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Abstract 5

In this report a method of calculating the electromagnetic response of
cable bundels with large numbers of component wires is presented. Tradi-
tional methods of solving this problem usually use multiconductor transmis-
sion line theory. Use of multiconductor transmission line theory requires
knowledge individual and mutual capacitances, conductances, resistances,
and inductances per unit Tength of line. Limits on computer systems limit’
the multiconductor transmission line methods to about ten component
cables. Cable bundles of interest have as many as 800 wires.

To solve this problem the corss section of the bundle is treated in a
continuous variable aproximation and only the interaction of nearest neigh-
bors is modeled. The continuous variable approximation is frequently used
in mathematics when many discrete quantities that vary slowly with position
are considered, o ‘ \

In addition, circuit theory is applied to treat various canonical pro-
blems in analysis of bundles are treated. The cases that are induced are:
(1) removal of a wire from a bundle to include a sensor, (2) terminations,
(3) branches in bundles and (4) departure of a bundle from a combed condi-
tion. i - SRR ¢
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O0f particular interest is the result for removal of a wire to add a e

sensor. In one configuration the fraction of the bundle current carried on 3
this wire increased from 5 percent to 17 precent of the bundle current as H
the wire was removed. .
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[. DISCUSSION

A driving uncertainty in determining a satellite's response to System-
Generated Electromagnetic Pulse (SGEMP) is not knowing what currents are
induced on complex cable bundles, and not knowing the distribution and magni-
tude of those currents. In some satellites these complex bundles consist of
bulk wiring made up of large numbers of individually shielded wires {up to
800). Analyzing this problem is made difficult by the extremely large numbers
of cables and the uncertainty of the geometric description of the bundie.

That is, he location of an individual wire within a bundle may change from
the exterior surface to the interior in some unknown way. Further, the
location of the bundle relative to the satellite conducting surface, the cahle
terminations, and the details of the cable drive, are in general, not well
known.

BOUNDS

* One solution to this problem is to assume that tﬁe individual shield cur=-
rents have bounds relative to the bulk cable currents. The bulk cable cur-
rents to some degree of approximation may be calculated. Eﬁpirical]y, the
ratio Iyire/Icable Seems to be within 0.2 < Iyipe/Icabple < 2 (Ref. 1) for
complex cable bundles on aircraft and satellites. In the aircraft case, how-
ever, individual wire currents are observed as much as 3.5 times the bulk cur-
rent (Ref. 1)}, indicating that the empirical rule may hold some surprises. As
a worst case example, the two wire plus ground system with only differential
mode currents, has zero bulk cable current but a large wire current. 7

The worst case example is not likely to occur in the satellite cable sys-
tem because exact differential drive is unlikely. Sources of differential
modes that are Tikely to occur in satellites include differing sources for
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individual cables, out of phase signals because of differing reflections from
terminations and branches, and out of phase signals due to differing propaga-
tion velocities for individual wires. These mechanisms support a factor of
two 1imit for the two wire bundle. The multiconductor transmission line is
made up of the shields of the individual cables and ground. The terminations
are, therefore, all shorts to ground.‘ There are two major propagaiion
velocities, i.e., those between wires and that for waves propagating along the

extarior cables and ground.
OBSERVED UNCERTAINTIES

There are several results of the cable drive tests which are not
completely understood. One is the distribution of shield currents over a bun-
dle. For a bundle of about n = 45 shielded wires, all of the individual
shield currents were measured 3 to 5 at a time. The peak shield currents were
never less than about 30 percent of the bundle current, nor more than about
1.2 times the bundle current.* The currents are then generally equal to each
other, but a substantial fraction of the bundle current each. For steady,
in-phase currents evenly distributed along the perimeter of a bundle, each
wire should carty 1/( vn)'='5 percent of the bulk current. Since every wire
carries much more current than the uniform distribution quantity, there is
something not understood about the distribution of currents on a bundle and/or
the measurement technique. It is possible the shield current is perturbed by
pulling the shield being measured out of the bundle and installing a probe on
the shield, even though pin current and voltage measurements with and without
the current probe indicate this perturbation is small. The installation of
the probes does cause the terminal impedance to be changed from a short-to-
ground to about a 1-Q impedance.

A second uncertainty is that of the dirve. The total bundle current
(measured in-place in the FLTSATCOM tests) is about an order of magnitude
smaller-than predictions assuming the bundle is a large conductor. These same
rpedictions gave reasonable predictions for a simple cable bundle for the same
capacitive drive. These two questions are addressed in this report.

*Ibid.




II. APPROACH

There are three prohlems addressed in this report

(1) Distribution of currents on a bundle of shielded wires
(2) Perturbation of measurements by sensors

(3) Explanation of differences in predictions for bulk currents for
complex and simple bundles

Solution techniques are described in order.

CURRENT DISTRIBUTION

The main difficulty in analyzing bundles of cahles with a large number of
component cables is that, if each wire is treated individually, the analysis
becomes extremely complex if the number of individual cables involved is more
than about ten. Also, standard multiconductor cable theory requires knowledge
of the bundle geoﬁetry to operate correctly. Such knowledge is not generally
available, nor can the exact dimensions be expected to he maintained over
time.

Therefore, what is needed is a theory which will provide estimates for
cable currents for large hundles (perhaps hundreds of individual wires) as a
function of position and which also consider branching, terminations, and lack
of complete combing. When a Targe number of discrete quantities act in con-
cert, a continuous variable approximation is more normally used. In this
approximation, the wire bundle becomes a unfaxial cylinder. Propagation in
the cylinder is developed here and the theory of driving the solutions is
described in a later section.

PROPAGATION IN A UNIAXIAL CYLINDER

A uniaxial medium has a tensor conductivity, but that tensor is diagonal.
In this case the tensor appears as




o 0
6] = |0 o (1)
0 0 oy

with lcz* >> 'c(. o =g+ iwe and g = 0 for this problem, but the imaginary

part represents the capacitive couﬁling between wires.

v
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Maxwell's equations for the uniaxial media case (Ref. 2)

x H=(c)E

x £ = -july) H

The fields decouple if a Transverse Electric (TE), Transverse Magnetic (TM)

basis is used. First, for TM, H, = 0, Let

then

and

or

SO

H

-V

=V x A | (4)
xVx'A'=‘ ()F | (5)
x (£ + jwpR) =0 ké
+ juuA = V4 (7)
xV x K+ (0)[V6 + jwuE] = 0 (8)
xV x K +0% + fwwok - (6 -0) 227 - (o - 0,)ienA 2 = 0 (9)

°F + V(V e R) + 0% + jwuch - (o - cz) %% z - (o cz)iquZE = 0 (10)

Choose gauge

v

«e K+a =0 (11)



This gauge is consistent with usual Lorentz gauge for

o =g + iuwe g=20 (12)
Then
N R - o
STA + YA+ = z 53 (v e R -(c- cz) 1mquz =0 (13)
where
Y2 = jwpo (14)

As is usual, all the fields may be derived from a potential
‘ (15)
K =(0, 0, A;)
This assertion may be proved by directly deriving the potential equations from
Maxwell's equations in component form. The result is that

(16)

if it is assumed that solutions are decomposed into a spectrum of plane waves,
i.es, Ay, etc. proportional to e-idZ. The wave equation for the TM case

is then . : .t

2 L)t L%z 2
z ] 322 z ¢

A, =0 (17)

For the case of e-1@Z, e=i}Z field variation this equation becomes

2 G -
13 3 m 2 2y "z -
S5 P55 A -p—z-Az-(Y +*AS) EA =0 (18)

Solutions to this equation are

sIm(up) e-1w¢ emZ
% " o (19)
. lK (w0 ) e-1n¢ e-1kz
m
where
ag
u? = g2 (v% Y (20)




The fields may be obtained from the potentials (Ref. 3)

BZAZ s aAZ
E = 5552 T
aZAZ BAZ
E = H =2 og =——
o P393, ¢ 3p
' 2
- 2 .3 -
EZ = <"'Y + F)AZ HZ =0 <21)
z
This is the ™ case. For the TE case Tet
F=vxEt (22)
and duality provides the equation
2= _ (u '“z) d Hzoo2.t
VF = . — 33'(V . F) - =Y Fz = 0 (23)

with obvious solutions.

