields
Now go to a more complex volume/surface topology in fig. 2.3A.
Basically, the layers and shields are divided into disjoint sublayers and

subshields respectively in which the basic layer and shield proberties of
successive containment in going from the outside to the inside are preserved.

Symbolize sublayers by a second index as
2=1,2,.00,4__ (A) = sublayer index
max (2.19)

VX g = 2th sublayer of the Ath layer

Note that % nax is a function of A (the layer under consideration). We have
the Axth layer as

2TaX(A)
V., = V
A o1 AL
(2.20)
V)w?‘1 for 22 = 21
Vx,zl ﬂ Vx,z? =

2 0 for 22 # 21

12




VA,Q = sublayer

S

A’QI;A+1’2 subshield

It

2

Xty proper subshield

A. Vo]umg/surface topology

This bipartite
graph 1is a tree.

: 3 1 2 3 1 2 3 1 2
- 4 V1 S1;2 . S2;3 V3 S3;4 V4
B. Interaction sequence diagram
. Fig. 2.3. Sublayers and Subshields in Hierarchical Topology

13



Again it 1is conceivable that the requirement for zero intersection might be

relaxed to zero volume measure in some cases. Note a special case for some A

bl
—
>
St
1]
—

max ' (2.21)

-
it
<<

Hence a sublayer can be a layer in some cases. Sublayers which are-not also
(complete) layers by themselves are called proper sublayers, and for the

corresponding A have zmax(x) > 1.
Note that for

1< Al <, < Xmax (2.22)

v is inside V., (for some &, = 1,2,...,8% (%))
)\2 sﬂ'z A]. 1 lmax 1

However, there 1is some flexihility in choosing the 22 sublayer index set

for V , given the &, sublayer index set for V . This ambiguity
Az,z 1 )\1 ,21

results from the property that sublayers in a given layer are effectively in

"parallel" while the layers are in "saries." Furthermore, the number of

sublayers gmax
of V)\+1 do not in general correspond to those of Vx’ particularly in the sense

(A) varies in general from layer to layer, and the sublayers

of Vk+1 sublayers being inside of VA sublayers in a one-to-one correspondence.

Now consider subshields as boundaries of sublayers according to

S = V! (v

+
. for (A, ,2,) # (A,,2,)
Al,zl,kz,zz kl,zl AZ,ZZ 171 2°72

=X, £+ 1 and if 2. and &, allow a

subshield, for Ay 1 1 2

common boundary

li

+ 1 or if 2, and ¢, do not allow a common

0, for A, # A 1 2

boundary 1

(2.23)

-

Sublayefs are bounded on the "outside" by exactly one subshield, except in the
outermost layer, as

14




for exactly one value of %9 if

A-l,ﬁl;k,lz L > 1

0 for other 21 or if x =1
(2.24)

On the 1nside‘a sublayer may be bounded by any non-negative integer number of
subshields related by '

S for some set of g, values, and

X,Zl;l+1,22 Pf ) < Amax 2

+
v s, . -
A’zl_ X,ll,l+1,22

0 for 22 outside this set, or if A = Amax

(2.25)

This relationship.could be exhibited in the form of a table. The equivalent
bipartite graph (such as the example in fig. 2.3B) shows another way to iden-

tify the subshield boundaries of a particular sublayer V the single edge

connecting to a "surface vertex" to the "left" 1dent1f1e§’ihe "outside" sub-
shield boundary (A > 1), while edges connecting to the "surface vertices" to
the "right" (X < Amax) identify the "inside" subshield boundaries. Note the
ordering of this bipartite graph from left to right according to the shields

(and hence layers) by the use of "vertical" dividing lines (dotted).

The interaction sequence diagram (equivalent bipartite graph)
corresponding to the sublayer/subshield topology is illustrated in fig. 2.3B.
This special form of (bipartite) graph is referred to as a tree [14,15]. Such
a graph has no loops. A path connecting two vertices in the graph is unique
(noting that no vertices or edges are repeated in a path. 1In later analysis
this path gives the important edges for signal flow in the graph (system) from
one sublayer to another. Now the vertices are for sublayers (symbol ©) and
subshields (symbol O).

d. Elementary volumes and elementary surfaces

Further extending the volume/surface decomposition in the hier-
archical topology, the concept of elementary volumes and the associated

15




elementary surfaces are added as in the example in fig. 2.4A. These do not
have the same convenient properties of layers and shields with their longi-
tudinal, “series," or "nesting" or “"containment" properties, or of sublayers
and subshields which extend the decomposition to transverse or '"parallel"

aspects.
Now each sublayer V is divided into elementary volumes V
ALl Asf,T
with
t=1,2,0..,7 _ (x,2) = elementary-volume index
max .
(2.26)
VA 4.t = tth elementary volume of the (A,2)}th sublayer
H] H .
The (A,2)th sublayer is given by (including boundary surfaces)
T
max
+ +
v = v
ALl U Ayf,T (2.27)
=1 '
Vx,z,r for T, =Ty
Yra,t A Vx,z,rz =
0 for Ty # 1]
As a special case for some (A,2)
T (r,2) =1 ;
max (2.28)
Vx,z,r = Vx,z

Hence an elementary volume can be a sublayer in some cases. Elementary
volumes which are not also (complete) sublayers by themselves are called
‘proper elementary volumes, and for the corresponding (A,2) have Tﬁax(x’g) > 1.

In the previous levels of topological decomposition, i.e., layer/
shield and sublayer/subshield, there has been a certain ordering based on
longitudinal (series) and transverse (parallel) decomposition respectively.
We are left with decomposition within sublayers which can be arbitrary, as
distinguished from the “nesting” relations as in (2.16) and (2.22).

In the usual form, elementary surfaces are defined by the common

boundary of elementary volumes as

16




Y1,1.1
' 3,1,2;3,1,3

\ .1,3
VA 0 4 elementary volume V2,1,2 §2,1,1;2,1,2 S 1,1,152,1,1
) s 0y _ 2,1,1;3,1,3
Al,Ql,ll;Az,QZ,TZ :

elementary surface _~— T T T =~
A shield 2,1,1:2,1,2
P, proper subshield .
1,1,1:;2,1,2

> <-"v elementary surface 2 1.2:3.2.1

® 3

Fig. 2.4.

A. Volume/surface topology
@ T
2
Vl,l,l o
EEWementary surface
" labels are assigned
- based on the two
. immediately connect-~
: Eing elementary volumes.
2 —=0=—0
Vo1 1 211 2 VY30
uyd‘-—w-—d'h—-r—J et e e k-ﬁA_J'x-,-J L
T g 2 3 1 2 3 1 2 3 1 2
S| 152 . 52,3 Vs S3;0 Vg

Interaction sequence diagram

Elementary Volumes and Elementary Surfaces in Hierarchical Topology

17



+ + +
S

. =V v
Al,zl,rl,kz,ﬁz,tz Al,zl,tl 12,12,12

for (x,27,7y) # (A5,85,75) (2.29)

Inasmuch as elmentary volumes are subsets of sublayers, (2.23) can be applied

to determine some combinations of V+ and V+ for which there is no
Moty Apsty

common subshield boundary and hence no elementary surfaces which are subsets

of the same. There are, in addition, other V+ and V+ which have
ApatpeTy Aga%:7p

no common boundary, at least in a non-zero surface measure sense.

The "interconnectivity" (commen boundaries or elementary surfaces)
between various elementary volumes can again be represented by an interaction
sequence diagram as in fig. 2.4B. This type of bipartite graph, with
elementary-volume vertices ® and elementary-surface vertices O, directly

specifies which combinations of v and v have common bound-
ARy ApoR2sTy
aries S: . « While the example in fig. 2.4B is a planar graph,

1o%15T13A0805T
in the general case the graph is non-planar (meaning some edges must cross

each other in a planar representation).

Considering the layer-part index p (=1,2,3), Note now that
for y = 2 there are two such edges in the second layer, six <uch edges in the
third lTayer, and two such edges in the fourth layer (there be ng no such edges
in the first layer).

The dual-wave index o now must be assigned to u = 2 edges. These
edges do not correspond to increasing A. For such edges one can use the
elementary-volume index t, e.g., ¢ =1 can correspond to the direction of

increasing .

Considering the surface/volume hierarchical topology and associated
interaction sequence diagram in fig. 2.4, these diagrams can become rather
complex when all the labelling is included, The degree of complexity corres-
ponds to how far in detail one wishes to'carry the topological decomposition
of a given system,

18




II1. Supervectors and Supermatrices

. In order to efficiently utilize the topological concepts to decompose
‘ the system electromagnetic response, it is useful to introduce the concept of
supervectors and supermatrices. These are vectors and matrices whose elements
have been partitioned in a special ordered way. A previous note [3] has
considered a single partitioning to give divectors and dimatrices.
A. Partitioning vectors to construct supervectors
Suppose that we have some vectors such as (an ) of N§O) components
1
with elements a, for ny = 1,2,...,N§0). Partition such a vector into Nl

1
parts, each part having N(O)(nl) components in the form ({a )n ) as

2 Ny Ny
(anz)n1 = parts or blocks of (anl) or ((anz)nl)
n1 = 1,2,...,N1
' (0);
n, = 1,2,...,N5"" (ny)
® e .
((anz)nl) = (anz)l ® (an2)2 @D 00 @ (anz)Nl
= ((an2>1, (anz)z,-..,(anZ)Nl)
N
= @ (a, ),
nl=1 2 1

The individual components are

a = individual vector components
n,3ing
N (3.2)
(0) LN o
N o= N N> (nl) = total number of individual
n1=1 vector components

- Note the use of the direct sum @ to combine vectors in the form
) of a divector. This is also generalized to a continued direct sum @ with
’ the terms ordered in the order of increasing index (as n; in (3,1)). In form

19




it is similar to addition + and continued summation j. However, note that the

direct sum is non-commutative.

Thus far we have once-partitioned vectors or divectors. Let us
consider a v-vector with v indices which takes the form

a v=vector

(((eee((a

—~—

.

-

.
S
g

fN—
]

)n

Ny M1 Mya2 n2 N

<
1l

supervector order

number of partitions
or partition level

<
i

—
11}

(3.3)

il

T a individual vector components

NN TL NP PRRH PHL B

n 1,2,..4,N

0 b (nl’nZ""’np-l)
forp=1,2,.0.,v

One can refer to such supervectors and indicate their order by the use of
Greek prefixes in the commonly used form as

monovector {or vector) , v =1
divector , v =2
trivector s Vv =3
quadrivector , v=24 (3.4)
pentavector , v =2=5
hexavector , Vv =6
etc,

One can appreciate this form for a supervector by beginning with

the partition of a monovector (a to form a divector ((a”2)”1) as in (3.1).

nl)

Continue by induction to transform a y-vector to a (y + 1)-vector as

N

(((eeella ) ) eee) ) ) =
( anY nY_l nY_Z n2 nl)
LN L N 4 7 o 3‘5
(Cellag Do)dn Do o+Ve)) (3.5)

20




by partitioning the individual blocks as
(a ) o g )y (3.6)
Ny 13Ny e eeiNaing Mgy My N3Ny pieee3Nping

where before partition

~

n = 1,2,-0.,N n ’n ,.n.’n for 1,2,0.., -1
0 o (NpsMy b-1) > Y (5.7)

n

(0)
v = hZsee N (nl,nz,...,ny_l)

and after partition

= 1,2, 000N (N3N ,00e,N forp=1,2,...,
" p( 12N p—l) p Y (3.3)
_ (0)
N4 = 1,2,...,NY+1(n1,n2,...,nY)

In the ‘process of partitioning the nY_1 block a number of blocks

less than or equal to the number of elements is formed as

so)(nl,nz,...,nY) {3.9)

1< NY(nl,nz,...,nY) < N
Hence the single partition in (3.1) can be extended to any number of parti-
tions (a positive-integer number) by repeated partition of the innermost block
(or vector). If one terminates this sequence of partitions at the (v-1)th
partition, thereby giving a v-vector, then one can write

(0)
N, T (ngangseeenny ) 2 N(npans,eeasn o) (3.10)

indicating no further partition of the Nio) elements.

