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Abstract

The EMP-induced, time-domain current waveform is obtained for an infinite
wire over the ground under grazing incidence. 1In contrast to previous
results, the maximum grazing current is found to be slightly larger when the
ground conductivity is higher. Also, the grazing angle for maximum current

is found to be smaller when the ground conductivity is higher. For a ground

conductivity of IO-ZS/m, the maximum current is approximately a factor of
five larger than the typical value reported in the literature. A byproduct

of this study is a simple formula of ground inductance for the transmission
line mode.
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INTRODUCTION AND SUMMARY

High altitude electromagnetic pulse (EMP) is an electromagnetic
radiation of very short rise time, large amplitude, and brief duration
that follows a nuclear explosion at 50 km or more above the earth's
surface. The ground area that a single high-altitude EMP event can cover
is very large; i.e., entire continents can be affected. The direction of
incidence of the EMP radiation can vary from normal to.grazing.. The
Defense Nuclear Agency, three ser?ices, and the Department'of Energy
expend resources in numerous research projects to understand the EMP
coupling to electronics systems, power lines, and communication systems,
and to design systems that would minimize harmful EMP effects.

This study is initiated by the need to determine the potential
penetrating currents, induced by an EMP event, from overhead power lines
and telephone lines through connectors to a C3I ground station. The
detailed physical layout of the overhead lines can affect the magnitude
and the waveform of the induced line currents. Our objective here is to
solve the simplest problem: an infinite wire over the ground under
grazing incidence. The current calculated in this report is for a wire
radius of 1 em and a wire height of 10 m above the ground (Figure 1). A
future report will address a long but finite horizontal wire over the
ground under grazing incidence.

Although the problem of EMP coupling to overhead lines has been
studied extensively in the past [1],[2], these calculations are not for
grazing incidence but instead for a predetermined angle of incidence. A
recent study [3] provides a new look at this old problem; however, the
study is limited to the early-time solution and is not carried out for
grazing incidence. The principal result reported here is that, in
contrast to previous calculations [1] and [2], the maximum grazing current
is found to be slightly larger as the ground conductivity increases. When
a nominal incident EMP waveform of

E(t) = Eoe""" (1)
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Figure 1. Configuration of a Wire Over the Ground Exclted by an
H-Polarized Incident Wave.
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where

E, = 50 kV/m
T=2.5x 1077 sec (2)

is assumed, the resulting induced line current is as follows. When the
ground conductivity is 10"l S/m the maximum grazing current of 9kA occurs
at a grazirig angle of 3° from the horizon. When the ground conductivity
is 1072 '
angle of 7°. When the ground conductivity is 10-3 S/m, the maximum

S/m, the maximum grazing current of 8.5 kA occurs at a grazing

current of 7 kA occurs at a grazing angle of 9° (Figures 8a through e).
Comments on the current as a function of the grazing angle are given
later.

This Study is based on the well-known transmission line theory of
Carson [4] and King et al. [5]. In a previous paper [6], the transmission
line theory is used to solve the time-harmonic problem for a long
horizontal wire over the ground with grazing incidence. The transmission
line theory is used in this report to obtain the time-domain current for
an infinite wire over the ground under grazing incidence of an EMP. This
induced current is calculated in the following steps: First, the
complicated formulas of the transmission line parameters are reduced to
simple formulas whose deviation from the exact formulas 1s less than two
percent. Second, the early-time waveform is obtained via a numerical
inversion of the Laplace transform, a technique originally developed by
Salzer [7]. Third, the Laplace transform of the induced current for a
range in the transformed domain appropriate to the late-time solution is
accurately approximated by a simple transform function, whose inverse
transform is analytically available. Although the result is obtained by
ineluding only the transmission line mode; the major physical phenomenon
of grazing comes from the beating of the transmission line mode and the
incident wave. All other modes contribute much less to the induced wire

current.