There are two important cases of coupling for‘this cable problem. The
simplest is where the cable is excited by a concentric conduit. This case is
¢ independent and therefore uses only the zeroth order Bessel functions. The
driving current density on the conduits may be Fourier decomposed, and is

given by
® f(x)l o
i, .= e % (24)
2w %g(k)
The potential also may be decomposed
A
z © MY(A) M*(X)
=f.¢, % 1 10(39) % § Ko(sp) dx (25)
FZ N'(A)s N"(A)

Obeying boundary conditions from the surface current on the driving
cylinder, and at the houndary between air and the cable will determine the



unknown coefficients. Solution of the problem is then reduced to evaluation .
of a Fourier (albeit difficult) integral.

CONSTITUTIVE RELATIONS

Within the uniaxial cylinder the longitudinal conductivity are those of
the shield. However, the coupling is capacitive in the transverse direction,
which changes the equivalent permittivity and permeability for the medium.
These quantities may be derived from a cylindrical version of the derivation
of the dielectric constant from the molecular polarizability. Consider a con-
ducting cylinder of radius a in a local uniform z-directed electric field.

The potential is

Q={po - ;J cos 9 (26)

where A = a2 to preserve ¢ = 0 at the surface of the cylinder. The normal
electric field on the surface of the cylinder is

En =Vé = 2 cos 6 (27) '

so there is a factor of 2 enhancement of the incident field. The surface
charge density on the conducting cylinder is then

g = Zao cos © (28)

The dipole moment per unit length is then formed by integrating the charge
times the charge displacement

Paid
M=/ 2€0cos 6 (a cos 8) adé = Zwazeo (29)
0
If the wires are packed with N wires per square centimeter, then the

polarizability is

X, = 21\'N&2€0 (30)

e

and the relative permittivity

<

e =1+ 221+ 2Na’

31
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The volume per unit length excluded by N wires per square centimeter fis

_ 2
ox - Nr a (32)

so the relative permittivity becomes

€ = 1+ zvex (33)

and the relative permeability is

-1

wa=(1e2v ) (34)

thus preserving the velocity along the wires as ¢, for the vacuum dielectric

case. If the wires are separated by a material dielectric, as in the
FLTSATCOM case, then the relative permittivity must be adjusted accordingly.

This completes the formulation of the propagation solution. Numerical

examples follow in Section VII. A time domain solution of the propagation
problem is given in Appendix A.
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IIT. JUNCTION CONDITIONS

The above conditions determine the current flow in the continuous repre=-
sentation of the cable bundle until a discontinuity is encountered. Discon-
tinuities, in this case, include branches, terminations, and, in some sense,
redistribution of wires within the bundle. The effects of each of these dis-
continuities may be calculated using a continuous variable approximation to
the junction condition (Ref. 4) by computing the scattering matrix of the
junction.*

Consider a three tube network in which a single bundle branches into two
smaller bundles according to a mapping operator, M. M operates only on the
coordinates and maps position r1 in tube 1 to r2 in tube 2 or r3 in tube
3, depending on ri1. There are some restrictions on the mapping. First the
area of tube 2 plus the area of tube 3 must equal that of tube 1 to conserve
the total number of wires. Perimeters are not conserved in conserving areas.
Therefore, sufficient wires (unit areas) must be mapped from the interior of
tube 1 to fi11 out the perimeter of tubes 2 and 3. For example, the splitting .
of circular tube 1 into two semicircular tubes 2 and 3 is performed by

P, =1 0 < ¢1 <w
> >
Fy =1y T <y < P (35)

The center wire goes to the edge of tube 2, From the solution to the propaga-
tion equations (Eq. 24) we have Jy(r,t) =oE,(r,t) and p{(r,t) resulting charge
density from the continuity equation incident on the junction from tube 1.

The reflected waves into the three tubes, which may be derived from
Kirchhoff's Laws for the junction are needed. The charge density is related
to the potential in a wire through vav = p/eg. The formal inverse of the

12
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capacitance matrix C (similar to -6b2C0dVE_in operator form, i.e., CV = Q,
where Coq is the capacitance between the wire of interest and one of its
nearest neighbors, and b is one-half the wire spacing; C and the above dif-
ferential operator are the same in that either operating on V yield Q. In one
case V is a vector; in the other V s a continuous variable, the infinite
dimensional extension of the vector V.) is the inductance matrix veL., A
formal inverse to the transverse Laplacian may be found by considering a for-

mal operator Loy which must have the property

2y -
Lop TV =V (36)

The solution is

Lop ={ dS' G(r,r") (37)
where G is the solution of
2 i - I3
vE G(r,rt) = 8(r-r') (38)

and where S' is the cross section of the appropriate tube. The operator
approach is not necessary for those geometries that need numerical treatment
since the scattering matrix may be found knowing the self-capacitance of each
cell in the tube, without going through the operator step. Kirchhoff's Laws
then require that the voltages for the simple connections are the same at both
ends of the connection and the current into the connection must'bé ba1an¢ed by
a current flow out of the connection. Then

v<?1) = MV(T-I) = V(M‘Fl) (39)

I(ry) = MI(F)) = -d(Mr)) (40)
In this symbology V and I are functions of position and are continuous. Let Y
be an operator which converts V into J, i.e., J = YV, Note this operator must
act on the local voltage. That is, the voltage on tubes 2 and 3, formed from
MV, uses the characteristic admittance operator for those tubes. Since the
characteristic admittance operator is proportional to [dS G, the Green's func-
tion and integration surface for the correct tube must be used. The Green's
function must obey the boundary conditions of the respective tube, reguiring
numerical solution of most problems. This formal problem may now be solved.

13




In matrix-operator form, Kirchhoff's Laws, for continuity of current and
voltage, are

1 -1 v
= 0 (41)
vz, Y MV

0

where Zg is the impedance of free space, and is included to provide for a
unitless matrix operator. The incident and reflected waves are related by

ytot _ yinc yref (42)

Jtot - Jinc - Jr‘e?‘ (43)

for all tubes. Then

1 -1 Vinc 1 -1 Vref

inc ref
YZ0 YZO My —YZO -YZO MV

or in the scattering matrix-operator form

Vref 1 -1 -1 1 1 Ving
- (45)

ref . inc
MV -YZ0 -YZO YZ.0 YZO MV

Note that with proper selection of mapping function and characteristic admit-
tance matrix both redistribution of wires within a bundle and terminations may
be treated.




IV, APPLICATION TO SENSOR INSERTION

An immediate application of the above procedure is to determine the effect
of pulling a wire out of the bundle and placing a sensor around the shield.
Measurements have indicated that the phasing of the current on the wires is
such that each individual shield carries a fifth to a third of the bundle cur-
rent, minimum. For the phasing to be such that all 45 wires in the bundle to
have large currents when measured, indicates there is some perturbation by the

Sensor.

A single example of how current may bhe increased is to consider a large
bundle from which a single wire is split off, and all are terminated in a
short to ground. The simple ¢ircuit modeling this arrangement, for the case
that the shields (except that of the wire being pulled out) are assumed well
connected within a bundle, is a large inductor branching into small and large
inductors in parallel. The current will flow predominantly into the large
inductor, i.e., the large wire. However, since the inductance of the wire
scales as a log and the division of the current for the equal excitation case
scales as the diameter of the bundle more current will flow on the small wire
than would have flowed if the separation had not occurred. The applicability
of this example is yet to be established,

Figure 1. Geometry of a single wire pulled out of a bundle of wires.