Note that as a special case the number of blocks Np(nl’nZ""’np-l)

in the partition of (a_ ) can be chosen to be 1 as desired, i.e.,

np np_l;...;n1

21



(a_ ) .o > {(a ) ) .
np np_l,...,n1 np+1 np np_l,...,n1
(a, ). ). . . = Y. . .
np+1 np np-l""’nl np+1 1 np_l,...,n1 (3.11)
(a ). = (a

s Men i
o+l Mp3fpoqseveil Norl 1,np_1,...,n1

which corresponds to no partition of the particular block (vector).

Throughout this partitioning process the number of individual
vector elements is conserved., They are merely partitioned in a certain hier-
archical way finvolving successive partitions. This 1is expressed in the
relations

(0) -
Np (nl’nZ""’np-l) =

Np(nl’n2""’np-1) Np+1(nl,n2,...,np) Nq-l(nl’nZ""’nq-Z)

n2;1 Y cos 3
P

np+1=1 n =1

(0)
Nq (nl,nz,...,nq_l)
fOF‘ p = l’z,cob,q-l
2<q<v ' (3.12)

which include the special case of {(p,q) = (1,v) which covers the full set of
partitions.

B. Compatible order among supervectors

Supervectors, like ordinary vectors, can be combined by various
operations. In ordinary vectors one must have a certain type of compatibility
between two vectors in that, say for addition, they must have the same number
of elements. In the case of supervectors, we must have the same number of
elements at every level of partition for addition as

-

((Conllay )y )y ey )0 )+ (CGanlB, ) ) wad) ) ) =

Op My-1 My MMy My My-1 My-2 n2'™m
(((oeellc ) ) o))
My Mya1 My MMy (3.13)
a +b =
nn yeeexhl nn HE AL n;n Jeeos3h
v ov- vV ov- 1 v y- 1
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where now all three v-vectors have the same number of partitions and the same
partition structure as

np = 1,2,...,Np(nl,nz,...,np_l) for p = 1,2,000,v (3.14)

which we call compatible order for supervectors.

Likewise, one can generalize dot multiplication (or contraction)
between ordinary vectors to a generalized dot product indicated by ® between
supervectors as

LR R LN LN B |

Ny |
) el (eeellan Do iy 7o Inglng ) @ Lleellon oo 0y oy

N1 Np(nl,nZ; "’np-l) .
- n?;1 cee Z, ((...((anv)nv_l)nv_z...)np+l N3N0 3 ee w330y

C)(("'((bn\,)n\)_l)n\)_z“')np+1 np;np_l;...;nz;n1

Ny Nv(nl,nz,. ’nv-l)
) il ot nfgl anv;nv_l;...;nlbnv;nv_lg...;n1
= a scalar (3.15)

Again the vectors must be of compatible order as in (3.14) for the summations
in (3.15) to be defined. The sane type of compatible order for supervectors
then applies to both addition and generalized dot muitiplication.

C. Partitioning matrices to construct supermatrices

Now consider some matrices such as (A, ml) with elements
An m for ny = 1,2,...,N§0)
1°71 (3.16)
(0)

m = 1,2,...,M1
23



Partition both the rows and columns of such a matrix in the same manner as
vectors have already been partitioned. With v-1 such partitions of both rows
and columns we have

(((...(A ) eed) ) ) = a v-matrix
NysMy Nyo1oMyar MpsMy Ryl

v = supermatrix order

v-1 = number of partitions or partition order

(3.17)

An - M cn. . C individual matrix components
PRI R AR AA S |

n
p

mp = 1,2,...,Mp(m1,m2,...,mp_l)

1,2 000N (N, 3Nnseeeasn o)
’ pr12r -1 for p = 1,2,000,v

As in the case of supervectors, supermatrices can be referred to in a manner
which indicates their order by using Greek prefixes as

monomatrix (or matrix) , v =1
dimatrix , v =2
trimatrix s, vV =3
quadrimatrix , v =24 (3.18)
pentamatrix sy V=25
hexamatrix , v =0
etc.

The conservation of rows and columns in the partitioning process is expressed

by (3.12) for both Np and Mp indices, their unpartitioned forms being Néo)

and Méo) respectively.
D. Compatible order among supermatrics

Supermatrices can be combined with other supermatrices and with
supervectors by various operations. Again, there must be a compatibility .of
the numbers of elements and their partition(s) pertinent to the particular
operation(s). In the case of supermatrices, addition is similar to super-

vectors as

24
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(((eoo(A

NysMy Myo1oMya Mg sMp My My

+ ((Conn(B* ) ) ees)

Ny, Ny ey 17 MogsMyny Moy Npsiy

= (((...(C ) o)
NyoMy Myo1oMyor MoMp Ny
N (3.19)

A +B
n ,m 3 m se ey, M n ,m.n m yeeasty M
NEAAERANIS ELLVRS RARRERL R NEALNTLNTS ELVS R R |

= C
N3 qaM_q5eeeiny sy

where the partitioning of the np and My indices is the same for all the above

supermatrices and is given in (3.17). This is the rule for compatible order

for addition. Note that addition for supermatrices is commutative.

For dot multiplication of supermatrices (non-commutative in
general) one can generalize dot multiplication (or contraction) between
ordinary matrices indicated by ® as :

(((...(A ) ..)

Nysly, NG _qaM, 17 7 ngumy 0y My

® (((...(B

Ny M, nv-l’mv-l... Mg My Ny »My

= (((...(C ) o)

Mooy My-1sMyo1 MM MyeMy

eee)

1 et . en!
v n\)-l’m\)-l np+1,mp+1 np,mp,np_l,mp_l,...,nl,ml

((...(C

n. ,m

V’
Ny Np(nl,nz,...,np_l)
= Z—l L Z—
= np-l
((o-o(A ) ooo) ) L} P | - en!
nysm, Ny _1sM, _q Moe1 oMol NsMsNy 1sMpg3eeeingsny

@((‘°’(B ) o--) . . .
n,smy Ny 1M, 1 np+1,mp+1 np’mp’np-l’mp-l""’nl’ml

(3.20)
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;5 Nv(nl,n%éi..,nv_l)
= L& N ] A } R R ' B R .
“n‘l:l nv=1 nv,n\',ot‘,nl’nl nv,mv,.--,nl,ml

In this type of multiplication the number of elements in each
partition of the columns of the first matrix must equal the number of elements
in each partition of the rows of the second matrix. For the first v-matrix we

have

An, Ve im0 v-matrix elements :
p2fyseeesfysy (3.21)
n' = 1,2,...,N(n!,nt,ee.,nt )
P pr1%2 p-1 for p =1,2,000,v
mp = 1,2,...,Mp(m1,m2,...,mp_l)
For the second v-matrix we have
B L. , v-matrix elements

np = 1,2,...,Np(nl,nz,...,np_l)

mp = 1,2,...,Mp(m1,m2,...,mp_l)

for p = 1,2,004,v

The product is a v-matrx as

C., . Lo , v-matrix elements

nv,mv,..a,nl,ml . (3.23)
n' = 1,2,...,N(n1,nt,000,nt )

P O p-1 FOr p = 1,2,00.,v
mp = 1,2,...,Mp(m1,m2,...,mp_l)

with the constraint

m' = n

p Y } forp=1,2,...,v

i i ' ' -
Mp(ml 9m2s0° . ’mp-l) - Np(nl 9n29° oo ’np-l)

(3.24)
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This constraint makes the two v-matrices of compatible order for generalized
. dot multiplication in the particular order specified.

Analogous to sets of NxN square matrices we have supermatrices of

-

symmetric compatible order., Such v-matrices have the form

(((...(D ) o) ) } = v-matrix
ysMy Nyo1oMyg My My "Ny sy
Dn - — v-matrix elements
vyttt (3.25)
n =

1,2, 000 N (N3N 0eesn o)
p prl”2 p-1 fOr p = 1,2,000,v
1,2,...,Np(m1,m2,...,mp_l)

m
P

so that the number of elements at each level of partition is the same for both
rows and columns. Such supermatrices may be dot multiplied in either order to
give supermatrices of the same symmetric compatible order as in (3.25). Of

course, these supermatrices are 1in general non-commutative with each other
with respect to generalized dot multiplication.
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Iv. Supermatrix Inverse

One of the important matrix operations is that of inverse. For super-
matrices this operation still applies. For regular matrices, the inverse
comes as the solution of

—
>
S’
1]
—
e
g
1
iy
.
o~~~
<
=
~—

where (xn) and (yn) are N component vectors and (An m) is an NxN matrix.
Since this solution is to apply for all (y,) (assuming a solution exists) then
we have

(A e a7 h=a e )= )

n,m n,m n,m n,m n,m
(ln m) = identity matrix (4.2)

1 forn=m
1n,m -

g forn#m

)-l

Here all the matrices, including (An m
s

and (1n m) are square NxN matrices.
$

Now it is well known that the inverse exists provided

det((An,m)) £0 (4.3)
If this determinant is zero, the matrix is said to be singular.
Let
_ -1
By = Ay p) (4.4)

assuming the inverse exists. Now partition (An m) and (B, ) in symmetric
b

n,m
compatible order to form two dimatrices.

For simplicity, consider first the case of dimatrices which are
consisting of four blocks so that we can write

(A m) (A, o)
n,,M, 1,1 N,sM, 1,2

Mool Ny sMy

(Anz,mz)z,l (Anz,mz)Z,Z
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(8 ) (B )
) ) N, sM, 1,1 nz,m2 1,2
B =
S VR A A
B B
Ny, 2,1 n,sM, 2,2
. -1
= ((A )
fpsMa "Ny sy
where the partitioning has
= 1,250,000

1°™ 1
(4.6
n, = 1,2,. ,NéO)(nl) )
m, = 1,2,...,Né0)(m1)
2
(0) _ (0)
N = Ny (
1 n§=1 2 (ny)

This can be referred to as a binary partition since each index is split into
two parts. Similarly, the vectors in (4.1) of Nfo) components can be parti-
tioned as

2 1 2 2
(4.7)
((ynz)“l) = ((ynz)1 . (ynz)z)
with the same indices as in (4.6).
Now write (4.1) as a set of linear equations as
(A Jpq o0 (x )y + (A 1o * (% )o = (¥, )
Ny sM, 1,1 n, 1 Ny sy 1,2 n, 2 n, 1
(4.8)
A . + (A . =
( n2,m2)2,1 (xnz)l ( n2,m2)2,2 (an)z (ynz)z

29




Solve these linear equations by using the inverses of the diagonal (and hence
square because of symmetric compatible order) blocks to give first

-1 -1

x. ), + (A (AL o)1t (x )= (A IR A
( Ny 1 Ay sy 1,1 Ny sMy 1,2 n, 2 Ny sMy 1,1 n2 1
(4.9)
-1 ' -1
A « (A ) o (x ) + (x = (A e (y
(A mze * (B oy = Oy # ( dp = (R D2 = (o )e

where we have assumed the diagonal blocks are non-singular. Now to elimin-
ate (xn )1 and (xn )2 from the Teft sides of (4.9) one need only dot multiply
2 2

each equation by the appropriate matrix product coefficient and subtract to

give
-1 , -1
[, ) (A )11 ¢ (A J1 o ¢ (A )o o« (A Jo 11 ¢ (%, )
n2,m21,1 N,y 1,1 Ny My 1,2 Ny sy 2,2 Ny My 2,1 n2 1
S GNP PR 07 N ¢SO e A N S PR ¢ NS FO N (N
n,sM, 1,1 n21 NysMy 1,1 Ny M, 1,2 Ny sMy 2,2 n2 2
(4.10)
-1 -1
[[1n2,m2)2,2 - [Anz,m2)2,2 . (Anz,mz)z,l . (Anz,mz)l,l . (Anz,mz)l,z] . (an)z
= -1 - - —1 ] \ _1 ®
'(Anz,mZ)Z,Z (Anz,mz)z,l (Anz,mz)l,l (ynz)l * (Anz,mZ)Z,Z (ynz)Z

Here we have introduced the icentity dimatrix with the same symmetrical
compatible partitioning as in (4.5) and (4.6)

(1 ) (0 )
Ny .M, 1,1 nz,m2 1,2

(1n2,m2)nl’m1) = (4.11)