SIMPLE FORMULA OF GROUND INDUCTANCE

Cround Inductance in the Frequency Domain

As previously derived [4], [5], formulas for the transmission line

wave number and characteristic impedance are given as (e-i“t time
dependence)
k = (-z1)172 . T (3)
and
z, = (z/n)'/? ()
with
Y = -iwC,
2ﬂe°
C = wire capacitance to the ground per meter = < '
Q = arccosh(d/a), a = wire radius
and d = wire height,
and
Z = -iyL,
L =L +1L
1 2 "
Ll = wire inductance in air per meter = 5=
: pA
L2 = inductance in the ground per meter = s
Here A is given by
1 Kl(A) inIl-(A) ir 2
A =2 F-A + =z oy El(iA)"-;] (5)



with

in 2 A A3 A A7 ] )
% B2 -3l |3 "B B a9 Tt 0]

Il and Kl are the modified Bessel functions of the first and second

kind, respectively, and the first order. E1 is the Weber function of the

first order, and finally, A is given by

A = 2k,d, k, = Juu(lo, + wege ) (7)
Here ku is the wave number in the ground.

We use a previously reported method [8] for obtaining a uniform
asymptotic formula for A. First, the small argument and large argument
limits of A are sought, then a formula matching these two limiting cases
is obtained. Thus, the small argument approximation of A is [6].

A ™ A (8)
A - -in(z) + 1 5= -tn(-iz) ‘

The large argument approximation of A is [6]

21
A'-A—. (9)

By inspection, a formula matching these two limiting cases is found to be

A
1-15

A -~ %n . (10)

A
=

2
Figures 2 and 3 show the comparison of the exact evaluation of A given
in [6] and the numerical value from using Equation 10 for Arg (A) = 45°
and 0°, respectively. The two cases cover both the conducting and
dielectric half space. The agreement is very good.



AHVNIOVNI

v
(1] § ! L°0 L0°0
0 0 0 3 o i e S e T L AL T IS A B T 0
—H
—1¢
—1€
1
L " OVYINI XOUddVY
OVRWI LOVYX3
— ——— V34 XOHddV | N P
IV3YH LOVX3
TN | 1 let s v 1 1 1 T I I 9

o'l

.:\5@ V =V J0J (0T uofae JS eInwIOog d9%evutxoxddy

ue pue ¥y JO UOTg4enTBAY 40BXH a8yl JOo uosiaedwo) ‘g2 94n3Tyg

Iv3d

10



'AHVNIOVNI

v
(1] § I 10 100
00 LB | LELELLL. T 0
—1
vo
—1¢
80 - —H¢
-1v
4l S R
OVWNI 1LOVYX3
- e e e JYIH XOUdDY S
IV3IH LOVX3
op Ll v I Lot o v ¢ 1 4 T e — 9

‘Y Tesy 407 0T
uopgenby pue y JO UOTIBNTEBAH 30eXH 9yj} Jo uosyaedwo) ¢ 2an3 4

Iv3d

11



Ground Inductance in the Laplace Transform Domain

The quantity of critical importance in the time-domain solution of
this investigation is A(s), where s = -iw (Appendix A). Two formulas for
A are derived, one for numerical purposes, and the other for use in this

paper.

First, to derive a formula for As convenient for the numerical

purpose, we use Equation 12 in [6] and write it as follows:

2 1 , 172 2K, (A)
A(A) = -+ 2i (1 - x°) exp(-Ax)dx -
A ‘0
2 1 , 172 Y, (-14)
== - > + 2 (1 - x7) sin(=-iAx)dx + 1r~—(—-_-{-r)—
(-14) ‘0
2 1 , 172 Y, (R)
As--—5+2‘ (1 -x%) sinAx dx + — . (11)
A 0 s
S
where As - 2d\/su(ou + seoeru) (12)

Notice the imaginary part vanishes because of an identity in a
Bessel's function integral. A simple approximate formula for As can be
obtained from Equation 10 as below.

A~ fn . (13)

The comparison of Equations 11 and 13 is made in Figure U4 for As as a
function As’ and in Figure 5 for As as a function s for 12 decades, with d
= 10m, a = 1 cm, Oy = 10.2 S/m, and €y = 20. The agreement is slightly
better than the time-harmonic case.