15



since the electrical connectivity between wires is not as good as one might
like. The connectivity will be considered Tater in a six-tube example.’

Consider the breakout near the end of a cable bundle where one exterior
wire is removed from the bundle, and consider the first reflection of the peak
signal. If the wire is conductor 1 and the bundle is conductor 2, the capaci-
tance matrix is, approximately, before the breakout

c, = (47)

where Cy is the bundle over the ground plane, Cp is the mutual term between
the wires, Cs is the capacitance of a single wire above the ground plane,
and n is the number of perimeter wires. As a first approximation the mutual
capacitance between the pulled out wire and the bundle are assumed zero. A
better calculation of those mutuals is given in the next section. Consider
frequencies low compared to the length over which the section is removed.

Specific example values for the coefficients, for a 49-wire bundle, are

£ =5c¢m

w =108 s-1

d1 = 1.4 cm

do = 0.2 cm

n. =22

Cp = 4 x 1011 F/m

Cs = 1.6 x 10-11 F/m

Cm = 4 x 10710 F/nm : (48)
16




and a typical bundle height is h = 2.4 cm, A useful figure of merit is v/wg =
60, where v is the propagation velocity of a signal along the average trans-
mission line. The velocity is assumed constant through the bundle.

The characteristic admittance of the wire before the breakout is

Y

vC (49)

1 1

where v is the propagation velocity. The impedance of the hreakout section is
ZL = jwle (50)

so the admittance is

Using these sign conventions

Iref
>

1trans
———

1inc

then the voltage and current must obey

Vi IR Vt

I1 £ 17 = It
The voltage and currents are related by

-i

—
[}
-~

"= .y

(53)

Solving these equations leads to

17




t
I =2Y2(Y + Y

The useful Vi is

VA

(81}
(81

reprasenting a uniform excitation.

Substituting the appropriate values of the admittance matrices into the
above equations

: . C./n
M=y vi=vy, [° (56)
C
b
and
va
o Cb +.C '+'§Ef Cm
(Yp+Y) " =% (57)
C vC
b S
Ca Tttty
where
cZ Wy ¢ Ve e,
e e i Jui Cslu* Ol v 7 * Ol + ——
(Juw2)
Finally, the transmitted current vector is
2 2
Cst . CmeCs . vaCS PP
n n Jjuin b"m’s
t 2vvo v ’
U7 mr (58)
2 3 2
Cme+EP.+CC2+VCsCh
n n mb Jut

18




A couple of cases are of interest. If Cph+ 0, (i.e, there is no mutual
coupling) and the terms ordered are °

c

b
¢, »C »=2 ‘ (59)

then the transmitted current is

C./n .
1t o= ovy | P = 211 ‘ (60)
o\c,

or the transmitted current is twice the incident current, which is pleasing.

In the ordering Cp » Cp » Cg » Ch/n, the transmitted wave is (if Cq »
vCq/jwi )} for the tightly coupled bundle case

£ C
1" = 2w S (61)

Cy

!

The numerical example is

(]

v ' b :
GI'CS > Cm > Cb > CS > = (62)

c > Y “b (63
m°~ @L \n, )

and the dominant terms turn out to be

with

juws Cm

Iv = 2w v (64)

The fraction of current on the single wire is

wt C

M~ 0,17 (65)
v ey

For a uniformly excited bundle, each perimeter wire carries a current of about
0.05 of the bundle current. So even this approximation suggests a factor of
3.7 increase in the current on the wire.

19




Confirming this limiting estimate, a calculation of the current split
using Equation 54 was performed for frequencies between 1 and 100 MHz. The
result is shown in Figure 2.

[ EEEN

fFraction of Current on Wire

-2 | | ] { | | | | |
10 79 10 20 30 70 50 60 70 80 %0 100

Frequency (MHz)

Figure 2. Current division as a function of frequency for the
simple 4-tube case.

To illustrate that the splitting of the current from the bundle to the
single wire occurs for a specific waveform, a power spectrum weighted average
was carried out. Consider the current on the single wire as the product of a
transfer function T(w) and a bulk current I(w). Then a power spectrum
weighted average of the fraction F of the bulk current on the single wire is

given by:
B[ Tw) T(e) I*w) () d
P (66)
B[ %) 1) @

where R is a characteristic, constant resistance.




For a generic cable drive test, a cahle bundle was excited by driving a
plate (1 m long and a few centimeters wide) parallel to the satellite ground
plane with a voltage across the plate and a termination impedance at the cen-
ter of the plate. The plate's long dimension ran along the cable.

The current for this calculation was assumed to be proportioﬁaT to dV¥/dt,
where V is the voltage applied to the parallel plate for the cahle drive. Tha
waveform used for the applied electric field was developed from the foliowing
curve fit:

(]

(v}
——
N
~3
e

where
« = 2x 109
g = = 2 x 108
§ =2 x 109
G = 1/(8/0: - l)

The resulting waveform is shown in Figure 3. The result of this averaging
process was that 16 percent of the bulk current (F) was shifted to the wire
pulled. out of the bundle, a factor of 3 more than one would expect for the

uniform excitation case.

1.6 x 10?

5 -

51— -

Field (V/m)
o
o
>
P

0.4 x 109 -
| | 1 | ] {
0 16 32 13 22 30 T3 T12
Time (ns)

Figure 3. Waveform used for the weighted average of the current
split off onto the small wire.
21



EFFECT OF MUTUAL TERMS ON CURRENT REDISTRIBUTION .

The expression for C» in Equation 47 ignores the contribution of the
capacitance between the bundle and the wire pulled out. An estimate of the
mutual capacitance may be found by computing the elastance matrix for the fol-
towing geometry by image theory and inverting the matrix to find the capaci-
tance matrix. The geometry used for the image theory calculation is shown in
Figure 4. As shown, only six image charges are used in the calculition,

Ground Plane by -

Figure 4. Image theory sclution geometry.

If charges Q and T are placed on the large and small cylinders in Figure
4, then the resulting potentials can be used to calculate the elastance matrix
elements. The charges qi and q1 are located at the center of each of the
cylinders and are used to control the total charge on each of the cylinders.
q2 is the image of g; in the surface of the bundle. q3 is the image of
G2 + g3 in the surface of the bundle. Similarly, q2 and q3 are chosen to
maintain a uniform potential on the surface of the wire. Note that the image
theory series is truncated by assuming g2 + g3 generates only one image. A
complete solution is an infinite series of image charges, so this solution is
best when the separation between bundle and wire is more than a wire radius. .




A numerical solution is required for better calculation of the capacitance
matrix. Numerical treatment is required since the wire actually enters the
bundle when it gets close. Further, the bundle is not a conductor but is a
collection of capacitively coupled conductors.

