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ABSTRACT

The transient response of an infinite cylindrical antenna

in a dissipative medium to an impulse excitation is calculated
via an exact solution in the form of definite integrals and

a simple, accurate asymptotic formula. The transmission

line solution is shown to be a limiting case of the exact
solution. By-products of this study include extension of a
general asymptotic method to a more complicated integral

and evaluation of a new definite integral.



PREFACE

In January 1982 the author invited Professor T. T. Wu
of Harvard University to the Air Force Weapons Laboratories
to review the source region EMP calculations, and in particular,
the calculation of the EMP coupling to the long buried
wire. The result of this review is a list of limitations
and deficiencies of the existing calculations. This note
addresses one of the most outstanding problems: the correct
transmission line model for the buried wire and its limitations.
The accompanying note deals with the numerical aspect and

other theoretical considerations of the buried wire problem.
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SECTION 1
INTRODUCTION

The transient response of an infinite cylindrical antenna
in free space has been a subject of considerable interestl-=3.
Recently it was shown that a simple formula provides with
remarkable accuracy the description of the overall current
waveform for a unit step voltage input at a delta gap6.

The problem of the transient response of an infinite
cylindrical antenna in a dissipative medium is the subject of
the present investigation. The solution to this problem not
only gives the early time transient behavior of a finite
dipole antenna, it also provides an undefstanding of the
transient response of a long conductor buried in earth or
immersed in water. 1In the past/, the treatment of electro-
magnetic coupling of a long buried conductor was via an ad hoc
transmission line model with ad hoc line parameters. The
rigorous solution obtained here provides a correct transmission
line model and shows the limitations of such a model.

The current H(z,t) due to a unit impulse input voltage at
a delta gap in an infinite cylindrical antenna embedded in a
dissipative medium with conductivity o and permittivity e is

shown to be

S(z,t) =<§% +

m]Q

) 1(z,t) (1)

where




gt , By
I(z,t) = ;Z: e %€ U; 1 (v/e? - n?){to,(m3% + 1y, (17
= -1
w9y (evn? - &)ty 1P ¢ Y] ﬁn’l} , (2)

Equation 2 is shown to be equivalent to the following

numerically accurate integral:

gt - 1
) = e * IR CVAEHENEH SR
2 O’.O 2
i n = +
+%y2nJ +(na2 Y) Ko(f az_a)
-(JLn —22 + y)
2 . 2
. IE,Jw Io(n) KO(Tﬂ/a +n ) i -
2 o KO(n){[KO(ﬂ)]Z + ﬂz[IO(n)]Zl) n
where
T = Cztz - Zz/a > (4)
ga
%7 2ec

with & as the wire radius, c as the speed of light, vy is

Euler's constant, and a, is taken such that




a << o (5)
O

Jo and Y, are the Bessel functions of the first and second
kind, and I, and K, are the modified Bessel functions of the

first and second kind.

A simple formula based on the asymptotic evaluation of

Equation 2 is derived in Appendix D and is given by

_ot
e 28] (at) arctan il . (6)

0 N KO(aT)

9]
£n(;)+w-£n2+y

2
I(z,t) ~ :

The results obtained from numerically integrating

Equation 3 and evaluating Equation 6 where we have shown

ot
I,(x) = I(z,t)efz-at are given in Table 1 for varying values

of t and with the parameter a = 10-5, 10-%4, 10-3 and 10-2.
Briefly, in Section 2 the antenna response and the
transmission line response are compared. Section 3 derives
the governing integro-differential equation. A closed form
solution for antenna current is obtained in Section 4. In
Section 5, the solution is reduced to a numerically convenient

formula. Asymptotic formulas are obtained in Section 6.
Detailed derivations of all formulas are given in appendices.
Results obtained here are used in Reference 8 to calculate

the transient response of an infinite wire in a dissipative

medium.




Table 1.

COMPARISON IN MILLIAMPERES OF EQUATIONS

3 AND 6 FOR VARYING VALUES OF a.

ot
=0T
ENTRIES SHOHN ARE I () = I(z,t)e’€
o 107> 1074 1073 1072
T Eq. 3 Eq. 6 Eq. 3 Eq. 6 Eq. 3 Eq. 6 Eq. 3 Eq. 6
1.00 | 8.99621 | 8.33901 | 8.99540 | 8.33826 | 8.98732 | 8.33076 | 8.70306 | 8.25628
1.25 | 7.85090 | 7.58985 | 7.85002 | 7.58900 | 7.84120 | 7.58047 | 7.55037 | 7.49602
1.50 | 7.06864 | 6.99791 | 7.06769 | 6.99697 | 7.05816 | 6.98753 | 6.76104 | 6.89430
1.75 | 6.49615 | 6.52207 | 6.49513 | 6.52104 | 6.48492 | 6.51079 | 6.18174 | 6.40964
2.00 | 6.05635 | 6.13277 | 6.05527 | 6.13167 | 6.04439 | 6.12065 | 5.73536 | 6.01220
225 | 5.70616 | 5.80895 | 5.70500 | 5.80778 | 5.69348 | 5.79604 | 5.37879 | 5.68072
2.50 | 5.41950 | 5.53552 | 5.41829 | 5.53427 | 5.40613 | 5.52184 | 5.08595 | 5.40001
2.75 | 5.17969 | 5.30150 | 5.17841 530019 | 5.16563 | 5.28710 | 4.84012 | 5.15904
3.00 | 4.97549 | 5.09884 | 4.97415 | 5.09747 | 4.96075 | 5.08374 | 4.63005 | 4.94966
3.50 | 4.64472 | 4.76483 | 4.64326 | 4.76333 | 4.62868 | 4.74837 | 4.28794 | 4.60283
4.00 | 4.38667 | 4.50017 | 4.38509 | 4.49855 | 4.36936 | 4.48241 | 4.01903 | 4.32599
5.00 | 4.00588 | 4.10484 | 4.00408 | 4.10299 | 3.98614 | 4.08460 | 3.61773 | 3.90777
7.580 | 3.44325 | 351509 | 3.44097 | 3.51272 | 3.41788 | 3.48914 | 3.00912 | 3.26677
10.00 | 3.12213 | 3.17793 | 3.11933 | 3.17507 | 3.09148 | 3.14671 | 2.64742 | 2.88421
12.00 | 2.94492 | 2.99230 | 2.94175 | 2.98907 | 2.91028 | 2.95709 | 2.44073 | 2.68536
15.00 | 2.75124 | 2.79000 | 2.74753 | 2.78624 | 2.71088 | 2.74906 | 2.20675 | 2.41733
20.00 | 2.53331 | 2.56330 | 2.52876 | 2.65869 | 2.48394 | 2.51333 | 1.92991 | 2.12311
30.00 | 2.27510 | 2.29619 | 2.26898 | 2.29001 | 2.20912 | 2.22957 | 1.57653 | 1.74508
50.00 | 2.01221 | 2.02603 | 2.00319 | 2.01695 | 1.91641 | 1.92953 | 1.18189 | 1.31668
75.00 | 1.84097 | 1.85105 | 1.82862 | 1.83862 | 1.71197 | 1.72126 | 0.91106 | 1.01649
100.00 | 1.73524 | 1.74337 | 1.71974 | 1.72780 | 1.57612 | 1.58339 | 0.74685 | 0.83095
150.00 | 1.60426 | 1.61035 | 1.58284 1 58885 | 1.39157 | 1.39667 | 0.56092 | 0.61681
250.00 | 1.46343 | 1.46776 | 1.43112 | 1.43535 | 1.16238 | 1.16548 | 0.39925 | 0.42741
500.00 | 1.30496 | 1.30778 | 1.24839 | 1.25107 | 0.85064 | 0.85174 | 0.26484 | 0.27258
1000.00 | 1.17335 | 1.17524 | 1.07524 | 1.07694 | 0.56179 | 0.56138 | 0.17847 | 0.17906