(o ) (1 )
Ny .M, 2,1 PRLPY 2,2
Note that the off-diagonal block- are zero matrices, i.e., (4.2) is general-
ized as .
1 ) for n, = m, (square)
) Nos s nl,m1 1 1 ( :
1 = 4.12)
Ny sflly /My 1My |
0“2’"2)n1’m1 for n, #m, (not in general square)
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Using the matrix inverse of the matrix coefficients on the left of

equations (4.10) gives

(x ), -
‘la AL A, (A e (A Tl
Ny 5y 1,1 N, 5M, 1,1 N, M, 1,2 Ny sy 2,2 Ny s 2 2,1
-1 -1 -1
“[(A )75, (v, ) - (A )y 1 ¢ (A )10 ¢ (A )5 o 0 (¥, )o]
Ny M, 1,1 74 Ny 5, 1,1 Ny sMy 1,2 Ny M, 2,2 n, 2
- [(An m )1 1° (Aﬁ m )l 2 ° (An m )512 * (An m )2 1]-1 * (yn )1
22 7° 202 ° 202 T 202 7 2
-1 -1
- [(A A A ) A ]
9sMy 1,1 9My Ny M, 2,2 2,m2 2,1
R A G FP R (AR P
2’ 2 222 7 2
(4.13)
(xn2)2= 7
-1 -1 -1
(1 ) (A (A (A (A
Ny sM, 2,2 Nosm 2,2 N, M, 2,1 Ny sM, 1,1 n2,m2 1,2
-1 -1 -1
« [-(A ) (A ) A (¥, ) A ) (¥, )
N MMy 2,2 Ny s, 2,1 Ny My 1,1 Ny 1 Ny sM, 2,2 n, 2
-1 -1
- -[(A A (A A )
22y 2 MosMy 1,1 22y
o P G IR AR
2272 7 222 7 2
* [(An )2 2 - (An m )2 1° (An m )Ill * (A m )1 2]-1 * (yn )1
222 7@ 2°°2 7 202 2’ 2 2

Writing these as one supermatrix equation gives
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((x, 0, ) = ((8 ) ) - (v, 0,)

n,'ny Nosiy Ny LMy n,'ny
-1 -1
(8 )y 1= [(A )y q - (A )10 (A (A )
n2,m2 1,1 PPN 1,1 PN 1,2 Ny M, 2,2 n2,m2 2,1 )
-1 -1
(8 )y o = -l(A )1 - (A )10 ¢ (A » (A )o 1] .
Ny My 1,2 Ny M, 1,1 Ny MMy 1,2 Ny My 2,2 n2,m2 2,1
-1
« (A Ji.0 ¢ (A )
Ny MMy 1,2 nz,m2 2,2
(4.14)
-1 -1
(B )o 1 = - [(A Yo o - (A Joq v (A )1 ¢ (A )1 0]
Ny My 2,1 Ny 5My 2,2 Ny My 2,1 Ny sy 1,1 nz,m2 1,2
-1
- (A Jo 1 (A )
N, M, 2,1 nz,m2 1,1
" -1 -1
(8 )y o = [(A )o o = (A )o 1 ¢ (A J1q ¢ (A )1 0]
Ny M, 2,2 Ny My 2,2 Ny My 2,1 Ny ,M, 1,1 n2,m2 1,2

This is an explicit representation of the binary partitioned dimatrix in terms
of its blocks.

There is an alternate representation of the supermatrix inverse. In .
particular, the off-diagonal blocks can be represented as

O R G R (NI PR R SR O P i
* (Anz,mz)l,z * (Anz,mz)gfz
LG P G PR GRS P G Y
L e G I (I P I G i
Pl 7 B Gy )22+ (o doa]”
LAy 1 (Anz,mz]ﬁl . (Anz,mz)l,z
U, 001,210,722, (B 1,17 (P i J1,2)
B A G P R (NP R (A IS ®
2 2 2 2 2 2 2 2
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i
-~
>

)2,1 *

]-1
n2,m2 1,1

-1
)1 .o ¢ (A oo ¢ (A ) 1]
Ny sMy 1,2 N, sM, 2,2 nz,m2 2,1

-1 -1
(A N, sMy 2,2 (Anz,m

2,m2)1,1 - nz,mz)l,z - (A

2]

' -1 -1
AL o )o e (A « (A )1 ]
( Ny 5My 2,1 ( Ny My 1,1 n2,m2 1,2

-1 A

(Anz,mz)z,z « ( Ny M

P )
N M,y 2,2 5 2,1

-1 -1
)1,1°(An A

Anz,mz)Z,Z'( Ny M

(A ), (A ) el )y 1]
Ny sMy 2,1 Ny My oMy 1,2 ’ 2,1

(A -1 ]"1

. A - A .
[( n2,m2)1,1 ( nz,mz)l,Z n2,m2 2,2

- (A )
nz,m2 2,1

: -1
=-(A o (A )
Ny sMy 2,2 nz’m2 2,1

L (A - (A

) )10 "
N sMy 1,1 Ny My 1,2

As can be verified with these results (A ) ) and ((B ) ) can
» MMy N1 oM f2oMp MM
be dot multiplied in either order to give

) ® ) = ((B ) ) ©® ((A )
NpsMy NysMy NosMy Nysy NpsMpy NysMy NgsMy My sy

((1n2,m2)n1,ml) (4.16)

The supermatrix inverse of matrices partitioned in a binary fashion at
each level and in symmetric compatible order can be extended by induction to
arbitrary orders of supermatrices. Take the results for the first partition
in (4.14). 1In these results, we first require the inverse of the diagonal
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(and hence square) blocks (An and (A As diagonal blocks

2,mz)l,l n2,m2)2,2'
they are partitioned in symmetric compatible order, and have the same inverse
in terms of their blocks using again the formulas in (4.14) (at this next
level of partition). Similarly, the combinations of matrices to be inverted
are square matrices, and are also partitioned in symmetric compatible order
and the formulas of (4.14) can again be applied to the blocks at this level of
partition. This process can in principle be applied indefinitely to higher
and higher orders until all the matrix blocks are reduced to scalars {or 1xl

matrices).

34




V. BLT Equation for Transmission-Line Networks

At this Juncture Tlet wus consider the BLT equation, originally
constructed to describe the behavior of transmission-line networks. The full
development is in [3].

First consider a transmission-line network such as illustrated in fig.
5.1. This network is a graph in which we call the vertices as junctions and
the edges as tubes. The junctions are described as general (linear) N-port
networks which may be distributed as well as lumped; they are described by
scattering (or impedance or admittance) matrices which are functions of the
complex frequency s. The tubes are described as general N-wire (plus
reference) transmission lines of various lengths.

As indicated in fig. 5.1, the junctions are numbered arbitrarily (in
this case from 1 to 6). The tubes can be numbered by the junctions to which
they connect [3]. Various matrices can also be defined which exhibit the
interconnection of junctions and tubes with themselves or with each other.
For our purposes,!the interesting way to label things is according to the
waves, two of which propagate (in opposite directions), on each tube. As
indicated in fig. 5.1 assign a wave index w which takes two values on each
tube. Each wave leaves one Jjunction and arrives at another junction {or

perhaps back at the same junction in the case of a self tube) so that each
tube can be labelled by the waves on it, and each junction can be labelled by

the waves leaving or entering it.

For present purposes, it is the wave-wave interconnection matrix which

we will use. For fig. 5.1 this matrix is

(5.1)

OCOOOODOQOOOOF OO
OOOOOH IR FF OO0
OO OO ODODOODOOOOEK
OO0 OR PP OOOOO
QOO PO OOOOOOOOO
COOQDOOCOODOOOOO
COOOOOOOOOODOr OO0
O OO0 DO O0OOOCOOO
P OO0 OOOOOOOOOOOO0O
OCOOOOOOOODOOR P00
O OO0 OOOOOQOO0O
ODOODOKHFEFREEFOOOOOO
COOFHRPODOOOODDOO0
QOO0 HPFPHLPROOOOO
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1,2,... Jdunctions

Tubes

wl,wg,... Waves (N-waves)

-

Fig; 5.1. Wave Indexing in Transmission-Line Networks
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The elements of such a matrix have the property that

1 if wave W, scatters into the wave W, with the

wave v incoming and wave w outgoing at some junction
Wy oy = (5.2)
o 0 otherwise

-

1 for a self tube

0 otherwise (normal situation)

In our transmission-line network we have

number of junctions (6 in this case)

=
[«
LE]

N+ = number of tubes (7 in this case)
T (5.3)
= number of N-waves (14 in this case)

2 N

=
=
1]

n

This wave-wave interconnection matrix is important in that it describes
the transport of waves through the junctions from one tube to another and
thereby gives the structure of a scattering supermatrix for the junctions. In
(wu’v) an element which is 1 corresponds to a generally non-zero block of the
scattering supermatrix ((gn,m(s))u,v)’ while an element which is zero corres-
ponds to a zero block of the scattering supermatrix, i.e.,

(Sn,m(s))u,v if wu’v =1

(scattering vth N-wave (N,

(uth N-wave (Nv variables)
(s)) = y ' (5.4)
(On,m(s))u,v if wu’v = ()

variables)

These scattering-matrix blocks can be computed from the scattering matrices
(or impedance matrices or admittance matrices) of the junctions by techniques
discussed in [3].

As developed in [3] the scattering supermatrix is one term in the BLT
equation which has the form
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(e ) = (Gl ) © (F, (), )] @ ((T00,9)),)

= ((§

n,m

(s))y.y) @ (B p06s00)y ) © (Vg (x9))) (5.5)

In this equation there is also a delay supermatrix

(Fy($)gy)

n,m

(Y;,m(s))u,u
LU
@

"

i

delay supermatrix

Ny : | Ny '(ch m(s))u,uLu
r(s) = @ e >
4= - MLm Usu =1

foru=v

(On,m)u,v for u # v

propagation matrix for uth N-wave
1/2 (principal or p.r. value)

(5.6)

[(ia,m(s))u,u ) (vﬁ,m(s))u,u]

characteristic impedance matrix for uth N-wave

~ ] - ([ ’1 ]
AR (Vn n(Sy,u = (ch (S))u,u ) (Zn,m(s))u,u

b ’ 3>

n,m Rit

characteristic admittance matrix for uth N-wave

-1
U,U

(s))
n,m
Tongitudinal impedance-per-unit-length matrix for uth N-wave
transverse admittance-per-unit-tength matrix for uth N-wave

length of tube on which the uth N-wave propagates

direct sum (produces diagonal supermatrix, or
biock diagonal matrix)
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We also have a supermatrix integral operator

My

)

supermatrix integral operator
Ny Ly (v (S))u,u[Lu'xu]

e (R (x,s:5(N)), =@ [ e 0O (+) dx
gel MU uu 2y 7 T
) (5.7)
L '(Y:n m(s))u,v[Lu'Xu]
[ e * (¢) dx foru=v
o u
o H O
(On,m)u,v for u # v
x, = coordinate (position) for uth N-wave along tube
(0<x <L)
u u .
Here (+) designates that the terms following the operator are to be inserted

at the indicated position in the integral(s) with multiplication in the indi-
cated sense (dot product in this case). Note that this operator operates over

the range of each tube.