The equations that the charges must obey are found by demanding that the
image plus impressed charge contributions result in a uniform potential around
the cylinder surface (Ref. 5). The equations are:

9y * a4y * a3 =0 nraptray=l
- a — - _ bql
92 "7 % 92 * - X
a(q, +q,) _ b(q, + g,
q3 = -___Z_.,_FB 3 = -—2__7.._3._ <68)
R - b°/R R - 2R
If
- 1 1
K, = ab - (69)
! (? R(R - aZ/R))
and
- 1 1
K, = [1 + ab - (70)
2 ( (R(R - b°R) (R - a°R)(R - bZ/R)))
then
_ bR Q - 0
TR, (71)
and




1 |
K, = ab - 72
172 <E§ R(R - b%/R) ) 72)
1 1

K, = [1 + ab - (73
2 ( : (R(R -a°R) (R -a°R)(R - bz/R))) )
2R T - K0 o)

9 K, - K,

The other charges are found from

G = - g A (75)
) a
a = - (76)
-bq, ab -
7t 3 57— 42
- (R -a"/R (R = a“/R}(R = b“/R) )
3 = 1 - . ab ) (77)
(R®-.a R)(R%- b R)
and
a — —
qq = - (95 + @5) (78)
3 R -blm 2T

Finally, the locations of the charges are also determined by the boundary con-
ditions (Ref. 5). For a coordinate system centered at the center of the bun-
dle and the x-axis through the center of the wire, the locations are:

Xy = 0
Xo = az/R
X3 = az/(R - bz/R)
2
Xqg =R =b/(R - a R)

24




'R-

@ s
Xg = R

where the charges
ag= qy -

The elastance

be/R
(79)

were reindexed t0.q; , 5 =Gy 5 5 and g, = 53, Eé = Eé, and

matrix elements are then found by adding up the contribu-

tions of the various line charges to the potential at the surface of the bun-

dle and wire.

The distances

(=9
w
]
(24
[}

d4 = R -
ds = R -
d6 =R -

e, = R -
e, = R -
ey = R -
e =b -

from the bundle surface for each of the charges are

aZ/R
a2/(R - b%/R)

a - bz/(R - aa/R)

a - bz/R
a (80)

from the wire surface
b
b - a2/R

b - az/(R - bZ/R)
o2/(R - a”/R)

2

b™/R

25



= : {
e b (31)

The elastance matrix elements are then:

—

1 s} .
PH 2 - S -".!1.2.'1 d, - 2al2{n+2 7
iz [
O 'd

l—-l
1]
ot
| W—

_ 1 ) ;
PZl - 72?::—; ;20 e 2nl2h+R]
i=1
Q=1 =0
. [ 6
P, = - Ze, Z g;4n d; = 2n[2h+R]
[i=1
P, = - m— I[N q.tn e - 2n[2h] . (82)
© 22 21rso 94 i . v
=1 ‘

where the additional logarithmic terms account for reflection in the ground
plane.

The elastance matrix in Equation 82 was used in the calculation of C2
above as a function of separation distance. Otherwise the problem was the
same as that described in the previous section. The current division as a
function of separation distance of the bundle and wire (surface to surface
distance) is shown in Figure 5. Near the bundle the pulled out wire arries
about 5 percent of the current, as it should. Farther from the bundle, for
100 MHz in particular, the fraction of current transferred to the wire becomes
larger, reaching 21 percent of the total current. Both self and mutual
capacitances are calculated with the image théory technique.

To confirm the conclusion of the effect of pulling out the wire two more
geometries were treated using the same junction theory technique. The first
of these geometries addresses the assumption that the bundle is a solid con-
ductor and is shown in Figure 6.
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Figure 6.
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Current division for various frequencies as a function of
the separation of the surfaces of the bundle and wire. .

Modification of geometry in Figure 1 showing additional 3-wire
section which allows first order treatment of the capacitive
(rather than conductive) coupling between the wires in the
bundle.



This problem is now a junction of three conductors and the capacitance
matrix corresponding to those in Equation 46 fis

Cb/n ¥ Cms -Cms 0 \
C1 N Cms 2Cb/n ¥ Cmb ¥ Cms -Cmb } (83)
0 -Cmb : (n=3)/n Cb + Cmb

where C1 represents the capacitance matrix before the junction, and as shown
in Figure 6, Cps and Cpn are the mutual capacitances between the interme-
diate layer and the wire and the bundle and intermediate ‘ayer respectively.
After the junction the capacitance between the wire and intermediate layer is
assumed negligible but the mutual capacitance between the layer and the hundle
is unchanged. The resulting capacitance matrix after the junction is:

CS 0 0
C2 =10 ZCb/n + Cmb -Cmb (84)
0 . -Cmb (n-3)/n Cb +‘Cr-nb t

Figure 7 shows the variation with frequency of the fraction‘of the total cur-
rent that is shifted from the wire. At frequencies associated with the rise
time of SGEMP or electric drive pulses a substantial fraction of the total
current is shifted to the wire with the sensor. The effect is similar for
this geometry to that for the 2 x 2 (or 4 tube) problem.

A final geometry is shown in Figure 8 which has two sensor wires pulied
out in the same way from a bundle of 45 wires (22 surface wires). In this
case the initial capacitance matrices where the bundle wire mutual capacitance

is Cpe
Cb/n + Cm 0 : -Cm
Cl =10 Cb/n + Cm -Cm (85)
-G -G C. + 2C
m m b m
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Figure 7. Fraction of bundle current flowiﬁg on single wire pulled out

from the bundle for the case of the wire and nearest neighbors
treated as tubes separate from the main bundie.

Figure 8. Geometry showing two wires pulled out of the bundle.

29



©and

Fraction of Current on Wire

c 0 0
S
C, = |0 o 0 (86)
0 0 c

The fraction of the totszl current on each of the two wires is shown in
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Figure 9. Fraction of bundle current flowing on each of two wires
pulled out from the main bundle.
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V. EFFECT OF A WIRE MOVING FROM THE OUTSIDE
OF A CARLE BUNDLE TO THE INSIDE

An abrupt change in wire location is now considered. That is, the.wire is
moving from the outside of the cable bundle to the center of the cable hun-
dle. A more gradual change would have less effect but would he more difficult
to treat. Consequently, this is a limiting case.

Figure 10 shows how the exterior wire case is approximated.

b + 2a

Ground Plane Ground Plane

Figure 10. Sketch showing the approximate treatment of a wire on the
surface. The exact geometry is shown on the left, the
approximate geometry on the right.

The capacitance matrix is then approximately:

C_+¢C ~C
c,=( ¢ ™ m (87)
-C Ct + ¢
m g m

where the capacitances to the ground plane for the wire and bundle are:
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Vo 2re (88)

O

while the mutual capacitance between the cylinders is given in Reference 6 as

_ 2ne
Co = (89}

cosh'lwl + cosh'lwz

where, with p = a/b, v2 = (4+5p)/(2+4p), ¥1 = 1+3/4p (note that Egq. 36 on
page 28 of Ref. 6 contains misprints in the subscripts for the aj in the
denominators).

For the wire at the center of the cable it is assumed that nearby wires
form a cage around the central wire. Reference 6 shows that they may he
treated as a cylindrical conductor with good accuracy. The central conductor
is shielded effectively from the ground plare and other wires and gives

¢! -C'
m m

CZ i . : (90)
-Cm Cm + Cg

for the capacitance matrix with Cg the same as before (Eq. 88) and

(- 2ne - 2ne
¢ r— " In(2) (91)
in 3

for uniform wire diametar. Then
-1
1% =2y, (v, + 1) ¥V (92)

(notation as shown in Eq. 53) with Y = vC, and common-mode conditions of equal
excitation: .
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The incident current is

and the transmitted current is

t > ) '
I" = v, AQ (95)
with
A= T Ec‘)(c T (96)
g9 S ¢ mt T
cc'c
Q= ggm (97)
cilcecccecr+cet(c_+c!
9[ gmgg g[m m)]
It/11 is then a vector
it Cg Cm )
I cc +\ccCct+c{Cc +cC'
gm g°g 9( m m)
z AQ'
Using the same parameters for the 49-wire bundle,
a = 0.2 cm
b =1.4 cm
h = 5,0 cm (99)
gives
cg = 1,4 x 10-11 F/p
cg' = 2,8 x 10-11 F/m
C = 3.15x 10-11 F/m
C: = 8.0x 10-11 F/m (100)
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With these capacitances:
A = 0,028 x 1022

; 8.882 x 10-221

[39.55 x 10-22 | o)

Thus, the ratio of transmitted to incident current is only 25 percent for the
wire; it s 11l percent for the bulk of the cable, due to reflection at the
impedance mismatch. The reflected waves are then 75 percent and -11 percent
of the incident currents on this system. As expected, there is a great effect
(reduction) on the wire current; the eifest on the bundle is much less.