SECTION 2
ANTENNA VERSUS TRANSMISSION LINE

In a dissipative medium, the induced conduction current
serves as the return curreﬁt. When the conductivity is high,
the wire current and the return current form a differential
mode. Previous treatments’/ are based on ad hoec assumptions
for line parameters, applied voltage, and frequency domain
skin depths. Since a simple but accurate formula for the
wire current has been obtained, it is possible to determine
the correct parameters for such a transmission line model and
its limitations. To compare antenna current to the transmission

line current, the following conditions may be imposed:

T
Ln 3 >> 1
and
at >> 1
It is easy to see that
Ko(ar)
IOZaT§<< 1
and
% (abﬂ A “T «<l (7)
gn &4+ 2 - n 2 + vy s
T IofaT5
Thus
T T
arctan T N - T . (8)
o N3

In addition, using Equation 4, one can show

10



8 (9)

I =X
2”3-22”6
with
o
/. 2 2, 2\°
5=(2t-2/€). (10)
T uc

Therefore, Equation 6 is reduced to, for t > z/c,

é
T
Co Zn—a—

ot
_ot —
I(z,t) v — T o 2 10(-2"?&2 - z2/c2) . (11)

Consider now a transient response of a transmission line

as shown in Figure 1. A delta function voltage V, is applied

across the wire to the outer cylinder with radius b. The .

transient response of the line current is

(-2t .
i(z,t) = cvoc('a + 0) {e 2e Io(ixltz - zz/cz)} (12)

3t € 2¢

for t > z/c. Here the line capacitance is

c - 2E (13)
n -
a

Equation 13 is equivalent to Equations 1 and 11, if two
conditions are met: (1) b = 6., and (2) Vo = 1/2. The
first condition can be interpreted as an expanding outer
radius exatly analogous to the antenna in free space
(Reference 6). However, when t >> z/c, &, does reduce to

a time domain skin depth § ~ (2t/pc)1/2, which makes the

transmission line approximation pogsible. The second

11




condition is the source factor. The antenna voltage is

defined from one end of the wire across the gap to the other

end, while the transmission line voltage is from the wire to
infinity in the radial direction of the wire. It is important

to point out that the comparison has been made only for wires
without termination. The termination problem for long conductors
cannot be treated as a simple transmission line problem with

static terminating impedance, but rather a scattering problen.

12



1(z,t)
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Figure 1. Transmission Line Model (G/C = g-, LC = ue = c'2,

R = O) Used to Compare with the Infinite Antenna
Response,




SECTION 3
FORMULATION OF THE PROBLEM

Consider an infinite, circular, tubular antenna driven
by a delta function voltage in time and a delta gap at the

origin, as shown in Figure 2, where:

(gz(aae’zyt) = -v5(2)6(t) . (14)

The problem is rotationally symmetric with respect to 6,

provided that

&y(a,8,2,t) =0 . (15)

The governing equation for the vector potential on the antenna

. surface can be shown from Equations A7 and Al3 (Appendix A)
to be
2 2
3?_%3§_U08?=<%%+UU)52 . (16)
9z ¢ ot 8 o

The fact that «f has only a z-component is used in deriving
Equation 16. Use of Equations 14 and 16 gives, for p = a,

324 524 aveg_

2L ot = (e & o) s(as(] (a7)
c

3z ot

On the other hand, let QJKz,t) be the total current on the

antenna. Then the vector potential «fz due to the current

QJKz,t) from Equation All with y = 0 is




v g =« on the

> surface of
Delta gap / cylinder

[en]
~

a O
i - Z

O,E,H

N

|
P

Os.€,l

Figure 2. Infinite Tubular Antenna with a Gap Generator
Embedded in a Dissipative Media.