The response variables in the BLT equation are contained in the

combined voltage supervector given by

((V,(0,8)),)

]

combined voltage supervector (for N-waves propagating
into tubes (away from junctions)

(@0, + (2, (), ) © (0,8,

M u,v

characteristic impedance supermatrix

(5.8)

voltage supervector for voltages at positions
Xy along tubes

current supervector for currents at positions x

along tubes with positive current in directions
of increasing Xy
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[(VC (s)), ) = characte-istic admittance supermatrix
n,m N,
-1

=(Z, Ny )T =@ (Y, ()

Cn,m U,V u=1 Cn,m u,u
(?C (s))u u characteristic impedance matrix for uth N-wave
n,m *
? - (5 -1

- (Zc (S))u,u

n,m

The source variables in the BLT equation are contained in the combined

voltage-per-unit-length supervector given by

((V; (xu,s))u) z combined voltage-per-unit-length supervector
n (a source distributed over the tubes)

((VQQO)(XusS))u) + ((ZE m(s))u,v) © ((T;ﬁO)(XU’S))u)

n,
(5.9)
((V'(O)(xu,s)) ] = voltage-per-unit-length supervector (Tongitudinal
n u voltage source per unit length)
[(T;(O)(x ,$)).) = current-per-unit-length supervector (transverse
n u u current source per unit length)

The BLT equation then can take a set of assumed sources along the tubes
of a transmission-line network and determine the combined voltages leaving the
junctions. These combined voltages can be converted back to regular voltages
and currents, if desired. First, the combined voltage N-waves entering a tube
can be transformed to any position along that tube via

(Vn(xu,s))u = e n,m . [Vn(o,s))

%y '(ch,m<s))u,u[xu'xa]; o ‘

+ fo e . (Vsn(xu,s))u dx! (5.10)
Now let u and v represent the two N-waves propagating in opposite directions
an a given tube. (See fig. 5.1 for an example to see that this is a rather
simple correlation.) Then (5.10; applies to both waves on a particular tube

with




This formalism allows for lumped sources as well as distributed sources
U (= L, - %) of
interest. By interpreting any sources ascribed to the junctions as sources
just inside the tubes (at each Xy = 0+), junction equivalent sources are also

-by the introduction of &§ functions at any particular x

handled in this formalism.
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VI. BLT Equation for the Case of No Tubes

In applying the results of transmission-Tine network theory (the BLT
equation) tao EM topology let us first shrink the lengths of the tubes (the Lu)
to zero. In taking the 1imit as the L, tend to zero (through positive values)

gives

L
u
((Kn,m(xu’s))u,v) > ( fo (ln,m)u,v dxu) (6.1)
(T3 (x030),) > (T (1), 8lx, - 04))

where the distributed sources have been replaced by Tumped sources (at Xy =
0+) in the tubes before the tubes are shrunk to zero. The BLT equation then

becomes

(L mus) = (G )] © ((Ty0),)

~

- (B (s ) o (T () (6.2)
One might think of this as the reduced, or simplified, BLT equation. Since
the tubes are now of zero lengih the N-waves leaving particular junctions are
also the waves érriving at adjacent junctions with the addition of the lumped
sources. Then (5.10) and (5.11) become

(V (0+,9)), = (V (0-,9)), + (Vsn(s)}u
(V£O)(0"s))u = (véO)(0+’S))v B %'£(vn(0"s))u ¥ (vn(0+’s))v] (6.3)
(10 (0-,5)), = (10 (0+,9)), = 3 (7, (1) * [(T(0-09)), - (T(04,5)), ]

n,m

Note that if the sources are zero on a particular tube (with the uth and vth
N-waves), then the above formulas further simplify since the variables evalu-

ated at x, and Xy equal 0- and 0+ both are evaluated at O.
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Now (6.2) can be implemented in various ways in the context of EM
. topology. With the tubes gone we can identify the junctions with various
volumes since such volumes can be regarded as general N-port networks. Where
the tubes had previously connected to these volumes {junctions) can now be
regarded as ports or penetrations into (and out of) these volumes.

An alternate representatioh has both surfaces and volumes in the EM
topology identified as junctions. In this way the penetrations through the
surfaces can be assigned scattering matrices as in [9]. In effect the zero-
length tubes now represent the connections of the surfaces to the volumes
which they bound.

As discussed in previous papers [10,11], the normalizing impedance
matrices combining voltage and current to form combined voltage variables (as
in (5.9)) can be chosen in particularly convenient forms. In particular we
can choose

~
—
™~
(@]
—
v
~—
e
<
.
<
p—
1}
Py
~
—
-
pun
-
3
~—
ey
-
<
p—

. (T, ()yy) = R ) (6.4)

real constant > 0 (and finite)

vl
|}

This allows us to bound the 2-norm of the scattering matrix of any linear,
passive, time-invariant network (system) between zero and one. In particular,
applied to the present case these constraints imply

0< ‘l((gn,m(jw))u,v)'lz <1

0 < ‘|(§n,m(jm))u,u’|2 <1 foru=1,2,...,N (6.5)

W

w real
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VII. General Form of the Good-Shielding Approximation

Let us take the reduced BLT equation in (6.2) and write it in the
further simplified form

(Tl ) © (Fo(s)) = (T (s)),)

(1, m(s))p,l) = interaction supermatrix

~

= (1, ). ) - ((S

n,m’p,q ams))

p,q) (7.1)

equivalent source supervector

= (B (), @ (T (D))

P,q)
Our problem is then to invert the interaction supermatrix at least as an
approximation, Note that the wave subscripts (dummy variables here) have been
replaced by p,q to emphasize that at this stage no identification is made with
particular wave indices which are to be later partitioned and identified at

our convenience,
Letting
P,q = 1,2,...,N (7.2)

let us assume that the interaction matrix is block tridiagonal, i.e.,

(T (s)) for |p-q| > 1 (7.3)

n,m = (0

n,m)p,q
Next let us assume that the off-diagonal blocks (Ip-qi = 1) are in some sense
small compared to the square diagonal blocks (p = q). This is used later when
these off-diagonal blocks are identified with transmission of electromagnetic
energy through the shields (and/or subshields) in the EM topology of interest.

To_obtain an approximate solution of (7.1) under the above assumptions -
let us consider the supermatrix equation as a set of linear equations in which
the sources are the vectors (Vﬁs)(s))q, the responses are the vec-
tors (Vn(s)) , and the coefficients are the matrices (Tn,m(s))p,q for

|p-q| < 1. These equations are written out as
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(7.4)

Next to simplify the results let us assume that the sources are only on
the "outside," i.e.,

(Vés)(s))q - (0))g fora>1 (7.5)

so that only the first equation of (7.4) has a source term. Then solve this
set of linear equations beginning with the last as

~ -1 ~

RO SRR ) MR C AR T MR (A D I (7.6)

Moving to the general equation of the form

(Tn,m(s))p,p-l'(vn(s))p-1+(Tn,m(s))p,p'[vn(s))p+(Tn m)p p+1'(vn(s))p+1 ) ?

we use an assumption that
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TN, 12> T > T (7.8)

which is related to the assumption that the off-diagonal blocks are smalil
compared to the diagonal blocks which represent the transfer functions through
the system and give smaller responses for increasing p. Rearrange (7.7} then

as

-1 ~ ~
n,m(s))p,p'[(In,m(s))p,p-l'(\"n(s )p-l (In m )p p+l (V ]p+l}
(7.9)

In norm sense then what we require is

(T, m(S));fp ) (Tn,m(s))p,p-l ) (Vn(s)p-ll'

>> |\(I s))plp . (Tn,m(s))p,p+1 . [Vn(s))p+ll| (7.10)

In essence if we can state phat

[IE SO ¢ T NN VAT W T ISR T IO OV (7.11)
then we have
(V(s)p = '(Tn,m(s));fp (T n()p 1+ (Ta(8))p
+ error (7.12)

<

error = -(Tn’m(s))gfp . (Tn,m(s)}p,p+1 . n(s)]p+1

~

with the error reduced from the principal term as (V (s)) ,, is twice reduced
from (V (s ))p—l' The off-diagonal blocks (T s)) p-1 and (Tn,m(s))p,p+1
are of course both assumed small to help in thTS resu1t. 0f course one
requires that the diagonal blocks, the (Tn m(s))p 0’ do have inverses (are
non-singular).

There is one equation, the first one‘in (7.4), which has a source term
and which is solved as

(o) = (T (N1 [(Vgs)(s))l - (Thnf)g,2 « (T(s)),]

(7.13)
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. Applying the same assumption that, in this case (Vn(s))2 is small compared
. to (Vn(s))1 and (Tn,m(s))l,l is small compared to one (in norm sense as usual)
then we have
¥ - (T -1 v(s)
(Vn(s))l - (In,m(s))l,l * (Vn (S))l
« + error - (7.18)

RO A E RPN LAC)E

2

error

Working backwards from p = N to p = 1 we can solve for the responses at
any level p within the system. Beginning with (7.6) we have

(vn(s))N B '(Tn,m(s))&{N ’ (Tn,m(s))N,N-l ) (vn(s))N-l
= (Tn,m(s))N,N : (?n,m(s))N,N-l * (Tn,m(s))&il,N-l

-1
[T () D hep-p? Nepept (Tn,m(s))N+p-p',N-1+p-P'}}

i
—
]
Y
—
=
1
he}
——
o
1
o

. (Vn(s))p (for 1 < 2 < N)

N-1
~ ("1)N 1 {p.___l [(Tn,m(S))N}'l-p',N+1-p' L (Tn,m(S))N"'l'pl,N'pl]}
y (Tn,m(s))Ifl . (Vfls)(s))1 | (7.15)

This gives the signals in the "deepest" part of the system in terms of the
sources “"outside" and the matrix blocks connecting the two.

One need not concentrate on the signals at the "deepest" part of the
system, Starting at n = M < N and working back up gives
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Tty = =Ty S yow = (Do may = (Tl
wep f M1 -1
* (-1 Soep [T n S ep-pr i * Tnn S htepopt wetep-pt]
. (V (s))p (for 1 < p< M

R
PameN
]
—
Q"
=
)
-t

n
M-1 1 .

{ [(Tn,m(s))Mﬂ-p',Mﬂ-p' . (Tn,m(s))Mﬂ-p' ’M_pl]}

(T, N7 (Vﬁs)(S))l (7.16)

This gives the signals at any level (or layer) in the system in terms of the
sources "outside" and the matrix blocks connecting the two.

The approximate solution (the good-shielding approximation) in (7.16)
has reduced the supermatrix equation (7.1) to an equation involving the
smaller matrix blocks. One can go another step in simplifying this result by
the use of norms (vector norms and their associated matrix norms). Since the
norm of a product is less than or equal to the product of the norms we have

M-1

I‘(Vn<s))M[’ < IHT‘ H(Tn m Mil-z‘,m-l-z'H H(Tn,m ) e1-g! M-2 l!}
(ARSI RNTRICIRUTINT o (7.17)
1 <M<N

In this form the particular norm to be used is not specified. Various norms
can be used, all of which in replacing a vector or matrix by a non-negative
real number have bounded that vector or matrix or some sense. So in this
bound1ng formula we are concerned with maximum signal or transfer function,
max1mum power, etc.

The terms in this approximate bounding formula represent bounds on the
transfer of signals from Tevel to 1level within the system. In going
from £ - 1 to & we have from (7.12) :
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T NI, = iI(Tn,m<S>)£fz s Tn(8)gem1 (7($)) gl
IO AN ¢ O IR IR [CACIARY]
A ARONS RN TCANED R TRITCAC) YT B R L

So in designing a system the good-shielding approximation shows that it is the
above product of matrix norms which is to be kept small to attenuate (to some
desired degree) the signals propagating into the system. This is consistent
with the requirement that the off-diagonal blocks of the interaction super-
matrix be small (in norm now) so that the good-shielding approximation is
valid.

Reexamining the fundamental approximation in (7.12) we require

error = -(Tn,m(s) o " (Tn,m(s))z,z+l « (V.(8)) e

~ -1 ~ o~ S y=1
(1, m(s))z,z ) (In,m(s))z,z+1 ’ (In,m(s))z+l,z+1

R

C (T ) ey et (T(s))y (7.19)

In norm sense then

|ferror|f < [}(Tn’m(s));{z- (Tom(8)) g ge1® (Tn,m(s));il,g+1' (Tn,m(S))2+1,2|‘

V()] (7.20)

Since the error should be small compared to the approximation of [Vn(s))z we
have the requirement

||(Tn,m(s));tz ) (Tn,m(s))z,z+1 ) (Tn’m(s));11’2+l ) (Tn,m(s))z+1,z|l <«

(7.21)
to assure the validity of (7.12).

Expanding (7.12) via norms a more severe requirement for the validity
of the good-shielding approximation is
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H(Tn’m(s))z.;.l,z” <1 (7-22)

Provided that the diagonal-block terms are bounded of order one, i.e. (for
all 2)

(T, nls) ;fgn = 1 (7.23)

or even a small number not much greater than one, then if we can require for
all the off-diagonal blocks

lI(Tn,m(s))z,zﬂ" <l

(7.24)
H(Tn,m(s)):z,+1,5l” <1

the good-shielding approximation is assured.
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VIII. Partitioning the Terms in the BLT Equation for Application of the Good-

Shielding Approximation

Let us now organize the wave indices in the BLT equation according to
the hierarchical EM topology in a manner which makes the good-shielding
approximation applicable. 1In this case shields (and subshields) are assumed
to be the elements which provide significant attenuation of the waves in their
travel from vy to VA .
max

In accordance with the previous section then let us associate the
scattering transfer function through a shield as that of an off-diagonal block
of the scattering (or interaction) supermatrix. This 1is accomplished by
making the diagonal blocks contain all the terms associated with the
layers Vx' The off-diagonal blocks then contain all the terms corresponding

to transfer of signals from one layer to an adjacent layer.