Energy is conserved; the factor of 11l percent is due to an overreflection
similar to the doubling of voltage upon reflection at an open circuit (infi-
nite impedance or zero admittance). Similarly, the decrease in admittance as
the wire moves to the center of the bundle results in a reflected wave on the
bulk of the cable which increases its transmitted current.

This result should not be unexpected in light of the existing theory of
multiconductor transmission lines. Reference 7 discusses how the common-mode
admittance of a central conductor is generally smaller than ;he others.
Therefore, the admittance of the wire should be expected to decrease, and this
is indeed the result obtained. This results in significant wave reflection.
Indeed, the common mode admittances are

1 c
ng = V(4 ( ) =v| 9 (102)
1 Cé
before and
0
ng =y (103)
CI
g

afterward, in the approximation of effective shielding by the inner ring of
wires of the bundle. This accounts for the large effect on current trans-
mitted through the junction between outer and inner wire,
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VI. EFFECT OF SPLITTING OF A CABLE BUNDLE INTO TWO SMALLER BUNDLES

This section considers the effect of splitting the cable bundle into two
smaller bundles on the transmitted currents in the common-mode. An egual
division of the cable bundle is treated, but this may just as easily bhe the

generalized case of unequal bundle splitting. The model is sketched in Figure
11,

Before the split, the cable halves are treated as D-shaped elements.
Clearly, the shielding effects of the wires cause the major contribution to
the mutual capacitance to be due to the wires on the flat sides of the D ele-
ments.

The capacitance matrix is

C +¢C -C _
Cl = m g m (104)
-Cm Cm + Cg
with
.cb
Cm T d
C = one (105)
: oL (0
o 2 (7]

where

d = effective D separation

b = bundle radius

h = height above ground plane

a = wire radius

and d = 2a/k where k = insulation dielectric constant. This result may be
obtained by treating the system as sketched. From the definition of the
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a. Before cable bundle is split.

b. After cable bundle is split (top view).

Figure 11. Geometry of an equally split cahle bundle. Before the split
- the two halves of the cable are treated as D shaped sections
with the split normal to the ground plane. The terms in the

capacitance matrix are shown.

capacitance matrix there are two parallel capacitors between bundle half 1 and
the ground: Cp between the two halves and Cq to the ground plane.

In computing Cg, the D-shaped half-bundle is treated as though it were a
circular cross section. After the splitting of the bundle halves, we have,

o o




where the mutual interaction of the bundles is neglected, as though they are
almost orthogonal and distant, with

C o= 2ne . 2me (107)

9 . N 2 2/%h
. log [p-+ <—2—:—> - 1] log —+/—

where h is assumed to be unchanged but each bundle now has been halved in

cross section (radius is smaller by a factor of V2).

The admittances matrix is
Y = yC (108)

where v is the wave velocity. The transmitted current

t -1 i
"= 2Y2 (Y1'+ YZJ Y1V (109)
In the common-mode case
. v
Vi 0 _ . (110)
Y9

Therefore, the results for each bundle half are identical,

1t - WA
20 (c2+cCt + 2 C)
+C'" + + ' !
cg cg z(cmcg cgcg cmcg
Because I1 = woCg,
1w
- /e (112)

Using the same parameters used for the 49-wire bundle (Eq. 99): a = 0.2 cm,
b =1.4 cmy, h =5 cm; gives

Cm = 6.2 x 10-11 F/p



cg = 2.8 x 10-11 F/m
c& = 2.4 x 10-11 F/m
t
I* = 1,07 wW,C!
' 0 g
& c!
5 = 1,07 52 = 0,92 (113)

or a slight reduction in transmitted current.
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VII. COUPLING TO COMPLEX VERSUS SIMPLE BUNDLES

It has been observed that simple theory of a conductor in a capacitive
drive predicts reasonable bulk currents on the FLTSATCOM demonstration test
geometry, but give an order of magnitude to high current predicitons on the
actual FLTSATCOM geometry. More precisely several amps were indured on the
cable bundle in the demonstration test from a 1.5 kV pulsar and 1 to 2 A were
induced on the qualification model test using a 4 kY pulsar. The demonstra-
tion test geometry consists of one large coaxial cable surrounded by a few
hook-up wires. The equivalent FLTSATCOM test geometry consists of about two
hundred small shielded cables. The physical difference in the three geometries
is cheir ability to support azimuthal currents. The conduc.or and large coax-
ial cable support azimuthal currents on the exterior surface as well as they
support longitudinal currents. There is, however no conductive coupling
between the wires in the FLTSATCOM case. The capacitive coupling is as des-
cribed in the propagation section.

In a description of the excitation of the cable bundle there are two cases
of interest. The first case is that of the induced current and voltage caused
by a voltage applied to a coaxial cable surrounding the grounded cable
shields. This example has the advantage of azimuthal symmetry and the com-
plete decoupling of TE and TM modes on the 1ine. The second case is that of a
voltage applied to a plate centered above the cable bundle. This case is more
complex than the case above but is closer to the excitation used in actual
tests.

To get a feel for the problem, a limiting excitation case should be
examined first. The length of the exciting plate is chosen so that the field
variation along its Tength is small. So examination of the z-independent
solution is enlightening. As above the fields may be derived from the poten-
tials U and V through

TE ™
ah WA ce o 2
o] 9paZ o] 9poz
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h _ a7V e _ oV
Hy = p363Z E p3¢d 2z
2 2
h 2 .3 e 2 .3
Hh o= %+ v £8 = [«© + U
3z ) z < ';Z-)
ho_ o duw 3V e o3l
Eo - o 3b Ho o 3
h_ . o dY e _ _ 3l
E¢-1mu-a-s— Hq.)--cap
e 20 HE = 0 (114)
4 z \

where Y2 = jwpo and U and V are the potentials for the ™ and TE components
of the fields. These are

I (ue) - ,
- m -imb _=irz
U = <Km(up ))e e (115)
whare
g
u2=E£ (Y2+k2)
and
1 (vp)) . \
V = m e-1m¢ e-'ilZ (116)
(Km(vp)
where

and A is a continuous variable describing the z-dependence of the fields. For
the excitation problem, the electrical length of the driver was chosen by the
experimentalists in such a way that the field variation along the driver is
small. For e-iAZ behavior in z, the driver only allows significant contri-
bution from A small, within the driver. Near the ends of the driver this
condition, of course, does not hold. The standard CV driver requires a con-
tribution all along the cable Tength. For A small
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h _ 2 e _ 2

Hz = =y V EZ = =y U

~h jwp 3V e o 3U

c T m— H = = =

P p 3p _ e p 99

ho. AV | Y
E@ = =jwy 35 r{b = 0z L

A1l other components are 0 or are assumed negligible.

In the interior of the driver the driver may be speci?ied in the problem
by using a boundary condition of a constant electric field at some distance
from the bundle. For a coaxial driver, the impressed E-field is &t = Ep,r=b =
, say, would be an appro-

-~

constant. For the parallel plate system E = E ! r=h
priate boundary condition for the driver. Conducting boundary conditions for
the coaxial driver and continuity of tangential fields at the bundle surface
complete specification of the problem. Note, however, that specification of
Ep, and/or E¢ drives only the TE waves. The TM waves are not driven in the
slow variation in the z case. However, the TE waves require that a J¢ exist
at the surface of the conductor, 5ince there is a nonzero E¢ redquired. Since’
J¢ can, at most, be a small displacement current on the actual cable bundle,
the driven TE waves cannot easily propagate in the system but may propagate
easily on the demonstration test bundle. This propagation restriction is sup-
ported in practice by waveguide filters, to get rid of, say, ™M waves, con-
structed out of thin closely spaced spirals of insulated wire (Ref. 8).
Further a more detailed calculation of the coaxial drive geometry shows that
the impedance ZS = Ez/H¢ o=a’ relating to TM (looking into the bundle along a
radius vector) changes very little when the transverse conductivity is changed
from the highly conducting value appropriate to the demonstration test to the
ot = jwey case for the actual bundle. The arguments do not hold near the

ends of the driver and the drive and mode conversion occurring there cause the

currents that are driven on the real cable hundle.
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For the TE case, however, the admittance

H
Y =

s
= - E: (118)

p=a

changes substantially for the o+ change.