2 1 b4 p4
TR W S P (18)
z c2 8t2 at s
Let ¥(r,t) be the solution of
g 128 M L @) (19)
A R B T
¢ ot
subject to ¢ = 0,'for t < 0.
Then,
o oo 1 v SRS | ,
) = [ ar [ gane) e £ | aF-ret) do (20)
-1 -0 -T

The following discussion on H(z,t) is coﬁpletely equivalent

to those given in Reference 2. Define

2m
-T

I .
H(z,t) = ——J G(r-r',t) do . (21)

Before proceeding with the calculation for #(z,t), consider

@ (r,t). Applying the Fourier transform to Equation 19 gives

9r,t) = g5 | 6lrie) e 9 dy (22)
and
2
(0% + KZ) Blr,uw) = -6(r)

ik,r

CG(r,w) = (4m~)'1 e 1

2 2

ky = 7 'lwuc) (23)

16



%(r,t) in Equation 22 can be evaluated as

L [2
- exp&r 9§+iwuo-iw€]
=L c

G(r,t) = 7 e dw
2
w EXplir w—2+iwuc- jwt
4mr 3r | 5 ' w
2ri 9? + iwyo
c
gt

ot
, 2€ fl.ﬁ 2 2, 2
= £ §(t - rfc) - —£EC = Jt% - ré/c ) ult - r/c)
dnr ( 5 5 1\ 2e .
t" - r’/c

(24)
To use Equations 23 and 24 in Equation 21, define r on the

antenna as
r = [22 + (2a sin 6/2)2]%

Since the time domain s(z,t) is cumbersome, its transform is

given as

T
K(z,w) = -2-15[ 6(7 - ¥ .0) do

-

K{k,w) j e-ikz K(z,w) dz

- iklr
L1 ikz e
= o {:} e Lﬂ g d6 dz . (25)
17




———

T Hé”(sz - % 2a sin e/z)d
6

= 1 26

ow) = ¢ | - (26)
_ ] RrATIOI N )

for w > 0, any real k . (27)

The crucial step is from Equation 25 to 26 where w > O
is imposed on Sommerfeld's outgoing condition in selecting
Hgl). The redpction from Equation 26 to 27 follows from
an identity on page 441 of Watson9. |

To extend Equation 27 to other domains, note two very

important identities

K(zk,-w) = [K(7k,w)]*

K(zr,-w) = [K(zrw)]*

where * is the complex conjugate.

These identities follow from the fact that J#{r,t) is real
and they can be shown easily from the forward transform formula.
Notice the sign of k makes no difference in Equation 28.

Use of Equation 28 gives

K(k,-w) = [K(-k,w)]*

=i [ *2 2 (2) *2 2
7 Jo<a k1 -k ) H0 (é k1 -k )

for w<0 . (29)

18



w-plane

> et

-1 -zg—e- - .f(kc).zr- (%TZ -1 -§°l€-+ ~/(kc)z- (—2%)2

Figure 3. Branch Cuts in w-Plane with Real k for
' Analytical Continuation of Equation 27.
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Since there is no singularity in the upper half plane, it
is possible to use Equation 27 as the definition of K(k,w) for
all values of w and k with the branch cuts defined in ?igure 3.
This definition of K(k,w) is consistent with Equation 29. A

complete integral equation for current $(z,t) is obtained by

combining Equation 17 and 20:

2 2 o
(Ji—-- LA -uoE%>fw dz' J Flz' 'Yz - 2',t - t') dt!

= e 3+ g ve(z)s(t)
(at )

20



SECTION 4
EXPLICIT SOLUTION FOR I(z,t)

Now solving for a Green's function denoted by I(z,t), we

obtain

2 2 o o
(_8_2 L w aa_t)j dz" J dt' I(z',t") oKz - z',t - t') = -e&(t)8(z) .

9z c2 at2 -0
(31)
Then the solution to Equation 30 is given by
ﬂz¢)=v(§g+g)uz¢) (32)
* 2 2 2--1 h

I(z,t) = -(Z'rr)'2 € J dw J dk[c™“w" + iopw -~ k™17 [K(k,@)]x exp[ilkz - wt)]

C -0 )
v (33)

where C, is the Bromwich contour, which is just above the
real w-axis, and K(k,w) is defined in Equation 27. Introduce

the transformation from the w-variable to the w'-variable

with w' = w + 19 in Equation 33 as follows:
£
ot -1
2 {7 ® 2 22 /0)\2
I(z,t) —(—295) ee( ZE)J du’ J dk [w' K2cl + (’2?)
C, -
« [K'(k,w) 17! expli(kz - w't)] (34)
where

K'(k,w') = % Jy

[a Jw'z- k22 + (é%)T/cj}H(l)[a «/w'z - k%% (%)2/6] (35)

with branch cuts defined in Figure 4.
The next step in the simplification of Equation 34 is

to transform the variables from w',k to g,k to ¢,¢. Notice

21




the transformation of variables is performed one variable at
a time so that the theory of one complex variable can be used
to deform the path of integration to be discussed later. The
auxiliary transformations are from t and z/c to t1 and 6.

All these transformations are as follows:

Yu'2- (kc)2 (36)

C.‘.
k =k
T =z
ke (37)
¢ = arcsinh —
4
and
t = ¢, cosh g
1 —_—
or 1, = /@2 - z2/c2 ' (38)

z/c = T sinh o

Equations 36 and 37 are equivalent to

= /a2 - (ke)2 (39)

ke !
tanh ¢ = — - (40)
wl

Notice the transformation as given in Equation 36 maps
the w',k space to ¢,k space. To evaluate the definite integral
as given in Equation 34 in the ¢,k space, it is necessary to

determine the path of integration Cp in the ¢,k space from .

the hypersurface forméd by the contour C,' and Cy(-=<k<=)

22




w'-plane
B
2
-1 (?UE) -k2c2
(a) For |kc| <§-—
Cm. )
/“A\\
w'-plane >
2 22 o]
e - (7) e - ()
-

(b) For [ke] >§q€_

Figure 4. Branch Cuts in the w'-Plane.

23



as shown in Figure 4. Since C,' (Figure 4) is above all
branch cuts and since the transformation from w' to ¢
(Figure 5) results in Im(Z) > Imw', Cr is above all the
branch cuts in the é—space.

Now hold ¢ fixed and perform transformation 37. The
main task here is to determine the path of integration Cy
in the £,¢ space from the hyperspace formed by the contour
Ce and Ci(-=<k<=). Start with'c = icI + ¢r on Cr. As k
varies from 0 to =, ¢ as given by Equation 37 traces a curve
AA'. Again, as Re(f) decreases, AA' sweeps across an area
shown in the ¢-plane. Now, ¢ = ir1 + ¢r in Figure 6 also
corresponds to B at k=0 in the {-plane. As k varies from 0 to
-=, ¢ traces a curve BB'. Furthermore, as Re({) decreases,
BB' sweeps across a cross-hatched area shown in the ¢-plane.