This suggests that we associate the p,q indices in section 7 to the
topological indices in section 2B (corresponding to a hierarchical topology
defined to the level of layers and shields, but not yet further) with the

correspondences
p = (G,M,X)
(8.1)
q = (Gl’u|9)\l)
This makes the BLT equation (7.1) take the form
T _ rels)
((In’m(s))OQMS}\,Gl,ul’)\l) @ ((vn(S))cgu,)\) - ((Vn (S))o"u,k) (8'2)

However, this has to be understood in a special way in that the 4th through
6th subscripts of the matrix blocks are summed in the product with the three
subscripts of the vector blocks (partitions). Another form this can take is

~

n( g0 aa) @ (L) )0, = () )),)

g u

(
(e (6.9

consistent with the matrix/vector partitioning scheme in section 3. 1In this
latter form (as quadravectors and quadramatrices) matrix/vector partitioning
is successively accomplished according to the topological indices A, u, and o.
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First view this ordering according to the interaction sequence diagram
in fig. 8.1. This is a path which reflects the nesting property in the hier-
archical EM topology with signals going from layer to shield to layer to

shield, etc., in going from the outside to the "deepest" layer VA (or 1in
max

the opposite order) encountering every layer and shield along the path, Note
that the layer-part index p only takes on values of 1 and 3 here. This is
because the Tayers in this case have not been divided into elementary volumes
(as in fig., 2.4), for which case the value y = 2 would be used. Also

for A =1 only u = 3 is used and for A = xmax only u =1 is used.

Corresponding to this ordering and path the interaction matrix is
exhibited in (8.4). Note the block tridiagonal character of this matrix as in
(7.3}, The point is that the ordering of the interaction matrix as a super-
matrix makes the form of the equation amenable to approximate solution via the
good-shielding approximation. As (8.4) exhibits the interaction matrix is
quite sparse and the partitioning of this matrix as a supermatrix orders this
sparseness on various levels of partitioning.

Note that for these results we require Anax > 2 so that the EM topology
is non-trivial as well as the corresponding interaction sequence diagram in
fig., 8.1.
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( n)1;3;1 (Vn)1;1;2 (vn)1;3;2 (Vn)1;1;3 (Vn)1;3;3

—_— — o~ ——— —p —— )
©—; O, O O0—F—0— O— e
Vdaazsr Opdosrse Wausse (Wasns (Vpdagsss
V1 S1;2 Vs S2.3 Vs 53,4
U=3 U=1 u=3 u:]_ 1—1:3
- (Vn)l;B;Amax—Z ~ (Vn)1;3;>\max-1 ~
V)1 -2 S P TP V)11
> max ***"max * =2 max
_— —_— — ——
® el e . S
(V.),. 4. _ (V.)s.q. _ (v.)
n 2,1,>\max 2(0 ) n 2,1,)&max } n 2,1,>\maX
n"2333nay2 (Vn)2;3;xmax-1
S . _ V _ S Y 0V 1 S . Vv
>‘max'3’>‘max 2 >‘max 2 Amax 2’>‘max 1 Amax 1 xmax 1’Amax
U=1 u=3 U=1 u=3 u:l

Fig. 8.1. Interaction Sequence Diagram (Path) Corresponding to a Layer
Shield Decomposition in a Hierarchical EM Topology
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IX. The Off-Diagonal Blocks

Referring to (8.4) note that the general form of the off-diagonal
blocks used 1in the good-shielding approximation din (7.16) connecting
layers x-1 and A is

(T Doy a1 ™ o

o _1 _ h
(On,m)l,l (On,m)l,z '(gn,m)l,l (On,m)l,
ﬁon,m)Z,l (Dn,m)2,2_1’1 Uon,m)Z,l (On,m)Z,Z 3
<0n,m)l,l (On,m)l,z (On,m)l,l (On,m)l,z

0 0
_ﬁ n,m)2,1 ( n,m)2,2_3’1 }On,m)z,l (On,m)2,2 3,3
AsAa-1
(9.1)

For A =1 and A = Amax only parts of this matrix block (specifically two of
the blocks at the p,u' partition) remain to match the size of the A,x' = 1,1
and A,A' = xmax’kmax diagonal blocks in either row or column sense as appro-
priate.

Note the sparsity of this matrix. At the u,n' level of partition only
one block, the 1,3 block, is not a zero matrix. Furthermore, only one of the
blocks of this matrix at the o,c' level of partition, the 1,1 block, is not a
zero matrix. Roughly speaking only 1/16 of the matrix in (9.1) consists of
generally non-zero elements; this 1is tempered by noting that the various
matrix blocks can in general contain varying numbers of elements consistent

with the partitioning scheme.

One can directly use (9.1) for the off-diagonal blocks appearing in
(7.16) (the good-shielding approximation), and take advantage of the matrix
sparsity in the matrix multiplication process. However, our interest here is
in the matrix norms such as used in (7.17), the bound form of the good-
shielding approximation. In appendix A it is shown that the p-norm of a
supermatrix with only one non-zero block is the same as the p-norm of that
block. Hence we have
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H(((Tn,m(s))a,or')u,u‘))\,x-l'‘p ) ‘l((Tn,m(s))c,c')l,B;X,k-l‘\D
(9.2)

'(Sn,m)l,l (On,m)l,z

~

oalseediann1™ | o o )
n,m'2,1 n,m’'2,2 1,3:1,1-1

The supermatrix in (9.2) can be treated the same way since it has only one
non-zero block, giving

"(((Tn,m(s))o,o')u,u')x,k-l"P H(Tn,m(s))l,lzl,3;>~,>~-1’'P

(9.3)

H(gh,m{s))l,lglﬂ;l,k-l''p

Referring back to (8.4) note that this result applies for A =1 and X = N as
well since these off-diagonal blocks have the same single non-zero block as in
(9.3) .

Interpreting this result, the p-norm of an off-diagonal block in the
good-shielding approximation 1is merely the p-norm of the scattering matrix
describing the transport of ;igna1s through a shield. The large off-diagonal
biocks can be reduced to something more tractable, Note that this scattering
matrix in (9.3) is precisely the scattering matrix discussed in [9], where
procedures are given for measuring the matrix elements and finding the appro-
priate norms.
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X. The Diagonal Blocks

Referring to (8.4) note that the general form of the diagonal blocks
used in the good-shielding approximation in (7.16) for layer A is

~

O N g o)y u i =

(1n,m)1,l '(sn,m)l,z
L:(Sn,m)z,l (ln,m)z,z 1.1
'(Sn,m)l,l (On,m)l,
LL(On,m)Z,l (0 m)2,2 X
Note that this block is
blocks [(In,m(s)>c, ')u,u';k,k and (1
partition. For A =1 and X = Amax

n,m
only parts of the matrix block in (10.1)

.

(0,
(0

L.

n

—

(1,
-3

square

)

C,03H,

1,1 (On,m)l,z-1
,m>2,1 "(gn,m)Z,Z_l’3
,m)a,a '(gn,m)l,Zq
n,m)2,1 (1n,m)2,2_3’1
as are the
LIALA resulting from

AsA
(10.1)

diagonal

further

are present in (8.4), but these are the same as the u,u blocks in (10.1).

In taking the norm of the inverse of this matrix block one can use [8]

o~ -1
I’(((In m(s))U,UI)UsUI)Ayx.l

’

1 - |i(((gn,m(s))c,c')u,u')x,x'"

if l|(((§n,m(5))0’o.)u,u.)x,k.|| <1

)GQGI)UsUI)X’X‘

il

Since the 2-norm of a passive scattering matrix has [10]

0 < [1C0G, (8N g )y )yl < 1

(10.2)

(10.3)

then we can use (10.2) to provide some bound on the norm of the inverse of the

diagonal blocks provided.

For this to be interesting, however, we need that

the 2-norm of the scattering matrix be bounded away from (below) 1 and prefer-

ably small compared to 1.
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Now since the norm of a sum of matrices is less than or equal to the
sum of the norms, and since from appendix A the p-norm of a matrix with one
block is equal to the p-norm of that block, then the p-norm of a matrix is
less than or equal to the sum of the p-norms of the blocks. Noting the 6
scattering matrix blocks in (10.1) this bound is not very useful if the 2-norm
of any of these blocks is near 1.

Referring back to fig. 8.1 note that the scattering matrix blocks in
the A layer should have the property that only certain of these blocks need
have small norms to make the transfer of signals through the layer small. The
abové result would then seem to be overly pessimistic, i.e., giving an overly
loose bound. So let us try an alternate approach in the next section.
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XTI. The General Term in the Good-Shielding Approximation in Terms of
Elementary Matrix Blocks

Write out the general recursion (7.12) that occurs 1in the good-
shielding approximation using the terms in (8.3) as

(VN ), = (T a0 05 © (T () g o)y )y o

r 1
0,0 "H,H

® (V1)) )51 (11.1)

Instead of inverting (({T_. ) directly, let us use the sparsity

N n,m o,o')u,u')k,k _
of (((In,m(s))o,c')u,u')x,k-l to reduce the complexity of the problem and

perhaps obtain a tighter bound when norms are applied. First rewrite (11.1)

as

~

(T (N ol wdan @ (LT ) )y

< (0T, )y o0y )y e © (VL)) ) (11.2)

n,m Usol Usul

Essentially this equation represents the Ath row in (8.4) with the (A,A+l)
term neglected as being small compared to the terms in (11.2).

The right side of (11.2) is found from (9.1) as

(¥ N0 NERCR((CAB I A

n,m(s))c,o' TR o'y

i .
(gn,m)l,l;l,S;A,A-l (Vn)l;3;x-1

- (On)1;3;k-1 (11.3)

(0)2.1:a-1

(On)Z;B;A-l

Note that only one of the four blocks is non-zero.

The left side of (11.2) is found from (10.1) as
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(T (Mg o)y ady oy @ (TN )y

~

S

n,mn' > o,0! u,u

T - Cawdizsaaa - Tlenn -

'(Sn,m)Z,l;l,l;A,x ' (Vn)l,l,x * (Vn)Z;l;A - (Sn,m 2,251,330, (v2;3;x
(v

(g

- n,m)1,1;3,1;x,x * n)l;l;x * (vn)1;3gk - n,m)1,2;3,3;A,A * (vn)2;3;x
)

'(Sn,m)2,1;3,3;k,x * (Vn 1;35a * <Vn)2;3;k

(11.4)

Here each of the four blocks are non-zero, but there are only two or three
terms in each block.

Referring to fig. 11.1, the various terms in (11.3) and (11.4) are
illustrated graphically, indicating the connections among the terms (waves and
scattering matrices). This gives the structure of these equations, including
the sparseness of the associated supermatrices.

Comparing (11.3) and (11.4) note that only the first block is non-zero,
giving

Snm,1:1,3000-1 ° Vndiyzsa-n =

~

(V) S

n'l;1;x ( (11.5)

1,251,050, 0 Tadasin
This equation gives the Tink from the A-1 layer to the other combined voltages
in the x» layer. Note that the corresponding combined voltage to (VH)I'B'A-l
in the A-1 layer is (vn)l-3°x in the A tayer. Let us remove the other terms
in (11.3) and (11.4) to give a relation between these two.