This same arqument should alsc hold for the SGEMP excitation that is being

simulated here.

There is also a difference of frequency content between the two test
geometries. The first geometry has frequency conteint of about 40 to 6C MHz,
while the second has a content of around 100 MHz, which is probably due to
differing junction conditions in the two gecmetries. Following will be
current distributions in o,z from the detailed model.

CABLE BUNDLES TESTS

Now considered is the application of the ™ mode excitation model just
developed to the specific case of the generic experiments.’ In these experi=-
ments, a cable consisting of a number of shielded wires was positioned between
a drive plate and the wall of the satellite, which served as a ground plane.
Such a geometry capacitively couples the cable to the driver. The bulk cable
current, as well as currents in individual wires, was measured for this exci-
tation mode (other means of excitation, such as through certain pins on the
cable connectors, will not be considered with this model). In general, the
current in the cable can be expanded in a Fourier series in the azimuthal
angle ¢. In this representation, it is clear that only the n = 0 mode will
carry a net current; all the other modes will be proportional to either
cos(né) or sin(né) and give a net current of zero along any slice of the cable
perpendicular to the cable axis. This is called the coaxial excitation mode
since it is axisymmetric. The excitation and propagation of this mode needs
to be studfied, as well as its coupling to the exciter geometry of the
satellite tests. The n = 1 mode can be expected to be the most efficiently
coupled to the exciting geometry, and so it will be treated as well, although
it would not contribute to the bulk current on the cable.




The coupling coefficient is considered first. It is the ratio of the
average radial field at the surface of the cable bundle to the field between
the capacitive drive plate and the ground. Note that if the system were sym-
metric, i.e., if the cable were centered between identical drive and ground
planes, this coupling would be zero.and no net current should be measured at
any z-slice (assuming, as has been done in this homogeneous model, that the
cable has no azimuthal dependences). The cabhle is placed midway to the drive
plate, which is of the same width as the cable, but the ground plane is wider
(taken as effectively infinite below) and the resultant convergence of the
field lines causes there to be a net radial electric field at the cable sur-
face. The two-dimensional problem of the capacitor is considered with an
infinite ground plane and neglecting the curvature of the system. Also, the
influence of the cable on the field structure was neglected because of the
assumption that the cable does not conduct azimuthally but only axially. The
Schwartz-Christofel conformal mapping solution of the problem of the field
between the two plates may be found, for example, in Bewley (Ref. 9), to the
approximation that the upper plate is semi-infinite. If H is the distance
between plates Z = X + iY the complex coordinate, the edge of the upper plate
at X =0, Y =H, then in terms of the complex parameter T,

pA

h/m (1 +T + log T)
W

-i/fm Tog T (119)

where W is the complex potential. A short computer code to evaluate the elec-
tric field direction along the surface of the cylindrical cable bundle and to
evaluate the average field, using the above results was written. A Newton-
Raphson iteration is used to calculate T given Z, from which W and DW/DZ are
found. For typical parameters (3 cm width drive plate, 3 cm above RG-19
cahle), the coefficient relating the radial electric field to the interplate
field is 0.17. Thus, there is a reduction in effective driving by a factor of
four due to geometric effects alone.

Note that the theoretical model which predicted 12 A for the tests assumed
a triaxial line. Inclusion of this geometric effect would
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reduce predicted current to 3A, substantially improving agreement with experfi-
ment. Use of this factor, derived from 2-D potential theory, clearly requires
the assumption that the dominant mode of current is quasi-Transverse Electro-
magnetic (TEM). This is plausible as, for =3 cm spacing between cable and
ground plane. The cutoff frequency would be of order v~ c/d = 3 x 108/0.03 =
1010 Hz which would cut-off all other modes of interest. Consequently, in
evaluating the integrals over A, the contribution near A = 0 dominates and the

use of finite 1imits (A ~ 30 in practice) instead of integrating to A == is

quite acceptable.
COAXIAL DRIVER

As noted in the last section solutions for the uniaxial medium problem

are, for the azimuthally symmetric case

[ = .
i I,(ue) LTI
v =<
[ K (up) e e g
\-m
ag
B =2 (vE a8 (120)

for T™ waves and

[ 1, (w) e~ g

VvV =
[ K, (w) e A @
H
2 - = (v2 + 19 (121)

for TE waves. Note that the TEM mode is included as the (singular) limit
X =0 of the TM mode. This will allow us to do the integrals over a finite

domain (see above).
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. Figure 12 shows the geometry for the coaxial problem.

A
¢

Figure 12. Geometry of coaxial problem,

Inside ¢ = a there is a uniaxial cylinder modeling the cable bundle. For
a <p <b there is free space. At p = b there is a conductor to which the
exciting voltage is applied. The fields must be continuous across the p = a
béundar’_y and at p = b the transfer fields are zero and the normal electric

field is specified. General solutions then are

. U= Iw AV T (ue) e 2. | o (122)

=0

for p < a, and

- -]

U=/, (B() Io(up) + C(x) K

-0

o(uo))e'”‘z dx (123)

for a <p < b, The driver, E;, specified couples only to the ™ case, not
the TE, so only U is needed for complete specification of the fields. There
are three equations required for solution. Three equations have been elimi-
nated through excitation of only TM waves.

Specification of the radial field at p = b requires that

L {-iAUg B()) Il(ugb) + 1Aug cix) Kl(ugb)} e-ikz dh
= Ep (p=b,w) | (124)
. = fw f(2) e'.n‘z dx (125)
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where the subscript i indicates variables on the interior of the cable bundle
and the g subscript indicates quantities evaluated in the gap between the
driver and the cable bundle. The function f(A) may be evaluated by the
inverse transform (in A) of the impressed field E5. The field is uniform in
z for =2/2 <z <2/2 and zero elsewhere. Evaluating the integral

]

) =) E ) e gz = e ) (.;““2 - e‘”’”z) (126)

-

at o = a results in, for the symmetric excitation case, and dropping the inte-
gral operators, since the unknown coefficients are required to be specified

for all 2. Continuity of Hg

-aiui A(X) Il(uia) + cgug Il(uga) B(A) = cgug Kl(uga) C(x) (127)

and continuity of E,

-(Y? + Az)

$ D A0 T + (rf %) Tolua) B0

= -{yg +1%) ¢) Koluga) (128)

These equations may be solved analytically and the determinant of coefficients
is

2
)

. 2
A = -itug [ugcg (vi +27) Ig(uia) x {I1<“gb) Ky (uga)

2 2
- Il(uga) Kl(ugb)} + uici(Yi + 1)

+ Il(ugb) Ko(uga)} (129)

Il(uia) {Io(uga) Kl(”gb)

The solution for the coefficients is

AR) = T sy (08 +2%) [Ty a) Koluga) + Tyl a) Ky (ua)/]/m
= () o (Yg + Az)/(ugaA) (130)
80) = [ou(r2 + %) 1, (u;a) Kpluga)
sou v aah) oua) )] e (131)
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c(x) = '°1“1(Y§ + Aej Il(uia) IO(an)

2 2
+ cgug(Yi +2°) Il(uga) Io(uia) (132)

The current induced on the cable bupd?e is the interesting quantity in this
case ' )
)

-Yf + A U

Jz(p,w) .GZ'i(

3

Y
(P8}
(F8]

—

-c:z[yf + A {m A(x) Io(uio) A2 (

The total bundle current Iy may be found by integrating the current density

a
I =2r [ J_(p,0) pde

0 Z
Using the high frequency approximations for the Bessel functions it is found
that the current density goes as the w3/2 times the driving waveform, i.e.,
the derivatives of the driver plays a part in the high frequency response.