The path of integration in the Z-plane and ¢-plane can
now be determined. Since the causality allows further
deformation of contour above C,!' for any k without changing

the value of the integration, the path of integration in the

t-plane for all k can be set to

C (-0 + i® to o + joo
c( )

The path of integration in the ¢~-plane has been shown to be

AB in Figure 6. Therefore, Equation 34 can be written as

ot >
. Cei -5- 2 ,
I(z,t) = 2; e % fc cdcljcz + (‘%)J [k(e)T(eTy) (41)
:

with

24




w'-plane
iol

pes = o o

(a) Path in the w'-Plane

A 1

%/ k increases

g
z-plane
(b) w'-Plane to z-Plane Mapping
. Figure 5. Integration Path in the w' and ¢-Planes.
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.

w'-plane

icl
it Seatiadiainds ¥/

pravs. 2y o o

(a) Path in the w'-Plane

in
B(k = 0)
(/’//// k decreases

N PTE
1-2—(/\ OY‘B)

k increases

é-plane

(b) Path in the ¢-Plane

-

Figure 6. Transformation of the Path of Integration
in the w and ¢-Planes.
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i
T(ery) = gor fo explizt, cosh(s - 8)] do . (42)

Elementary simplifications of the above integral are in order.
First, ¢ is replaced by ¢1; + in, which removes the negative
sign in the exponent. Second, ¢] is substituted by -4,

which brings the limits of integration from 0 to iz. Third,
the integration from 0 to = and that from ix to in + « are
added to the integral, because these contributions cancel

out each other. The resulting integral is as follows:

T(;rl) = ?%? J exp[icrl cosh{¢ - 0)] d¢ (43)
c
¢
‘ where Cy is shown in Figure 19. Equation 43 can be
identified aslO
T(gty) = 9 (cy) (44)

Equations 41 and 44 give

2 7 1)1
{JO[;N/; + éﬁ;) /é] Hél)[; cz + (f%) /g]} X Jo(crl)cdc, for T,>0

(45)

where {, is defined in Equation 4.

27



7 W

ir+1iarg(z)

7?ar'g(t;)

§/ W

-im+iarg(z)

Figure 7. The ntour for the ¢ Integration in the ¢-Plane.
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Figure 8. Contour Path of Integration (C_,)

in the ¢-Plane. c
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The contour has been deformed to C; as shown in Figure 8 .
since the only singular point in the upper half plane is the

branch point at £ = i o/2e. 1t can be seen that the contribution
from the contour in the left half plane is the complex

conjugate of the contribution from the contour in the right

half plane. It is possible to write Equation 45 as

Note the similarity between Equation 46 and the corresponding '

expression for the antenna current in free space. The branch
cut integration in the {-plane from 0 to io/2¢ and the presence
of exponential factor e=0/2¢ are the two major differences

in the two cases.

Other methods for reducing Equation 33 to Equation 46
include the following:

a. First perform k-integration, then transform w to §
integration as given by Morgan4 for the lossless case.

b. First transform k to { integration, then perform
w-integration as given by Latham gpd Leed for the lossless
casev |

In coriclusion, the antenna current #(z,t) is givén by

Equation 32 with I(z,t) given by Equation 46. .

i

30




’ SECTION 5
SIMPLIFICATIONS OF THE EXPLICIT SOLUTION

Equation 46 can be separated into three parts. The first
part, I1, is the branch cut integration and is the dominant
contribution to the exterior current for late time. The
second part, I2, is the integration along the real axis and
contributes to the exterior curren.t.2 The third part, I3, is
the contribution due to poles located at zeros of Jo-

Defining © = t]c/a and a = oca/2ec, it is possible to express

I1, I2, and I3 as follows:

ot
12 -1
4 2¢ (% dn 2 2 2
= _”_CO_ e JO o IO(‘L‘ o - n ) {J (n)°- + Yo(n) } (47)
ot -1

31




and

__O'_t_ o J [ nz - azf}
2e oLn 'j (49)

4
I S - — 8 1 ‘
3 %, 321 ny9p(n. o lnj)

where nj satisfies Jo(n,j) = 0.
Equation 49 denotes interior wave resonant modes and will
be omitted in the ensuing discussion. Therefore,
I(z,t) =1

1+ ‘ (2)

with I} and I2 given by Equations 47 and 48.
Since J, and Y, in Equation 48 converge slowly when
Equation 48 is used for numerical integration, an approximate

formula for I2 is derived in Appendix B and is given by

gy Loln) Ko<T~/°‘—2*_”_2) . (50)

2 dn ‘o 5
' Ja n KU ()32 + n°1 (1%}

Comments on numerical accuracy are given in Appendix B. When
replacing I2 in Equation 2 by Equation 50, Equation 3 is
obtained as given in Section 1.

Finally, let ¢ = 0, or « = 0.. Equations 48 and 49

correctly reduce to these for the lossless casel,%.
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SECTION 6
AN ASYMPTOTIC FORMULA
An asymptotic formula derived in Appendix D is examined
here for free space and late-time limiting cases. Equation 2

for the exterior curent can be concisely written as

gt N
[(2,t) = - e 76 [ 3yt - o )1y (m1? + Lry(m 7P
0

-1 dn

ey (51)

Appendix D shows that an asymptotic evaluation of Equation 51

gives
_ .ot
I{z,t) ~ gl-e.za Io(ar) arctan ] . (6)
o K (at)
Rn(%) +T—O—-(—7- - 2n2+ Y
o (et

When the bracket inside arctan is negative, the functional
value of arctan is chosen such that Equation 6 is a continuous
function of =.

Two special cases can now be examined. Case one is the
late time formula, and case two is the free space formula.