12
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EARLY-TIME AND LATE-TIME BEHAVIORS OF THE GRAZING CURRENT

Grazing Current in the Laplace Transform Domain

For 1 V/m of incident time-harmonic field, the current on an infinite
wire over the ground as shown in Figure 1 is given by (Appendix B)

1kozcosw ikozcosw

sinw(l-Rh) e e

I (w,2z) = ’ (1u>'

ZZc i(kocosw-k) 1(k°cosw+k)

where Rh is the reflection coefficient for the magnetic field parallel to
the interface, i.e.

1/2
stinw - (N?-cOSZW)
Ry = > > 5 172 (15)
N“siny + (N"=-cos“¢)
ku _6
N = P ) (16)

This study is limited to the H-polarized case for grazing incidence,
because the total electric field available for excitation is about a
factor of five smaller for the E-polarizéd case than that for the H-
polarized case.

In the Laplace transform domain, Equation 14 is

e sinw(l-Rhs) e-sz(cosw)/c e-sz(cosw)/c

(17)

Ia(s,z) =

ZZO'CLsS CLs - cosy + cosy

Ls

where

1/2
(-2)
CLs =\l Q. (18)

15



1/2
2(N§ - coszw)

1-Ryg- 172 (19)

Nisinw + (Ng—coszw)
g
n
2
Ng = €py * 's.t-:: : (20)

Because @ ~ 6, AS < 2 for s > 103, and ;Ls ~ 1, for studying the grazing

incidence, ~ cosy. Therefore, the second term inside the parentheses

g
Ls
of ‘Equation 17 can be neglected. Thus, I_(s) is approximated by

- -sz(cosy)/c
¢ siny(1-R. ) e

- ° 21
I_(s,z) A T (21)

Since the exponent in Equation 21 only results in time delay in the
time domain, we plot I_(s,0) in Figures 6a through e. The most important
point to be noticed in these figures is in the range of s shown between
points A and B on the curve. The curve can be approximated as a straight
line on the log-log plot between these points; thus, I.(s,0) can be
V. For the case of g, = 107" S/m and ¥ = 3°, given in
-1.5 S/m and ¢ = 4° given in Figure 6b,

S/m. and Y = 7° given in Figure 6c, v ~ 0.33.

approximated as s
Figure 6a, v ~ 0.173. For 9y = 10
v - 0.256. For g, = 1072
For g, = 102" S/m and ¥ = 9° given in Figure 6d, v - 0.333. For 0, =
10'3 S/m and ¢ = 9°, given in Figure 6e, v ~ 0.42. The grazing angle, V¥,
1s chosen such that the wire current is numerically determined to be the
largest. Notice when y is chosen to be 30°, then v ~ 0.5. When this is
the case, as is considered in [1] and [2], the denominator inside the
parentheses in Equation 17 is a slowly varying function of s, and v = 1/2

is completely determined by 1 - Rhs‘

EMP Induced Grazing Current in the Laplace Transform Domain

The Laplace transform pair is given in Appendix A. Consider the
problem of transient response due to an EMP with free-field time-domain
waveform given as [1]:

16
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-t/ -t/t -t/t
E(t) = E (e f e Ty Ee £ (22)

where
tp = 2.5 x 1077 sec
tr =2 X 10—9 sec

E =5 x 10% v/m.

The second term in Equation 22 gives rise to high frequency components
which contribute negligibly to the grazing current. It can be ommitted.
Thus, the Laplace transform of Equation 22 gives

E(8) = ——— ° (23)

The time domain grazing-current due to an EMP is ‘given by

{io
1
i (t,2) =1 (1) = ETTe J-ioI“(s) e3Tds (24)
where
| -1,7}
Ia(s) = EOIo(s,O) (s + tr )

=t - (z/¢c)cosy

I_(s,0) = I”(s,z)"z -0 (25)

Early-Time Behavior

To obtain the early-time behavior, we determine its transform as s-=,

> 1/2
Eo(eru-cos P) ¢ siny

lim I_(8) = = T (26)
2 2
8w [;rusinw + (eru-cos V) ]Zo(l-cosw)s

Then by Watson's theorem [9], [10]:

22



-1
1
i (1) = [r(a)] 1im s/™ I (s) (27)

@
S>o

1im Tl-l/m

+

0
we can let m be 1/2 and obtain

> 1/2
Eo(eru-cos V) e siny

lim i_(1) = T (28)

1/2
0 I}rusinw + (spu-goszw) Zo(l-cosw)

This formula is used in the next section when we discuss the time

domain grazing current.