Since the response will have a faster rising response than the driver filtra-
tion of waveform by the sensors will likely play a part.

COAXIAL DRIVER DISCUSSION

Figure 13 shows the assumed time dependence of the drive electric field
E(t) between the plate. This E(t) does not have vanishing first and second
derivates at t = 0. Because the response function behaves as w3/2, it was
felt desirable to see how a less-sharply increasing function of time would
behave. Figure 14 shows a modified E(t) with vanishing first and second deri-
vatives with respect to time at t = 0. Using the results above and doing the
radial integration by Simpson's rule over a few skin depths into the cable
bundle give the results shown in Figures 14 through 17. The concept of skin
depth has the usual meaning here. Since there are a range of frequencies and
consequently no unique skin depth, the integration limits were chosen as a
function of frequency. The integration over X is done by Simpson's rule, the
principal part of the integral being determined by deforming the contour above
the origin. The Tlimits on X are taken as £30. Both these limits and the size
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Figure 13. Electric field drive as a function of time.
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Figure 14. Modified electric field drive as a function of time. The first .
and second derivatives of E with respect to time are zero.
Otherwise, E(t) is similar to the standard case of Figure 13.
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Figure 15. Bulk cable current for the drive field E(t) of Figure 13.
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Figure 16. Bulk cable current for the drive field E(t) of Figure 14.
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Figure 17. Surface current density for the drive E(t) of Figure 13.

of the detour above the origin.have been varied and the answers are not sensi- .

tive to these parameters.

Expected currents were about 12 A, with measured currents about an order
of magnitude below this (~2 A). The first figures plot the two drive fields
used. Bulk current predictions are shown in Figures 14 and.15 for the two
E(t). Figures 17 and 18 display the respective surface current densities.

The results are somewhat higher than observations. This is not due to neglect
of differential-mode (as opposed to common-mode) currents, as the predictions
are above those of ~12 A max based purely on triaxial line, common mode cur-
rents. However, line reflections and characteristic impedances are neglected
(cable is assumed floating). It is probably the complex interactions of such
mismatches and reflections which account for the overestimate of current mag-
nitude (the. triaxial line mode explicitly includes characteristic impedances
of cable, drive coax, and transfer admittances and impedances). Note also
that the fact that modes may be cut off and attenuate exponentially the drive
is not explicitly accounted for. Qualitatively, the behavior is correct .
except for an excessive presence of lower frequency components, superimposed
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Figure 138. Surface current density for the drive E(t) of Figure 14.

on the ~10=8.s period (100 MHz) ringing of the line. This frequency is
selected by the length of the driven section of the line, 1.5 m, which is one-
half wavelength. Note also the strong dependence on the details of the pulse
shape.

It is plausible that our model overestimates observed signal amplitude,
particularly lower frequency components, because these TM components are cut
off and damp exponentially with distance between the sensor and the region of
excitation. This is suggested as well by the fact that the simple
transmission=-1ine model which considers only the differential-mode TEM signal
is of smaller amplitude (~12 A) and does not contain the lower frequency
baseline shift as contained in this model. Depending upon the boundary condi-
tions of interest in the actual SGEMP problem, analysis of the TEM mode only,
with appropriate termination conditions, could be the most appropriate model.

To test the role of the cutoff of the TM modes, the integrand multiplied
by exp(Kattenls), where Zg = 0.4 is the distance between the current sensor
and the drive strip, and
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l .
K = max (0, == - = (134}
atten ( AZ dZ)

where d = 3 ¢m is the guide wavelength. The results are shown in the accom-
panying figures. Figures 19 and 20 give the bulk cable currents as seen at
the sensor for the drive electric fields of Figures 13 and 14, and may be con-
trasted to the currents shown in Figures 16 and 13, Similarly, Figures 21 and
22 give the corresponding surface current densities. =grzsrent with axperi-
ment has been improved considerably. A detailed treatment of the mode struc-
ture beyond the strip should probably further improve agreement.

PARALLEL PLATE DRIVER

The parallel plate driver case is much more complex than the coaxial
driver problem because the azimuthal symmetry is broken. Further both Ep and
E¢ fields are specified and nonzero which provide contributions to the fields
from both TE and ™ solutions. In this simple model, the paraliel plate
driver is modeled by a specification of a uniform y-directed electric field E
at a distance ¢ = b from the center of the cable bundle. From E‘,-both Ep and
E¢ are specified; as well as 52 is required to be zero. The specified fields
Ep and E¢ will be represented in the A transform space as f(A) and g(i)
respectively. Again the fields are required to be continuous across the p = a
boundary of the cable bundle. The potentials are

<«

U =§n [ A I (uge) o™i o2 4

v =% f: R T (vip) e e g (135)
for o < a, and

u\=§‘ j: [B,(3) T (ugp) +C () K (up)] e N oAz g

v =§1 f: [Sn(") In(vgp) + T (\) Kn(vgp)] 1N A2 (136)
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Figure 19. Bulk cable curvrent, E(t) as in Figure 13, as seen by sensor.
Attenuation of TM modes has been taken into account. Compare
with Figure 15, which gives unattenuated current.
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Figure 20. Bulk cable current, E(t) of Figure 14, as seen by sensor.
. Attenuation of TM modes has been taken into account. Compare

with Figure 16, which gives unattenuated current.
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Figure 21. Bulk cable current as in Figure 16, but with attenuation of
™ modes beyond the drive strip accounted for.
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Figure 22. Bulk cable current as in Figure 18, but with TM mode
attenuation between the drive strip and sensor .
accounted for.
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. for a <p < b. Specification of the fields at o = b yields, dropping the
integral operators and suppressing the eind eirz factors

‘1*“9 [Bn(x) Ii (ugb) +C (1) Ki (ugbﬂ

-5 Is,00 1) # T 0) K (u )]

= £ /3 . A
PRCR (137)
specifying Ey
M
- LBn(A) In(ugb) + F:n(k) Kn(ugb)
+ dwu ug{Sn(k) In(v b) + Th()\) K> (v_b)
=g () (138)

and finally specifying E;

® - (g 2% 18,00 Ty(ub) + €, 00) K (u )] = 0 (139)
For the interface of p = a all fields must be continuous
E_:
Z
(g #A%) A0 T () = (2 4258 ()T (u )
+C 00 K (ua)] (140)
H :
Z
(rf +a%) R ) 1 (v = < 2B 001 (v )
+ Tn(X)Kn(Vga)] (141)
E :
o
S AL Tpluga) = 22T (via) R ()
‘ = -uug[sn(x) Ii(uga) + Cn(x) Kn(uga)}
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- —;—-[Sn(x) In(vga) + Tn(k) Kn(vga)] (142)
For this case the current density fis
- = N -ing _-ixz
Jz 7, EZ % {n An(x) In(uip) e e dx (143)

where the sum over n has contribution as required by the ¢ variation of &5,
£z. For the flat plate case, n =zl is sufficient to determine the fields
since Ep(p,¢) = Ep(p) = Ep(p) cos ¢ and E¢(p,¢) = E¢(p) sin ¢. The coeffi-
cient A(X) may be found by numerical solutions to the 6 x 6 set of linear
equations and numerical performing the X integ-ations. In addition to