First eliminate the backward propagating (¢ = 2) waves in favor of the
forward propagating (o = 1) waves. The last three equations in (11.4) can be

solved for (Vn)2;3;x as

(Sn,m)2,2;1,3;x,x * (Vn)2;3;A * —(Sn,m)z,l;I;l;A,A ) (vn)l;l;x * (VH)Z;I;A

(S = -(%

nm1,2:3,350,0 " (Vn)2;3;A nm1,133,150,0 (vn)l;l;x * (vn)1;3;x

~

T2:300 = Gomle, 133,300 © Taligan (11.6)
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(Vn)1;3;k—l (Vn)l;l;x (Vn)l;S;A (Vn)l;1;k+1
—— —_———— -_— —_——
(Vn)Z;l;A (n)2,35n
(Sn,m)2,2;1,3;k,k
(Spm)1,131,35000-1 (Spm!1,153,1500 (Spm’1,151,35041,1
—_ - —
7~ 46\ S o W
C O C bl
(Sn,m)l,Z;l,l;A,x (Sn,m)Z,l;l,l;A,A ( n,m)1,2;3,3;x,k (Sn,m)2,1;3,3;k,l
Fig. 11.1., Interaction Sequence Diagram Corresponding to One Layer in a

Hierarchical EM Topology for the Good-Shielding Approximation
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Substituting the third of these into the second gives

~

Ttz * Gt Canlza,zma - Tligsn
+ (S )1 1.4 1. « (Y )q.q.
n,m'1,1;3,1;4,A n‘l;1;a (11.7)
~ x x -1
T3 = w1330 - Cand1,2:3,3000 7 Caund2,1:3,350,0
* (Sn,m)1,1;3,1;k,k ‘ (Vn)l;l;x
This Tast result then gives us (Vn)l;S;A in terms of (vn)l;l;x'
Substituting for (Vn)2~3'x from the last of (11.6) in the first of
(11.6) gives
Vo1 = Comlzzst,aman * Cnmdz,;3,3m © Ul
+ (Sn,m)Z,l;l,l;x,x * (Vn)l;l;k (11.8)

This is in turn substituted in (11.5) to give

(Sn,m)1,1;1,3;k,k-1 * (Vn)l;B;A-l = (Vn)l;lgk

- (gn,m)l,z;l,l;x,k ) [(Sn,m)2,2;1,3;x,k * (gn,m)2,1;3,3;x,x ’ (Vn)1;3;x

* (Sn,m)z,l;l,l;k,x * (vn)l;l;x]

(S - (8 V)

- [(1n,m)1,1;1,1;A,A - n,m)l,z;l,l;A,A n,m)2,1;1,1;A,A] AR TA S BN

- (Sn,m)l,Z;l,l;A,A * (Sn,m)Z,Z;l,S;A,A * (Sn,m)2,1;3,3;x,k * (Vn)1;3;x
Now (11.9) can be solved for (Vn)l-l'x to give

~

-1
Som1.2:1, 1 Caml21:1, 10,0

(Vn)l;l;k = [(ln,m)l,l;l,l;x,k - (
G301 ° Tdisna

~

S

~

+ S

nm2,1:3,30a0 ¢ Td1s3aad
(11.10)

Com1,2:1,150 ° Cagnl2,2:1,350,, ¢
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Substituting this in (11.7) gives

[ m)1,153,3000 = Cand1,2:3,3000 ¢ Cond2,1:3.300 s

td

G m)1,1:3,150.0

~

S

~

S )7L

n,m)2,1;1,1;A,A

O w0000 - Samd2s,ian *

* [(Sn,m)l,1;1,3;x,l-1 * (Vn)l;B;A-l

~

* O Candzazstaona * Cnnlza:ssn * Tl

(11.11)

which is rearranged as

~

S S

Vol = U0 13,3000 - Comdiziasan © Caund2i1:3,3:00)

-1

-(% 1 3

n,m)1,1;3,1;A,X'[( n,m)l,1;1,1;A,A'(Sn,m)l,zil,lgx,x'( n,m)2,1;1,1;A,A]

S . (8

o . -1
- ( n,m)1,2;1,1;k,k n,m)2,2;1,3;x,x * (Sn,m)2,1;3,3;x,x}

~ "~y ~ -1
o)1, i )50, G 1,231,000 Camd 2,101,100

) (Sn,m)1,1;1,3gk,k-l ' (Vn)l;3;x-1 (11.12)
This last formula relates (Vn)l;B;A to (Vn)1;3;>\_1 with a matrix coefficient
that should be small in some sense for the good-shielding approximation to
apply. One term in the product of matrices is (Sn,m)1,1;1,3;A,A-1 which gives
the transfer of signals from layer A-1 to layer A; this is the term which is
first identified as one which should be kept small for the shielding (due to
shield (A-1,1)) to be effective. The other terms in the matrix coefficient
involve only scattering matrices which correspond to signal transport within
layer A; this part of the matrix coefficient should also be kept small or at
least bounded so that it does not overcome the shielding afforded
by (Sn,m)l,l;l,B;A,A-l' Note the presence of the matrix inverse which can be
thought of as representing possible resonances (which might be suppressed) in
layer A.
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Applying norms to (11.12) we first have

1 n 1 3; A|| abll n 1 33a- 1|| (11.13)
where
b= 115, 11,1300 a1 |
= contribution from shield Sx-l,k (11.14)
a s

contribution from layer VA
The complicated term is a, which is

a = |,{[(1n,m)1,1;3,3;A,A h (Sn,m)1,2;3,3;1,x * (Sn,m)2,1;3,3;x,k

1 1

'(Sn,m)l,l;3,1;k,k'[( n m)l L151,150,0° -(8 ,m)l 2:1,1:2,° - (S n,m)Z,l;l,l;A,A]

~ "~y ~s -‘1
"Gzt Sandezinaia © Gamleii:saanad

~

'(Sn,m)l,1;3,1;A,A'[(1n,m)l,1;1,1;A,A'(Sn,m)l,Z;l,l;A,A

¥ -1
’ (Sn,m)?,l;l,l;x,x] I‘ (11.15)

Now consider the norms of certain terms in (11.15). "First consider the

term
atl)s T w1110 ~Cand,251,10500 (gn,m)Z,l;l,lsksk]-lll
<D= 116 D 2,00 0 Gz, il 117
if |15 n,m 1 2;1,1;0,0 (gn,m)z,l;l,l;x,kH <1 (11.16)
Now
UG 1,2:1,00000 * a2, 100l
‘”(gnmlzllxxH|‘("nm2111xx|| (11.17)
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Note that these two terms, as indicated in fig. 11.1, represent reflections
NETT and that of Vx itself. As such
energy conservation requires for the 2-norm (see appendix C)

in Vx between the node representing S

R R N R WUTRE - (11.18)

0 < | (gn,m)z,l;l,l;x,i|'2 <1

which in turn implies

0 < 11Gy 1,251,150l L2l 1 Camdz 1,2 <2

(11.19)
o< |3 - (8

nm 1,251,150, N NRERUIrEE

These bounds can be improved on by our design of the system such that
the norms of one or both of these scattering matrices are constrained to be
small (i.e., much less than 1). Note that (Sn,m)l,z;l,l;x,x
scattering of waves in VA of f Sx-l-x’ or specifically off the penetrations

2 3

represents the

into Vx through S If we make no constraints on the electromagnetic

A-1;2°
properties  of VA’ other than 1linearity and passivity, then by

ing (3 : (1)
controlling (Sn,m)l,Z;l,l;x,k we control the size of a‘‘/. Thus, Tlet us

design the penetrations of S (i.e., the protection networks, etc.) such

A-1;A
tha the reflections in V., at SA-

A 1.y are negligible, i.e., let us assume that
0 < |18y w1251, €2 (11.20)
which in turn gives
a1 2 (11.21)

With these results (11.15) can be reduced, in norm sense, to

S

ax ||{[(1n,m)1,1;3,3;k,k - (Sn,m)1,2;3,3;x,x * n,m)2,1;3,3;k,k]

-1
-G 13,0 L)1, 131,000 G, 251, 1500 Cind2, 151,150,

¥ ¥ -1
' (Sn,m)l,z;l,lgx,x * (Sn,m)2,2;1,3;x,x * (gn,m)2,1;3,3gk,k} Il
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||(§n,m)1,1;3,1;x,xll

-G 01,253,300 0 G233 Cand1,13,1500
() S G C (3 ) I
n,m 1,130,150, n,m'1,2;1,15x,2 n,m’2,l31,134,A

~ . - -1
*Ghmziaan t Cnanle,2in,3 " (Sn,m)2,1;3,3;x,xl'}

H(fg‘n,m)l,l;?;,l;)\,k‘l

1]
._.
]
m

-1
I! n,m 1 1;3,15%, A‘l

if 0<al® <1 (11.22)

Let us next consider the term a(z) as

(2)

a7 = 16, w1 253,3m0 " Gl 3300 6

n,m)1,1;3,1;k,l

R

-1
nam)2,151,150,00

* [(1n,m)1,1;1,1;x,x - (Sn,m)1,2;1,1;A,A - (

~

* (Sn,m)l,Z;l,l;A,A * (gn,m)z,z;l,B;A,A * (gn,m)Z,I;B,S;A,AIl
< H(Asln,m)1,2;3,3;}\,)\|| “(gn,m)2,1;3,3;k,x|'
G sl TG 1~ Candi,2s1,15000
-1
* (Sn,m)Z,l;l,l;A,A I

H(gn,m)l,Z;l,l;)\,AH H(gn,m)2,2;1,3;)\,>\|| ‘t(gn,m)2,1;3,3;l,x|‘
(11.23)

Using (11.20) and (11.21) together with the relations in 2-norm sense (see
appendix C)
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0 < [{(5, 1,133,150, NIPR
0< ||(5, m)? 1;1,332, x"z (11.24)
0< 1165, W213,30ll2
0 < |5, , 1,2;3,3;x,x|'2
we next have
@)5 || 3

2 31, Wizsssanll w2153, 0]
+ ‘|(§n,m)1,2;1,1;1,x|‘ (11.25)

As when considering a(l) in (11.16), let us constrain
0 < " n,m 2 1:3,3;:2, A" (11.26)

This represents the reflection of waves in VA at S or specifically the

Ajatl?
penetrations (i.e., the protection networks, etc.) through SA'A+1' Then using

again (11.24) we have

(2) ¢

B "(gn,m)2,1;3,3;x,x’| (11.27)

a * ll(gn,m)l,Z;l,l;A,kH

Since both of these terms are small compared to 1 (per (11.20) and (11.26)) we

then have
0<al® ¢t (11.28)

Substituting this result in (11.22) gives

@< |.(gn,m)1,1;3,1;>\,)\H (11.29)
which with (11.13) gives
H(vn)1;3;)\H < H(gn,m)1,1;3,1;>\,7\“ H(g,n,m)1,1;1,3;J\,>\-1H
T3] (11.30)
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This product of matrix norms is small since (see appendix C)

0< |8
0 < ||(§

1,151,350, x-1!| <l

where the second inequality (« 1) is a fundamental assumption for the validity
of the good-shielding approximation (as in section 7). Note
that (Sn,m)l 133,150, represents a transfer-function matrix through VA’ and
extra shielding is obtained if this term is also small. Recollect that we
have required that the reflections at the penetrations of both SA-I-A
and SA'A+1 are assumed to be kept small for the above results to hold, i.e.,
we have constrained

0< []3 | <1

0 < 165 )2,1:3,301, x'l <1
Using these same assumptions in (11.32) the results of (11.30) can be
posed somewhat stronger from (11.12) as

S, o) - (V)

Uidnian ® Camdiusina ® Goedistsnaa © Tligspag (11.33)




XII. The Good-Shielding Approximation for A = A

max

In the case of x =  (8.4) and fig. 8.1 show some differences from

the general case discussed in section 11, In particular, VA is described
' max

by a set of scattering matrices which include signalltransport from VA 1
max

but to no Vk for x > Amax' Now one could define the scattering ‘matrices

in VA in a manner which mimicked those in the more general VA by adding
max

another node, perhaps representing some set of selected terminals in VA’ the
signals reaching there being of particular interest. 1In this form the results
of section 11 (specifically (11.30)) apply to the transfer of signals
from V 1 to V

A nax” kmax

If one uses the form of the equations in (8.4) and fig. 8.1, then the
procedure 1in section 11 can be applied for the transport of signals

A -1 to VA . The right side of (11.2) becomes
max max

from V

~

S (( S FD RS NP OB ({U A S IR IS N

max *max F "max
(S, ) « (V)
n,m’1,1:1,3:) Y -1 n'l:3:x -1

(0 )..2.
n 1,3,Amax-1

while the left side becomes

® (T, (N)),

o,o')u,u;)k

n,m WA
max " max max
(V) - (5 ) . (V)
n"1;1;x n,m’'1,2:1,1:x SA n‘2;1:x
= Mmax max~ max max (12.2)
“Somlz i Ty, (Vn)z;l;xmax

max?® max max

Between (12.1) and (12.2) we have two matrix equations. The second of
these equations gives

V).,
n 2’1’)‘m max?’ " max max

ax

The first equation is
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V), ... = (S ) o1 . « (V).
n 1,1,Amax n,m 1,2,1,1,Amax,>\max n 2,1,xmax