Late-Time Behavior

It is possible also to apply Watson's theorem for s+0 and obtain a
late~time approximation for Ia(s). When this is done, I”(s)~ s-l/2 and
thus, lim i_(1) ~ 1-1/2. However, for grazing incidence, as shown in

> .

Figur;; 6a through e, I_(s) does not quite approach 3-1/2 when s = 10-2.
When considering the inverse relationship between s and t (the trénsform
variables) t has to be minutes before i () ~ 1-1/2.

When a few microseconds are considered as late time, as in the case of

an EMP response, it is more appropriate to let
I_(s,0) = as”V . (29)

with values of v for different physical parameters given at the end of the

previous section. When we determine A from Equation 29 for the value 8 =
tf'l, it follows

Low, ™. (30)

A= I (. .

Equations 25, 29 and 30 yield a late-time approximation for I'(s):

I(s)~ETI(t., 0tV “V(gat 1y (31)
QS o w P ? £ S(Stf) .



On using an inverse transform formula [11], we have a late-time formula.

e-r/tf r
- -l -v - -
1 (1) Eolw(tf ,O)tf T M(v.l+v,r/tf) (32)

v

where
M(vsl+v;x) = confluent hypergeometric function

v v 1 > .V 1 )
’I+NX+§'W'2'T-X + eeeet m;,—x * e (33
and
x 1 (34)
lim M(v;l+v;x) = ve” x .
X+o

Equation 32 is used in the next section. Notice the late-time limit in

that equation is 1-1+v.

TIME DOMAIN GRAZING CURRENT

Numerical Inversion of Laplace Transforms

Numerical inversion of Laplace transforms is described in many
textbooks. However, most techniques give good accuracy for the early time
but not for the late time. We shall use a method originally due to Salzer
(7] and described in [10] and [12]. Basically, polynomials for an optimum
evaluation of the inverse Laplace transform integral have been found.
These polynomials are expressed in terms of a ZFO hypergeometric series in
(10]. The inverse Laplace transform is converted to a sum over their
weights evaluated at the zero's of these polynomials. An explicit formula
for the weights is given in [10]. Therefore, Equation 24 is written as

- r.. P (35)
1 (1) = i e e I,(?)dp
jo
11 - o
1,(7) = = 5= [ e? p 2 p2 I"’(‘T.) dp (36)

-.im

24



> n/2 pk
2
== Re E Py Iw(?-) L (37)

k=1

Equation 35 is obtained from Equation 24 by substituting p = st. 1In

2

Equation 36, p- has been factored out to have a correct behavior as s-=

or t»0, Pk is the location of the zero and Ak is its corresponding
weight., The conjugate property of the zeros has been used in Equation 37.
We use the tables from [12] for N = 6, 8, and 12 for calculating the
grazing cgrrent for oy = 10-l S/m and ¢ = 3° (Figure 7), and the resulting
numerical values are in good agreement. The tabulated values of Pk and Ak
are listed in Appendix C. Finally, when Ia(s) in Equation 37 includes a
term arising from the second term inside the parentheses of Equation 17,

no noticeable difference is observed in the numerical result.

Time Domain Grazing Current

We have presented two formulas, one for the very early time and the
other for the late time, and a numerical method to obtain early and
intermediate time. We now present the numerical value from the late-time
formula and that from the numerical method in the same figure. The solid
line in Figure 8a for g = 10'1 S/m and ¢ = 3° is from the numerical method
and should be used until it crosses the dashed line, which is a late-time
approximation. The figure shows the current only from 10-9 sec. To
extend before that, one only needs to use Equation 28, Figures 8b, ¢, d,