Ap(A), which is required for the current density, the other 5 coefficients
are useful to keep a running check on the boundary cgnditions. Truncation
errors and errors in function evaluation sometimes lead to inconsistent solu-

tions, which must be considered.
EQUATIONS FOR N = 1 MODE

The. N = 1 case was.- modeled using the equations derived above. The matrix
of coefficients was solved numerically. Asymptotic values for the Bessel
functions and their ratios were used when appropriate for nuﬁerica1 con-
venience. The results are qualitatively similar to the results for the N = 0
case. Figures 23 and 24 show typical surface current density profiles (note
that this would have to be multiplied by cos ¢ to get the current distribution
over the bundle). These may be compared to the similar results for the n = 0
mode in Figures 17 and 18. This enables qualitatively discussion of the rela-
tionship between bulk and individual wire currents. Since the skin depth of
drive frequencies of most interest is =105 m, much less than wire diame-
ters, the currents carried by the wires may be estimated by their fraction of
the surface area. The minimum and maximum currents are then proportional to
|J(n=o, r=0) + J(l,l)l and 'J(0,0) - J(l,l)'.. |

Note that the peak current density at the hundle surface for the n =1 is
33 to 50 percent of that of the n = 0 mode, depending upon which pulse shape
is assumed. This suggests a possible 3:1 varjation in wire currents. Because
an individual wire wanders through the bundle, considerable variation might be

expected,
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Figure 23. Surface current density in the n=1 mode on the cable for the
drive E(t) of Figure 13.
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Figure 24. Surface current density in the n=1 mode on the cable for the
‘ drive E(t) of Figure 14.

587




VIII. CONCLUSIONS

There are three basic prohblems addressed in the report:
(1) Distribution of currents on a bundle of shielded wires.
(2) Perturbation of measurements by sensors,

(3} Explanation of differences in predictions for bulk currents for com-
plex a'd simple bundles.

Solutions of the propagation of signals down a uniform cable bundle are
given in both the time and frequency domains. For both solutions, it is con-
cluded that, by far, the majority of the current is carried in wires on the
surface of the bundle and that very little current diffuses to the interior.

Calculations of the effect of pulling a wire out to place a sensor around
it show a substantial perturbation to the current distribution for a typical
bundle. These calculations should be followed by experimental verification
and use of termination impedances appropriate to other systems.

The third part of the report describes very detailed calculations of the
coupling of parallel plate and coaxial drivers to a uniaxial cable bundle.
Models of the two drivers were constructed and bulk currents predicted.
Agreement with experiment was not too bad. The concept of coupling coeffi-
cient for the coaxial mode drive from the departure of the parallel plate
driver from the perfect configuration was particularly useful in explaining
the various experimental results.
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‘ APPENDIX A
TIME DOMAIN PROPAGATION OF A SIGNAL ALONG A BUNDLE

Consider the multiconductor transmission line equations

al | av _ inc A
Lﬁ+§_z_+RI-EZ (A1)
oV 3l
Cﬁ+.3—Z-+GV=O (AZ)
Important relations are
Le ( = 1/\'/2 ) ' (r\3)

which is a statement of our requirement, for the moment, that all waves travel
at the same velocity and

fo
€

G = c f<l1

which is a statement of the assumptions that the conductance is proportional
. to the capacitance, but is dominated by the capacitive terms. These equations
may be written with current and charge varying.using

Q=CV
81 . 23Q . -1 -l
TtV L RI=LTE (A4)

where R is assumed diagonal. Chang‘ihg to retarded time

T =vt = 2

z' =2z

3.2 3zl .3 3T _ 3 B

3z 8z' a3z 3t 3z  az P13

5 _ 8 3z' .3 8t _ ®

5T 57T S taT v c Vaw (AS)

and four forward (F) and backward (B) going waves,

I +v0 1=FZG

‘ G =1-0 0 =52 (A6)
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The transmission line equations are now, dropping the prime z.

36 _(F-G)+L-1RF+G=L_'iE
3T 3z 2 2V v 2z

36 , 9 (F+G)  fo F -G _
“37 T3z 2 * 2 0 (A7)

Simplifying
-1
3F -1 F+@G fo F -G _ L~
5z LR 2V v T Ez
-1

3G 3G -1 F+ 8 fo F-G _L

2 5T - §E-+ L R v T s = = EZ (A8)

Looking only at a long 1ine and considering only waves in one direction, i.e.,
G = 0, then

oF L LR fo o
3z ZV ZVE
_ VRC fo
SR LSy JRRCAY | (A9)

Comparing the equations Q = CV and VoV = p/eQ shows that the operation
L-1 = v2C looks very much like the Laplacian. If p is the central point
and o3 are the six external points, Cq is the value of the diagonal ele-
ments and -Cyq is the value of the off-diagonal elements (Coq > 0) then
the charge or the central element is

- cod(z Vi - va) (A10)
The Laplacian is

7jv - G_:.Z_ (T Vgq - 6V.) (A11)

as can be shown by inserting

Vo= 2

vf_v . iz (6% x 4 + (26)% x 2] (A12)
and

V= y2
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2 , , .
so that C » -Gb Cod Vi_for interior wires.

tance terms to ground dominate and |

9

-n

= 3R’ e fo_
= 3vb R Codlvi-' s F

Q

Z

Going entirely over the continium limit

F=Jd+w
G=J-w
where
J = I/A
and
p = Q/A
where A is the unit cell area, i.e.,
A= ¥T bl

(A13)

For the exterior the self capaci-

(Al4)

(A18)

The above differential Equation Al3 is a diffusion equation. For the

nearest neighbor approximation, the interwire capacitance is of the order
Cod = 10-11 F/m. The diffusion coefficient, D, is

2
D =3P R C - (3) (3 x 10% <1o'3> (0.2)( 10719

- 2x10%n

Therefore to diffusion 1 mm into the bundle requires propagation along the

bundle of 50 m, so little diffusion occurs into cables that are a few meters

long.
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APPENDIX B
ANALYTIC PULSAR NAVEFORMS.AND SPECTRA

A difficulty in problems of this type is a choice of a function approxi-
mating a driving waveform. A waveform with the following characteristics is
required

(1) The function must have fast but smooth rise and slower decay.
(2) The function and its derivative must be 0 at t = 0.

(3) The function must have an analytic Fourier transform.

These combinations may be satisfied by a combination of functions of the

form
eqxt
ft) = ———arr (B1)

This function may have zero derivative at t = 0 with the proper choice of G,
but has nonzero value there. Therefore two of these functions with the same G
coefficient but different exponential coefficients "are required for zero value
at t = 0. The G coefficient may be found by solving

-t  =at

. _ =ae BGe e =
f(e)-1 +Ge£t+. '6t2 0 (B2)
(1+6™%) |
The result is
8 -1
G =(2-1) (B3)

s

G then depends only on the ratio of coefficients. A complete form for the
function we are looking for is

equt e-at
g(t) = - - u(t) (B4)
- 1 + Ge.Bt 1 + Ge St
where
8 -1
a=(5-1) (85)
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Q|
L]
<o

and U(t) is the unit step function. This function should look very mgch like
double exponential, except at very early times then the ratio 8/x = 10 is a
good choice, which leads to G = 1/p.

Satisfying condition (3) for an analytic Fourier transform requires that
the following integral be solved

F( - ® e-at ‘il&t
U.)) = f —‘—B—t_ e dt (37)
0 1 + Ge

Since G < 1 for this problem, the denominator may be expanded in a power
series

Flw) =f°° oo (atiu)t ‘g (-6)" & MBE 4
0 n=0

S ] (a0 [ enlmmera)t g,

(8)

[{]
[Tl |
-~
]
w
e
>3

In practice the series requires only a few terms for evaluation for G.
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