+ (5 )1 1.1 . « (V),.a.
n,m 1,1,1,3,kmax,kmax-1 n 1,3,Amax-1

(12.4)

Substituting from (12.3) gives

(V).
R 1,1.Amax

-1

(L, )1 1.11. -5 )1 001 1. (S Vo 1.1 1.
n,m 1,1,1,1,Amax,xmax n,m 1,2,1,1,Amax,xmax n,m z’l’l’l’xmax’kmax

IR PR « (V) .q. (12.5)
n,m 1,1,1,3,Amax,xmax-l n l,3,xmax-1

Comparing this result to (11.12) shows the simpler form of the result for the

transport of the signals in VX from VA -1°
max max

In norm sense we have

1T < bl1T)y 5, - -1|| (12.6)
max
where
bz (|3 ). .. 3. [
n,m 1,1,1,3,Amax,lmax-1
= contribution from shield SA 1 (12.7)
max ~’“max
a = contribution from layer V
max
The term a is
as [|[(1 ) S T PP
I, n,m1,1;1,1; Amax nax n,m l’d’l’l’xmax’kmax
-~ "].
: (Sn,m)z,l;l,l;k oA < - H(Sn m)l 2:1,132

max ® max max’ max

- -1
SN PR 1]
n,m 2’1’1’1’Xmax’kmax

if ||(S . (3

max* nax

2,151, < (12.8)

n m 1 2:1,1:x max **max
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As before

R - S TS PR ||
n,m 1,2,1,1,>\max,>\maX n,m 2,1,1,1,Amax,)\maX
< |8 11 11E |1 (12.9)
n,m 1 231,13 Xmax’kqu n,m 2 1;1,1; Amax’kmax .
Again energy conservation requires (see appendix C)
o< |8 I, <1
n,m 1 2:1,1; Amax’kmax Y
o< ||(8 [, <1 (12.10)
n,m 2 1;1,1; Xmax’xmax 2
which in turn implies
0 < ||(S I, (S PR
n,m 1 2;1,1; Amax max 2 n,m 2 1;1,1; Amax max 2
0< |8 S TR PR <1 (12.11)
n,m 1 2:1,1; Xmax’xmax n,m 2,1,1,1,Amax,xmax‘l2
1f, as before, we design the penetrations of SA -1. such that the
. L. ‘max” e max
reflections in V, at Sy  _1.a are negligible, i.e. let us assume that
max s max
0< || | <1 (12.12)
n,m 1 2:1,1; Amax’xmax
then in turn we have
a=1 (12.13)
This reduces (12.6) to
HOV D)0 1T <HIE I
n 1,1,kmaX n,m 1 1:;1,3; Amax’xmax -1
||(Vn)1;3;X ax_1[| (12.14)
The matrix norm is small, i.e.
o< [|(8 || <1 (12.15)
n,m 1 1;1,3; kmax max -1
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as the fundamental assumption of the good-shielding approximation. Note that
(12.14) has only one scattering matrix; this can be compared to (11.30) in the
general case which has two scattering matrices.

Using the assumption in (12.12) the result of (12.14) can be improved
somewhat in that (12.5) becomes

(V) S ) - (V)

. = 1 2. (12.16)
n 1,1,kmax n,m 1,1,1,3,Amax,xmax-l n

1;3;kmax-1
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‘ XIII. The Good-Shielding Approximation for A =1

The case of A =1 is also special as indicated in (7.14), (8.4), and
fig. 8.1. For this special case (7.14) becomes

: (@0 )); = (T )y ), )i o (@) )y, - (3.
From appendix B we have
(T () ) )T
n,m 6,6 "u,u'’1,1
-1
(ln,m)l,l '(Sn,m)l’z
'(gn,m>2,1 (ln,m)z,z 3,3:1,1
~ -1 : ~ ~ -1
[(ln;n)l,1'(Sn;n)1,2°(§ﬁ;n)2,1] [(1n;n)1,1' (Sn,m)l,z'(sn,m)z,l] '(Sn,m)l,z
v v -1 x> ¥ > -1
[(1n,m)2,2'(sn,m)2,1'(Sn,m)1,2] ) (Sn,m)Z,l : [(1n;n>2,2'(sn;n)2,1°(Sn;n)1,2] 3311

(13.2)

The supervectors in (13.1) can be reduced to two blocks, the first
of (((Vn(s))o)u)1 being the one of interest giving

(Vn)1;3;1 )
[ w1 - S,z (gn,m)2,1]5}3;1,1 ‘ (Vr(\s))l;3;1
* [(ln,m)l,l h (gn,m)l,z '<§n,m)2,1]513;1,1)'<§h,m)1,2;3,3;1,1 * (V§S) 2:3;31
(13.3)
Applying norms we first have
L e N A C A Pare v |
. <[U- WG 2m,800 0 (gn,m)2,1;3,3;1,1H]-1
. G w2, Sonde,igs,snll <1
(13.4)
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Again

|l(§n m’1,2:3,3;1,1 ° (gn,m)2,1;3,3;11‘|

‘Hnm123311”H ,m213311H (13.5)

and energy conservation requires (see appendix C)}

0 < 1165, w1 ,253,351,1 15 €

0 < {1y m2,153,351,01 1 € (13.6)
implying

0 < 1Sy m1,2:3,3;1,1 112 HGo )z 153,351,112 <

0 < 165 w1,253,351,1 * Caomdz,isz,an,1lly €0 (13.7)

Since (gn,m)2,1;3,3;1,1 represents reflections back into Vl from 51;2,

then by design of the penetrations of S1.2 this term can be made negligible,
i.e. we can have

o< (8 | << 1 | (13.8)

n,m 2 1;3,3;1 1'
in which case

(s)

'|(vn)1;3;1" < |'(vés))1;3;1|' t lt(gn,m)1,2;3,3;1,1|‘ [ (V )2;3;1||

O g+ ), 01 (13.9)

Using the assumption of (13.8) t%the result in (13.9) can be made
stronger by substitution in (13.3) giving
5(s)
- (V.71)

(13.10)

~ - N(S) -~
Vodrsasn = (a7 dssn + Goondi2is,sst,n 2:3;1
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XIV.  Solution for the Good-Shielding Approximation

. ' Combining the results of sections 11 through 13 in the general form of
section 7, specifically (7.16), we have

Unls sz = ConlN 500 0 Gan1 11,3500 © TalsDy50

~

= © L LGnnlN1 13,1500 ae1ar Grnt1,151,850010-00 20001

-~

= { [(Sn,m(s))1,1;3,1gk-k',A-A' * (Sn,m(s))1,1;1,3gx—k',A-l-A']}

N O P (14.1)

for A = 1,2,---,Amax -1
Here (13.10) can be wused to give an alternate representation

of (Vn(s))1.3.1, but perhaps the above form is simpler.

’ For A = _ one can organize Vkmax D there is a (Vn(S))l;?’;)‘max and
(14.1) applies. Alternately, one can use (12.5) to put the results in terms
of (Vn(s))l;l;A as

max

~

Volshgm = GamlM1151,30

max max’>‘max'1
{Amax'l{ N N
(S (S)) . . ] l'(s (S)) . . ! 11
A =2 n,m 1,1,3,1,)\max+1-)\ ’)\naxﬂ-)\ n,m 1,1,3,1,)\max+1-\ ,)\max-X
© Va(s)yi30
= (S )i 1.4 2. .
n,m 1,1,1,3,Amax,kmax—l
" A =2
{ G [(S. (s) (5 (s)) 1}
S . . 1 [ S R . ]
_ A'T1 n,m 1,1,3,1,Amax-x sAnax ™A n,m 1,1,3,1,Amax-x ,\max-l-x'

‘lll' . (Vn(s))m;1 (14.2)
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These results can be readily cast in norm form. From (14.1) we have

(for s=jw here and following) .
J

{ iffb G nt) 1 13,100 e T G D1 10 300 a1 A1 _
V()51

ST U6, 001 1 el 1 G 11 5000l

ll(Vn(S))1;3;1|| (14.3)

for A = 1,2,---,Amax-1

From (14.2) we have

(V (s)),.,. <G, () 1.4 2.
HV, (s 1,1,>\max|| LA 1,1,1,3,xmax,xmax-1H

Y o
max
{x'lll s)1131;\ A -AHH 1131>\max>\ )&nax-lxm}
H(Vn(s))l;b’;l‘l

A -1

max
L (11 a1 G a0 13,1500 a0l 1]

Il(gn,m(s))l,l;l,S A @) 5.41 (14.4)

max **max
If we now specialize our results to the 2-norm then, of course, (14.3)
and (14.4) still apply. In appendix C it 1is shown that the 2-norm of any
block of a passive 2-port network or system is bounded by 1. Here we can
apply this result to the matrix blocks for transmission through a volume, i.e. -

0< ||(S (14.5)

))1 1;3,1;3 ) H2

' = ® 00 -
for X' = 2,3, ’Xmax 1
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Then (14.3) reduces to

”(Vn(s))l;3;kll2 TT (3 1 1:3,150",0'- 1”2
T )50 11 | . (14.6)
for for A = 2,3,%e¢ max -1
and (14.4) reduces to
max
”(Vn(s))l;mm TIH nnCV1 13,00 01!
V)13, 115 (14.7)

These results reduce the complexity of the characterization of the
shielding to X

Amax )
required by the good-shielding approximation.

max-1 non-negative scalar terms, each of which characterizes the

-1 (»1) shields. Each of these terms is assumed small compared to 1 as is

The 2-norm 1is related to power. In this case it is related to the
maximum power entering V,. Other norms are also of interest. In particular
the e-norm is a maximum-signal norm. This norm can be used then to bound the
maximum signal in V,. In this case the e~-norm can be directly applied to
(14.3) and (14.4). A previous paper [8] has related the «-norm to the 2-norm
as

~ 1/2 |~
H(Sn,m(s))l,l;B,l;k',)\‘''eo < HSn,m(s))1,1;3,1;x',A'H2 (14.8)
Mo = number of columns of (Sn,m(s))1 1:3,1:0', 2"
Using (14.5) we have
1/2
R A SR PR R TP O (14.9)

Applying this result to (14.3) gives
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ll(Vn(s))1;3;1|lw (14.10)

for A = 1,2,---,kmax-1

and to (14.4) gives

Amax

~ 1/2
"(v“(s))l;l?*max“” < {I:Ié L T e R PTCIP TR I |

05,41 (14.11)
For this to be useful let us require

0 < m02(|3, (14.12)

201 13 arealle <
as a generalized requirement for the good-shielding approximation. Note that
in using the =-norm for bounding signals in Vy it is helpful to have the Myt
(for for A' = 2,3,+++,)) kept as small as possible. Physically the M,' repre-
sent the number of ports leading in to the V,: from the SA'-l'A“
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XV, Summary

Well this note has covered quite a Tot of ground! It has gone into
some detail concerning some points raised in an earlier paper [5] and the
theory somewhat further. Referring to the table of contents one can see the
progression of topics beginning with the qualitative (or descriptive) aspects
of electromagnetic topology, and leading to quantitative aspects involving
supervectors/supermatrices, and the BLT equation evolving from transmission-
1ine networks to EM topology. This leads to the major results of this note
involving a detailed treatment of the good-shielding approximation.

This 1is not the last word concerning EM topology. There are other
éspects such as the implications of sublayers on the good-shielding approxima-
tion, as well as other implications involving elementary volumes. Furthermore
many of the results need consideration in time domain as well as frequency

domain.

The good-shielding approximation imposes certain requirements concern-
ing the smallness (in norm sense) of certain scattering-matrix blocks. This
smallness needs to be achieved in practice by the design of various networks
at the shields S*Hk+1
shields as well as the ref1ection of such signals from these shields. These
are stated as aéSUmptions in section 11; these assumptions are in general

to control the passage of unwanted signals through these

realizable and can be discussed in future notes.
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Appendix A: Norms of Supervectors and Supermatrices with One Non-Zero Block

In considering the norms of sparse matrices one would like to relate
their norms to the norms of the non-zero blocks. -

Define supervectors
((ap)y) (A.1)

with blocks and elements as

n=1,2,000,M, (A.2)
ua = 1’2,000’M
For norms consider the p-norm defined by
M M
/p
I L 1
u=1 n=1 MY

M
py1/p
SPRICRNS

[1((a))

"(‘I(an)ll‘p’tl(an)Z‘|p’...’|‘(an)M|‘p)l'p

p>0 , ‘ (A.3)

which is also discussed in [8]. In words the p-norm of a supervector is the
p-norm of a vector whose components are the p-norms of the blocks.