To obtain the late time formula, let t » ». As a result,
lim _
C—*O IO(C) - 1

and

Ko(g) = -2n %-- Yy =282+ n2-vy
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Then Equation 6 can be written as

-ﬁ-{-a'r
I(z,t) ~ —~——g-——; e %€ arctan T . (52)
g, (2mat)® R,n(g-) +2n2-y

This agrees with the formula derived in Appendix E.

The other special case is to determine the limit as

c » 0. It is easy to see

ot
I{(z,t) ~ gi-e 2e Io(ar) arctan X (&;g (6)
o) o 0
,Q,n(:c-)*'w-iﬂZ‘*'Y

Using the limits, Equation 6 is reduced to

2
I(Z,t) = E; arctan [—2—-2%'_}7] . (53)
Substituting Equation 53 into Equation 1 gives
2| (54)

j(z’t) = 3t larctan[—z—-—g-%:?)-]} .

N
-

0

This agrees with the case for free space6 except for the
difference between a unit step input voltage versus a unit

impulse voltage given here.




SECTION 7
CONCLUSIONS

The transient response of an infinite cylindrical antenna
in a dissipative medium has been addressed. New findings

presented here include:

(1) A rigorous treatment of the transient response of
an infinite cylindrical antenna is provided in exact integral
form and in a simple, accurate formula.

(2) A transmission line analog solution is given and
rigorous transmission line solution discussed.

(3) A general asymptotic method is further extended
to evaluate more complicated integrals.

(4) A new definite integral is obtained.
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APPENDIX A

DERIVATION OF THE GOVERNING EQUATIONS

The basic govefningnequations are Maxwell's equations:

. R
thg’---a—t (Al)
-1 38
u Vx‘%:%gf*og*g (A2)
V‘£=0 (A3)
eV &=p . ~ (A4)

The equation of continuity is

. RTe R S
. VeFrggree=o0. (AS)
Introduce
B =V
x o (A6)

By Equation A3
oy _
(84 5E) = 0

Introduce

= "i§~ Vo . » (A7)

Substitution of Equations A6 and A7 into Equations A3 and A4

gives
-1
AR EEEEE 18 SXOREE SEURV N
Y
eV (- 3t " V¢) =p . (A9)
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Let

X=V e 580 (AL0)
(o

Equations A8 and A9 reduce to

2
2 1 34 ard
""i‘t'c—z'“'at -ou === -ug + Vy (A11)
v - i_éiﬁ 3% _ é X
2o Mt T TeT et (A12)

Choosing the Lorentz gauge, which has x = 0, Equation AlO

becones

v-ﬂ+izg%+uc¢=0 (A13)
c

and Equation All and Al2 are the lossy wave equations.

38




“ APPENDIX B

DERIVATION OF AN ALTERNATIVE FORMULA FOR NUMERICAL INTEGRATION

The expression for Iy is the contribution of the integral
(Equation 48) along the real axis. This appendix gives an
alternaive formula with Ko in the numerator and Iy and Kg
in the denominator to avoid the oscillatory behavior of J,
and Y, via contour integration; This formula has the real

arguments in the modified Bessel function. Consider

. -1
. 2 2
. {Jo[a\/cz ¥ ('2%) /c} Hél)[a Jié + (-295-) /c]} Jo(crl)cdc] (81)
- o -1

_ 4 d (1) z 2} .

= ——;; e °€ Re[ f ;?-[Jo(n) Hg (n)J J0<T n a ) (B2)
Equation B2 is obtained via the substitution of

2
2
n = %~/C *'(%%)

Using the identities (Ref. 9)

¢ o
ne &)

i) = - 2k (n )

0
‘ in I gives
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- € g fim [ dn 2 ) ) i ) .
Iy T € Re[z ET {Io(n € )Ko(n ¢ IO(T € n -

Again, the identity (Ref. 9)
A R Jri T
i IO(T e 2 an - a2)= K0<T e ° an-az)- Ko(‘r e ¢ \/nz - Gz)

converts I2 into

L i miy);t il
2 7% dn -3 ( ;7) ( T 7 2)
IZ_m;oe Rel:j n {Io(ne )Kont. Ko're n -ao
[0
- ik _Tiy)-1 i
SN )
L n{rone K\n e K\t e Wn® -« (B5)

Deforming the contour for the first integral in Equation BS
to the solid line in the upper half plane as shown in

Figure Bl, the first integral can be shown to be

. o -1 —~—
1”_2 L gnﬂ {Jo(n) Hc()l)(n)} Ko(r o - nz)

o

-1

T . i
jo % ds {Jo(ao e'®) Hél)(ao e’a)}

2 2 i29
Ko(r Ja - a e )

. f: < {Jo(n) Ko(n)}°]L Ko(rJoz7) (86)
S o

Notice ap cannot be zero, because if it is, the first term
in Equation B6 diverges. This is the same integral as the

infinite antenna impedance at the gapz.
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n-plane

Figure Bl. Contour Deformation in the n-Plane.
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The second integral in Equation B5 is integrated with
the contour shown as solid lines in the lower half plane.

It is approximated by

o (O -1 S
L L %n- {Jo(n) H(l)(n)} KO(T«/aZ - nz)

w

0 -1
- J dn ;Io(n)[Ko(n) + iw Io(n)]} K (Tvaz + nz) ) (87)
o4

n 0
(s
Substitution of Equations B6 and B7 into Equation B5 gives .
ot

ki1 ,
2 "7 7 oy (1), deldY . [2 2 126
I, =——e {2 Re fo de Jo(cx0 e ) Ho (ao e ) Ko r\/; -ag e

2 Jllo( n) ( J% tn )
+ 1 EO n KO( 7 {[K (T])] T [Ic'(n)]Z} (88)
For ag << a, I2 can be gpproximated as
, % “/'”2 * [Z"(az*o)* Y}Z 2
2 ¥ T e n S KO(T\/ -Q )
° fnl)+
.2 fw é; I,(n) Ko(rN/az + nz) (89)
5 n KO(T]) {[Ko(p)]z + wz[lo(n)]z }
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For a, = 1072 and «_ < /100, the approximate I, can be

o o
shown to be accurate to at least 10-3,

Table Bl provides a comparison of I calculated by
Equations B2 and B9 versus logarithmically spaced values of
t. Both Equations B2 (or 48) and B9 were numerically
integrated for this comparison. Each integral was evaluated
piecewise over adjoining finite intervals. An adaptive order
40 Gaussian quadrature was used to integrate each interval
with a required error convergence criterion of 10-8. The
oscillatory behavior of the Bessel function in Equation B2,
however, limited the convergence of larger piecewise limits
in the integration. Although the convérgence of Equation
B2 is also a function of 1, at least three decimal place
accuracy was achieved for <t values in Table Bl. Equation

B9 was computed to within a +10-6 accuracy for the same =<

values.
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Table Bl. NUMERICAL COMPARISON OF I, GIVEN BY EQUATIONS B2

AND B FOR o = & X10-3;-VALUES GIVEN IN MILLIAMPERES.