-1.5 S/m, Y = 4o, a, =
1072 s/m, ¢ = 7°; o, = 1072°% S/m, ¥ = 9°; o, = 1077 S/m and y =
°; respectively. We have also investigated the sensitivity of the

grazing current to the angle y. When 9 = 10-1 S/m, the peak current and

and e show the same information for oy = 10

the waveform remain about the same as ¢ varies between 2.5° and 4.5°.
When o, = 10°1*3 s/m, 107 s/m, 10727
and the waveform are about identical when ¢ varies between 3° and 6°,
between 5° and 9°, between T7° and 1l1°, and between 8° and 13°,

S/m, and 10.3 S/m, the peak current

respectively. The variation in the peak current in these ranges of ¢ is
only about 5 percent.

25
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CONCLUSIONS

This report presents the calculated grazing current of an infinite
horizontal wire over the ground. In contrast to the previous results, the
maximum grazing current is found to be slightly higher when the ground
conductivity increases. The grazing angle for maximum current is also
found to be smaller when the ground conductivity is higher. We have
presented results from a numerical method and two analytical formulas for
the very early time and the late time. '
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APPENDIX A

Laplace and Fourier Transform Pairs

The convention used in this report is defined as follows:

{ e Str(t)dt = F(s)
0

R
=T J-i. e®3F(s)ds = £(t)u(t)

for the Laplace transform pair. u(t) is the unit step function.

s = -iy in Equation Al and A2, we have

f“ elotectiuct)dt = F(-1w)

i

= J_ﬂ e 14 p(-1u)du = £(t)u(t)

(A1)

(A2)

Letting

(A3)

(A4)

for the Fourier transform pair. The theory concerning the property of

these transform pairs is discussed in appropriate textbooks.
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APPENDIX B

Time Harmonic Solution for a Horizontal Wire

Let K, and K. be Green's functions to the following transmission line

v I
equations:
BKV
— = —'i
5 Z KI §(z=z'")
3K
-—-I-:.+YK.O (Bl)
9z v
Then
1 eik(z-z') for z > z'
Kp(2:2') = 5= ) ik(z'-2) . (82)
o] e for z < 2!
where

Zc and k are given by Equations 3 and U4,
For a 1 V/m of incident field, the electric field available for

exciting the wire current is given by

ik _zcosy
E,(z) = siny(1-R ) e (B3)

where Rh is given in Equation 19. Here the phase associated with the

reflected wave is small and thus ignored.

The induced wire current can be shown easily to be

I(z) = Ia K;(z,2')E_(z')dz’ = Equation 14 . (B4)
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APPENDIX C

Kk and Ak for Numerical Inversion
N=6
DATA AK /( .319834709323091,
> (~-3.40926161032703,
> ( 3.58942690100394,
DATA PK /( 5.03186449562164,
> ( 7.47141671265162,
> ( 8.49671879172672,
N=8
DATA AK /( .273787695196975,
> ( 1.71575630183273,
> (=12.86274677394686,
> ( 11.3732027769169,
DATA PK /( 5.67796789779526,
> ( 8.73657843440480,
> ( 10.4096815812737,
> ( 11.1757720865261,
N=12

DATA AK /( 1.85725794270332,

vVvvVvyvVvy

(-56.3909015285137,
( 402.311652034329,
(-1188.68811805846,
( 1668.17876227864,
(-826.768652668701,

DATA PK /( 6.68604661560506,

vVvvVvVvyVvVvy

( 10.6594171817516,
( 13.2220084999127,
( 14.9311424807035,
( 15.9945411992028,
( 16.5068440228241,

35

of Laplace Transforms

1.17903142140716),
-12.7197770038867),
36.2260472909385)/
8.98534590730788),
5.25254462289425),
1.73501934646273)/

-1.38993184986796),
27.6350460518111),
-144.255215387796),
310.173377206929)/
12.7078225972097),
8.82888500094307),
5.23235030528505),
1.73522889070557)/

-.485839349727535),
70.9293584364054),
-1059.09324671542),
6060.54780701406) ,
-17724.6940274801),
29662.0417840153)/
20.2485936144816),
16.1058137285140),
12.3430699860744),
8.74033918670913),
5.21813307389159),
1.73538714401953)/
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