Keeping the same partitioning for the various supervectors Tlet us
consider a supervector which is the same as ((an)u) for one block, but zero
otherwise as

(an)u for u = i
(xn)u = (On)u for u # v,
1< v1 <M (A.4)
(y),) = () ) = ((x,))
(On)u for u = vy
(yn)u - {(an)u for u # vy

The p-norm of this special supervector is
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4 py1/p
(AR A[CANT

(), 1R

(A.5)

H(an)vll |p
Thus the p-norm of a supervector with only one non-zero block is the same as
the p-norm of that block.

Next consider the supermatrix

(A ), y) : (A.6)

n,m u,v
with blocks and elements as

(A ) ,

A
n,mu,v n,m;u,v

n = 1’2,.00’Nu

m= 1,200 ,M, A (A.7)
U = 1’2,030,N
vV = 1’2’oto,M

This partitioning allows us to write the product

(A ), ) © ((a)) (A.8)

n,m’u,v n'u
since the terms have compatible order for generalized dot multiplication. Let
the supermatrix now have only one non-zero block ass

(A, )y.y for (uv) = (ug,vy)

n,m)u,v - (0 ) for (U,V) # (U sV ) (A'g)

1’71

Writing out the product in (A.8)
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n,m’ u,v n’ u,v n,m’ u,v n'u n,m’u,v
NV
() @ L)) = UL Gy gy = (),
- (( n,m)U,Vl (Xn)Vl
= ((On)}." ’(On)ul-l (An’m)ul ’V]_ (Xn)Vl’(On)Ul“'l,...’(On N](A 10)
NV
() © () = C LG o)y v 0),)
- ((0),)

Thus it is only the ((xn)u) part of ((an)u), and the single non-zero block of

((An m)u V) that contributes to this dot product, leaving a supervector with

only the u = uy block non zero.

The associated norm of & supermatrix with one non-zero block is then

1y )y ) @ (@]

n,m’u,v

(A ), = sup
1 oy ((a,) #((0,),) IK(ERBII
A
_ " AL ) @ () D )
((a,),#((0.),) ) I

Now interpret the norm as a p-norm. Note that only a “part" of ((an)u),
namely ((x,)},), appears in the numerator. The demonimator is (from (A.3)

through (A.5))
P p
IV = u§1||(an)u||p
> gy, Hp = 11 (A.12)
[ O, > DT

with equality of course when ((a,),) = ((x,),).
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For any particular ((xn)u) # ((On)u) chosen the denominator in (A.12)

. is minimized by the choice of

((a),) = ((x,),)

((yy)y) = ((0,),) (A.13)
giving
(A ) )O( )
A g O = sup [ o) llp (A.14)
o (Xn)v1¢(on)v1 ‘l *n u Il
Now from (A.5) we have
YD = 0, T (A.15)
and from (A.10) and (A.3) we have
A, D) @ ||p
+ | 100, u1+1|'p +eeex [0 )] 1P
= 1A R (xn)vlllg (A.16)
1B )y @ (O = 0 )y )y
Combining these results we have
e )| " Nymouy vy n V1||p
A = sup
n, n) u,v’'lp (xn)vlaé(on)vl 'l(xn)vl"p
= || ( (A.17)

An,m)ul,vlllp

Thus the p-norm of a supermatrix with only one non-zero block is the same as

. the p-norm of that block.
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Appendix B. Supermatrix Inverse of Special Matrix Blocks

Considering the diagonal blocks at various levels of partition we first

have

-1 _
(1n9m)0;°;u:u;ksk - (IN,m)0a0§u,u§l,X (B.l)

since the identity is its own inverse.

Next consider the u,u diagonal blocks

% -1
(Tnnt g6 )5 uinn

i x -1

- (1n,m)1,1 '(Sn,m)l,zw1
-5 ) (1, )
B n,m’'2,1 n,m Z’Z-U,u;k,l
B q

Bl Canlige
B2, Canlez] (8.2)

HaltsA,A

Using the results of section 4 this supermatrix dinverse can be found.

Temporarily dropping the u and A indices the blocks (Bn,m)c,o‘ can be found
from the blocks of the original matrix which can be denoted as the (An m)c o'
consistent consistent with section 4. Using (4.¥4) and (4.15) we have
(B ml1,1
SN € FRND PR SS VR S e S (SO S
n,m'1,1 n,m’'1,2 n,m’'2,2 n,m’2,1
SN (€T VRS PRGN VO ot
n,m’1,1 n,m'1,2 n,.m'2,1
(B 1,2
ST )y -G Yy, e (1 5 e By, T e s, )y, e (1 )5
n,m’'1,1 n,m’'1,2 n,m’'2,2 n,m'2,1 n,m’1,2 n,m’'2,2

o~

N S I S R SR PR

84




By m)1,2 ]

N PR SN S VNN ¥ ST VY (S VAP SIS bR (N P
T Vha,m’l,l n,m’1,2 n,m’'2,2 n,m’2,1 n,m’1,1 n,m’'1,2
G NP (TS PR N N 0 PP e

n,m'1l,2 n,m’'2,2 n,m’'2,1 n,m’'1l,2 : (8.3)

(Byml2,1

W VRN SR VAN TS b PO (NS VA R ¢SS PPN ¢ DS b

- n,m 2,2 ‘“Wn,m’2,1 n,m’1,1 n,m’1,2 n,m’2,1 n,m’'1,1

) ~ ~ -1

= [y 22 ~Cowan - Camh 2l Gonlen
(Bn,m)Z,l

S Y c - VRN € NN AN SN PRV NS b ¢ S PR

n,m’'2,2 n,m’2,1 n,m’'1,1 n,m’1,2 n,m’'2,2 n,m’2,1

s - - -1

I P A e S IR IR CHPRY
(Bn,m)2,2

S TR VAU VAN S D PO ¢S P

n,m’'2,2 n,m’'2,1 n,m’1l,1 n,m’'l,2
= [ a ~Gamda * G2l
n,m’'2,2 n,m2,1 n,m’'1,2

Note that the off-diagonal blocks have two different-looking but equivalent
expressions. These substituted in (B.2) give an explicit expression for the
inverse of the u,u blocks as
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~ -1

((In,m(s))o,c')u,u;x,x
= r.[(ln,m)l 1 et Jﬂ)l 2°(§ )2,1]-1 [(1n,m)1,1'(gk,m)1,2'(g%,m)2,l}-1°(gh,m)l,2
[y 2,0 Co 2,10 Gn, )Lﬂﬁ*im%; H%ﬂkﬁ4iﬂkﬂ%%ﬂhﬂr{uwkx
- -{(1n,m)1,1'(§n;n)1 Z'G )2,1]-1 (gn,m)l 2 [( n,m)2 2 - n m)2 1 § -f‘
(36 m)2 1 [( ,m)l 1 -GS, ,m)l 2 <§‘r\,m)2,1]-l [( n,m)2,2’(§h,m)2,1'( n,m)l,z]-l_u,u;k,k
(B.4)

In this form the alternate expressions for the off-diagonal blocks are also
exhibited. Furthermore if we set (u,u;A,A) = (3,3;1,1) this formula gives the
inverse of the first diagonal block in (8.4); if we set (w,u3;Ar,Ax) = (1,1;

X JA ) this formula gives the inverse of the last diagonal block in (8.4).
max *“max
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‘ Appendix C. 2-Norm of Blocks of Scattering Matrices

Consider the 1inear, passive, time invariant, reciprocal N-port network

3 (or distributed system) indicated in fig. C.1. Two previous notes have

considered the 2-norm of the corresponding scattering matrix [10,11], and have

s shown that under the above assumptions (for s = jw which is assumed.throughout
this appendix) )

0< ||(§n’m(s)|\2 <1 (c.1)

provided the normalizing impedance (or admittance) matrix for the wave
variables is merely a positive constant times the identity matrix, i.e.

(Vn(s))in = (Vn(s)) + R(In(s)) (incomihg wave)
(s)) = (Vn(s)) -R(Tn(s)) (outgoing wave) (C.2)
R > 0 (normalizing frequency-independent resistance)

. 0f course, by definition, the scattering matrix is given by

t

Vol gup = Gy nls)) = (VD) (C.3)

In fig. C.1 we also have a vector of voltage sources to provide the
excitation. Note the termination resistors R on each of the N-ports so that
the outgoing wave is terminated (no reflection at the source). Matching
boundary conditions at the source we have

(Vsn(S)) - R(T,(s)) = (V (s))

(V) =5 [T (), + (T (), ] (c.8)
RIT()) = 5 [V ()5 - (T () ]

Combining these results gives

." (T (54 = (T (D) (c.5)
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scattering matrix of
linear, passive time-
invariant, reciprocal
N-port network (or
distributed system)

Fig. C.1. Equivalent Circuit for Scattering at N-Port

£y

88

e s i i e St g TS i oty 7 7 e — A b s




which when combined with (C.3) gives the complete solution for both incoming

and outgoing waves.

Now let us consider in some more detail the energy properties of our
assumed passive scattering matrix. The constraints in [10] allow us to write
an energy relation in the wave variables as

e (@ shy > (W (s))

(V. (s)) out * (Vo (s))gy >0 (C.6)

The scattering matrix and source vector can be inserted to give

~ -« ~ ~ * ~ T ~ ~
(T (07« 0 (90) > T (907 (8 0T+ G ple)) « 0 (90 >0
In terms of the 2-norm this is
1T D1y > 11, g0 = (0 <)]], > 0 (c.8)

Since the source vector can be selected fo suit our purposes and since
(C.8) applies for all (Vsn(s)) (with s = jw), let us choose this source vector
to have a number of zero elements, e.g. 1ike

(Vsn(S)) = (OsazsososaS;aG’ ""') l (C'g)
So let us define a vector (an)IB

0 for ng A (c.10)

a
n

A = set of distinct integers selected from 1,2, eee, N

For those n€A the a, are in general nonzero and (C.8) becomes
[1ta )], > |;(sn’m) - (a)]], >0 (C.11)

Normalizing by the left hand term

5 '|(§n,m) * (an)||2 5 0
HOMNP (c.12)

for (an) ¢ (0)
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The middlie term of C.12 1looks 1ike a scattering-matrix norm. Note
however this applies for all (an) # (On), In particular choosing the a, as in
(C.10) we have

b = § S a
nooén memem

For mgA in this sum the matrix elements §n - do not contribute to the bn'

2

Then we have

2 1/2
L Syomnl !

meA MM m

N N
CRIPEE DR GRS

n=1 n=1

||(§n’m) - (a)ll, (C.14)

1]

Now suppose that we split (b,) into two parts where
(b ) = (c))+(d)
0 for n¢B

n (C.15)
dn 0 for né€EB .

C

set of distinct integers selected from 1,2, e« N
(independently chosen from the set A)

Then we have

], = {5 + 1] 32
e, < e, (c.16)
‘|(dn){'2 < '!(bn)|‘2

which implies

@), =11 Ib 172

ned
(113§ af?e (C.17) .

néB mea MM ™

\%

o,
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Hence we have

[73 ' ) §n mam'Z}l/Z
n€B mep " >0 (C.18)

|’(an)l’2

w~

Define another scattering matrix as

(S

i

) £ a matrix consisting of rows €B and columns €A of (5 )

n,m n,m

This matrix constructed by deleting selected rows and columns of (§% m) has a

]

2-norm

{ z ' Z gn’mam'Z}l/z
NG )], = sup -DEBMEA (C.20)
’ (a )#(0 ) (2 )],

n n

50 that we have
1> ||(§njn)|'2 >0 : (C.21)

Summarizing the results then, a matrix formed by deleting any rows and
columns of (§n m) has a 2-norm bounded by 1. Specifically then, a corollary
, ~
is that any block of (Sn m) has a 2-norm bounded by 1.
s

Commenting on these results note that the numbering of the ports of the
N-port network or distributed system in fig. C.1 is arbitrary. Port 1 could
be renumbered as port 3, etc., This renumbering is equivalent to transforming
(gn,m) by a permutation matrix. In this new form the scattering matrix still
has all the properties discussed above. By such a permutation a block of
(gn,m) can be transformed into a matrix with various rows and columns deleted,
and conversely.
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