- ar

ENTRIES SHOWN ARE I2 e

T I I
Logarithmically Spaced{ (per Eq. 48 ar B2) (per Eq. B9)
1.0000 7.4323 7.45992
1.2956 6.1396 6.14856
1.6785 5.1037 5.10201
2.1746 4.2524 4,25891
2.8173 3.5771 3.57232
3.6494 3.0092 3.00711
4.,7287 2.5395 2.53670
6.1263 2.1408 2.14103
7.9370 1.8043 1.80488
10.2829 1.5159 1.51669
13.3220 1.2696 1.26761
17.2595 1.0493 1.05091
22.3607 0.86041 0.861476
28.9696 0.69541 0.695537
37.5318 0.55015 0.550412
48,6246 0.42473 © 0.424314
62.9961 0.31644 0.316996
81.6151 0.22525 0.225534
105.7371 0.15193 0.152032
136.9887 0.095352 0.0952896
177.4768 0.054363 0.0543744
R 229.9316 0.027515 0.0274889
297 .8899 0.011876 0.0118855
385.9339 0.004201 0.0041990
500.0000 0.001143 0.0011425
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APPENDIX C

EVALUATION OF DEFINITE INTEGRALS

This appendix évaluétes two definite integrals as follows:

fa nIl(T./az - nz) . (c1)
0 \A12 _ n2

and
fw nIl(T./az - nz) on n dn (c2)
o 2 2

They are used in Appendix D.

The first integral can be evaluated term by term when

I; is expanded in a series form to give

142m
o (%) & 2 2\m
m:
142m 2

1 v (%)

e 1
2
P .J ¥y an(a® - y) dy
4 m=ornJm +1)° 0

> 1
(2)1 l ,: GZ) ) m% _ k]_+ 2:, a2m+2 (c3)

1)
5] =
3
II t~ 8

g? {[Io(aT) N 1][2n(a2)] - Kylat) - Io(ar)[Zn(%;) + Y]g

I (a1) K, (ot)
o (Hfe) -z - )f - 2 )
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The step from Equation C3 to C4 is the identification of

modified Bessel functions.

The second integral of interest (Equation C2) can be

deduced as follows:

s

1 (*,, 2 2
znndn=—j J,(tny) an(n? + o?) dn
L — Z g 1'™M 1 1
n -o

_fna , 1 * Jo(ml)”ldnl

= e, 2 —— (Cs)
T TO n1+a

K (at)

- 4ina + 0 . (C6)

T T

Integration by parts is used in obtaining Equation C5, and
Equation C6 follows from an identity in Reference 9.

Finally, combining Equations C4 and C6 gives

r" ”J1(T«/ n® - 0‘2) 1o ler) {%[ﬁn(ﬁ)mu -y + K°(M)H - (c7)
T

gn n dn =
0 A/ji———g T Ioiar5
n -a
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APPENDIX D

ASYMPTOTIC EVALUATION OF I, I2 AND I

Consider the definite integrals (Equations C7, C4, and

C6) given in Appendix C. It is possible to write them as

I“’ gy (e fo - ) <tnos r gy (e’ - &)
>0 ),

&n n dn = dn
0 2 2 2 2
n -a n -a
Io(ar)
= <2nngFO P (D1)
K (at)
Y 0 .
< n n>n= 2[’"‘(1) +2n2-vy + 7_710 e ] (D2)
2 4
© nJl(T\/n - ) < nJl(T n2 - az)
gnndn = <on n> j dn
o n2 ) aZ o n2 ] az
s <y 1
= <inn> .7 (D3)
<n LE n o + Ko(om) . (D4)
Finally,
o ﬂIl(TN/GZ - nz) Io(aT) 1 D5)
j n n dn = < 0n n>’ =0 p - <4n n>’n=a ?o (
5 n
0 o - 1

I1, I2, and I are now evaluated as follows:
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) -1
(e )yt et el

n

gt
m%eze IG IO(Tr\/az-nz) =% L 2 %Tl (06)
) 0 1+(%)(-2,n-g-+y)
gt ' z_ 2
) _Cz_ e %€ Jarctan | ——"2 |4 ¢ [aarctan - /2 Il(T i )n dnl
(] ’ zn(%) +y 0 'ln(g) +y 0L2 R n2 j

A small argument approximation for J, and Yy is used in

obtaining Equation D6 and integration by parts is used in

deriving Equation D7.

Similarly, I2 can be shown to be

ot '
22 @ , -1
_ 4 7 7 7)| 2 27" dn
e 3 (e <) Lo, + tr ] 4
ot 2 2
-5= d (1:» n o -a
Iy éL e 2€ {arctan [——ﬁgig———} + T fwgrctan { 'n"/Z ] 1 ) n dn} .
0 Qn(§) +y v Zn(f) + v n2 _ 0LZ
(D8)
Finally, adding I] and Iz gives
s 5% 7 7) | 2 217! an
A TR CN L R SN R AN B
T, g © ) 0 n
ot 22
2 2%, r arctan | ——"/2 JI(T\/;1 - )n dn (D9)
¢ ) + [z 2
0 0 2n(2) n - a
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ot .
‘ gt - 7 7
In 2 e 28 0 arctan [ - /2 JJ Jl(rA/n - o )
vi‘0

Write I1, I2, and I in the same manner as was done for

Equations D7, D8, and D9.

¢ n dn
0 <2 -
nnaFo &n2+ Q?T:?
.ot
2 2e
= — g I
T olat) arctan — (ar) ] (010)
2() T)‘ar n2 + vy
where Equation D2 has been used for <in n>,=0.
Similarly |
_gt
" él e 2€ arctan [ T ]~+arctan{ il
0 2(an o - 402 + vy) 2[en o + Ko(ar) - n2+ v]
{D11)
LHivI-g, (b12)

A numerical comparison of I; given by Equation B9 and
the approximate formula D11 and I2, and a numerical comparison
of I1 given by Equation 47 and the approximate formula D12,
are given in Table D1 for « =102, in Table D2 for q = 10-3,
in Table D3 for a = 10-%, and in Table D4 for « = 10-5. All

ot
entries shoéwn in Tables D1 through D4 are (11 9) (eYE -ar>'
H
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Table |pl. NUMERICAL COMPARISON FOR I; AND I, WITH Tgs
APPROXIMATE FORMULAS VERSUS T FOR a = 107

I 12
* £q. 47 Eq. D12 Eq. B39 Eq. DI1
1.00 1.48418 1.68825 7.21887 9.94406
1.25 1.48050 1.68406 6.06987 5.81217
1.50 1.47683 1.67988 5.28421 5.21478
1.75 1.47317 1.67571 4.70857 4.73442
2.00 1.46953 1.67157 4.26584 4.34126
2.25 1.46589 1.66743 3.91290 4.01406
2.50 1.46228 1.66331 3.62368 3.73759
2.75 1.45867 1.65921 3.38145 3.50084
3.00 1.45508 1.65512 3.17496 3.29567
3.50 1.44794 1.64699 2.84000 2.95719
4.00 1.44085 1.63891 2.57818 2.68863
5.00 1.42683 1.62293 2.19090 2.28676
7.50 1.39267 1.58398 1.61645 1.68549
10.00 1.35974 1.54639 1.28768 1.34115
12.00 1.33425 1.51727 1.10648 1.15185
15.00 1.29739 1.47511 0.90936 0.94652
20.00 1.23940 1.40870 0.69050 0.71938
30.00 1.13519 1.28899 0.44135 0.46175
50.00 0,96585 1.09340 0.21604 0.22888
75.00 0.80924 0.91114 0.10182 0.10987
100.00 0.69529 0.77756 0.05156 0.05670
150.00 0.54624 0.60159 0.01467 0.01675
250.00 0.39782 0.42592 0.00143 0.00174
.500.00 0.26483 0.27258 0.00001 6.00001
1000.00 0.17847 0.17906 0.00000 0.00000
Table! D2. NUMERICAL COMPARISON FOR I1 AND -Iz WITH THE
APPROXIMATE FORMULAS VERSUS T FOR « = 1073
I Iz
T Eq. 47 £q. DI2 £q. B9 Eq. OI1
1.00 1.16690 1.16689 7.82042 7.16366
1.25 1.16661 1.16660 §.67450 6.41367
1.50 1.16632 1.16631 5.89185 5.82103
1.75 1.16602 1.16602 5.31890 5.34459
2.00 1.16573 1.16573 4.87866 4.95476
2.25 1.16544 1.16544 4.52803 4.63045
2.50 1.16515 1.16515 424098 4.35656
2.75 1.16486 1.16486 400077 412212
3.00 1.16457 1.16456 3.79619 3.91906
3.50 1.16399 1.16398 3.46469 3.58429
4.00 1.16341 1.16340 3.20595 3.31892
5.00 1.16225 1.16224 2.82389 2.92230
7.50 1.15935 1.15935 2.25853 2.32978
10.00 1.15647 1.15647 1.93501 1.99027
12.00 1.15417 1.15417 1.75611 1.80297
15.00 1.15074 1.15073 156014 1.52841
20.00 1.14504 1.14504 1.33890 1.36843
30.00 1.13378 1.13378 1.07533 1.09603
50.00 111175 1.11174 0.80466 0.81821
~.75.00 1.08510 1.08508 0.62687 0.63682
100.00 1.05939 1.05937 0.51673 0.52485
150.00 1.01068 1.01063 0.38089 0.38718
250.00 0.92309 0.92297 0.23929 0.24405
500.00 0.75068 0.75033 0.09997 0.10316
1000, 00 0.53685 0.53603 0.02493 0.02644
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. Tab:le\ D3. NUMERICAL COMPARISON FOR Il AND 12 WITH T?E
APPROXIMATE FORMULAS VERSUSLT FOR « = 10
n I2

N £q. 47 £q. DIZ £q. B9 £q. 011
1.00 0.88575 - | 0.88575 8.10965 7.45230
1.25 0.88573 0.88573 6.96429 6.70307
1.50 0.88571 0.88570 6.18198 6.11107
1.75 0.88569 0.88568 5. 60944 5.63518
2.00 0.88566 0.88566 5.16960 5.24584
2.25 0.88564 0.88564 4.81936 4.92198
2.50 0.88562 0.88562 4.53267 4.64850
2.75 0.88560 0.88559 4,29281 4.41445
3.00 0.88558 0.88557 4.08857 4.21176
3.50 0.88553 0.88553 3.75772 3.87768
4.00 0.88549 0.88548 3.49960 3.61295
5.00 0.88540 0.8£539 3.11868 3.21750
7.50 0.88518 0.88517 2.55579 2.62747
10.00 0.88496 0.88495 2.23437 2.29005
12,00 0.88478 0.88477 2.05697 2.10824
15.00 0.88451 0.88451 1.86302 1.90168
20.00 0.88407 0.88407 1.64468 1.67458
30.00 0.88319 0.88319 1.38579 1.40679
50,00 0.88143 0.88142 1.21276 1.13551
75.00 0.87923 0.87923 0.94939 0.95939
100,00 0.87705 0.87704 0.84270 0.85075
150.00 0.87270 0.87270 0.71014 0.71617
250.00 0.86410 0.86409 0.56702 0.57131
500,00 0.84314 0.84313 0.40525 0.40808
0.80344 0.27178 0.27380

. 1000.00 0.80345

Table 'D4. NUMERICAL COMPARISON FOR I1 AND‘I2 WITH THE

APPROXIMATE FORMULAS VERSUS T FOR o = 10 5
. I I,
Eq. 47 Eq. D12 Eq. B9 Eq. D11
1.00 0.71279 0.71278 8.28342 7.62602
1.25 0.71278 0.71278 7.13811 6.87687
1.50 0.71278 0.71278 6.35586 6.28494
1.75 0.71278 0.71278 5,78337 5.80911
2.00 0.71278 0.71278 5,34358 5.41982
2.25 0.71278 0.71277 4.99338 5.09602
2.50 0.71278 0.71277 4.70673 4.82259
2.75 0.71277 0.71277 4.46692 4.58859
3.00 0.71277 0.71277 4.26271 4.38594
3.50 0.71277 0.71276 3.93195 4.05194
4.00 0.71277 0.71276 3.67390 3.78729
5.00 0.71276 0.71275 3.29312 3.39198
7.50 0.71274 0.71274 2.73055 2.80228
10.00 0.71272 0.71272 2.40941 2.46514
12.00 0.71271 0.71270 2.23221 2.27954
15.00 0.71269 0.71268 2.03856 2.07727
20.00 0.71265 0.71265 1.82066 1.85061
30.00 0.71258 0.71258 1.56252 1.58358
_ 50.00 0.71244 0.71243 1.29977 1.31357
75.00 0.71226 0.71225 1.12871 1.13877
100.00 0.71208 0.71208 1.02316 1,03127
150.00 0.71173 0.71172 0.89253 0.89861 |
250.00 0.71102 0.71101 0.75242 0.75672¢ {i
$00.00 0.70524 0.70924 0.59572 0.59863 |
1000.00 0.70572 0.70571 0.46763 0.46983 |
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APPENDIX E
ASYMPTOTIC FORMULA FOR LARGE =

For large «, Ii dominates the transient currents; therefore,
we will derive a very late time approximation based on I.
Two approximations are used to simplify the calculation.

The first approximation is

et
I,(nt) ~ = (E1)
(2mnt)*
The second approximation is, as n-+ 0
-2 ‘
B ~1 v (i Fey) (€2)

Equation E6 can be used to approximate Iy(nt) in Equation El
when «t is large; this is the basic condition for the resulting
asymptotic formula to be valid.

Using these two approximations and letting n = J?EZ:GYE-

I; given in Equation El becomes:

4 -%§~+ar a e UT(q - u)/(2a - u) du
Il ’\/'T—rc— e u * (E3)
o 0 i 2\2 1 2
(2nt(a - u)]? {1 + (;) [ﬁn §-/u(2a - u) + y] }

Since the contribution to Equation E3 comes mostly from u ~ 0,

we approximate a - u ~ a, 2a - u ~ 2¢ to give

2 Heter VT
[, v = ¢ - (E4)
Lo, 1 2\f1 1 1 2
(2mat) 21 + (;) {§ oo - 5 AN 2 + 7t Y}
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Integration by parts converts Equation E4 into

aga

ot oa
1 ~———3L~—;-e e Zec -f du e”T arctan T ] - (ES5)
g, (2mat)* 0 2n o - N2+ gnu + 2y

Invoking the averaging formula

Jw du e’V gn y = L (-2n © - v) (ES6)
0 T

-7
&n o - n2+ en u + 2y
varying function of %n u provides

and the fact that arctan [ } as a slowly

SOt
2 e % arctan [ - L J . (E7)
gn(a) +&8n2 -y

I(z,t)f\JI1 "

CO(ZTmLT)I/2
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APPENDIX F
RIGOROUS TRANSMISSION LINE THEORY

Consider the diffusion limit of Equation 6 and a rigorous
transmission line solution. We expand Equation 6 for large a=x
to give Equation E7 and impose the diffusion limit of t >> z/c.
Then

2

(t - \/ - 25/c ) %% 22 = ;;2

ol
ot
Q
-

I

NI a

6: g‘g
ou
and

T S
n " N2 4n 3 >> 1

As a result,
2,,.2
n ;5 o2 /28
uot (é -
2 &n a) +2n2-v

I(z,t) ~ 2¢ (

Proceeding with the simplified Maxwell's equations, we have

oF oB
Py 5]
U(O'Ep + E_Bt)-‘—az (FZ)
ot
zy_123
u(JEZ + g ?ﬂ?) = 530 (pBe) (F3)
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Near the wire E, ~ 0, Equation F3 is henceforth omitted from
the discussion. Furthermore, By can be given in the

diffusion limit as

2,52
Bg(psz,t) = EQ%%EEI e P /28" . (FS)

Substituting Equations F5 and 32 with V = 1 into Equation F2

gives

Ty

31

2 -0%/26 (F6)
2mep

Ep(D,Z,t) =

The line voltage can be defined as

al
0 o (2,t) 2,2
ﬁV(Z,t) = a I Epdp = J azz,n_ep e P /A-G do
a a
3l(z,t) 2 ,
-l ; a 1 21(z,t) [ g a ] F7
T 2me oz EI(ZGZ) Y Zme oz 2ing* nz-y (F7)

where El(a2/252) is the exponential integral.

Equation F7 can be rewritten as

¥ _ {3 .o 2me (F8)
8 (z,8) = (= = (z,t)
7z ¢ (at €)Clln $ 4 n2- Y)
a
Let
C = 2me and G = Zmo - (F9)

22n§+2n2-y é£n§+zn2—y

The first of the transmission line equations is obtained as

(c & +apw=-2 (F10) ‘

32 »
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The second equation can easily be shown from Equation 4 to be

3F .
L3t = -3z | - (A1)
with
§
2in =+ 84n2-vy
- a . F12

Explicit expressions for ¥(z,t) and &(z,t) for unit impulse

input voltage at the gap are

2,,.2
V(z,t)m}i_; (EZE) o2 /28 (13
and
2 2 2
Hz,t) = = [ﬁé ; c(- I .57)] 2128 (F14)
v Lt 2t% 26t
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