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Abstract
Since the introduction of the singularity expansion method (SEM) for the
: representation of transient and broadband electromagnetic interaction with
erfectly: general objects, there has been .considerable attention given to associated
aCtromag-, analysis of electromagnetic-response experimental data to find the natural
: frequencies, Usually this has considered only single waveforms or frequency
. ‘ spectra for a parameter such as the surface current density at a particular
Jeriment, position on the object under some particular excitation such as a particular
-~ direction of incidence with a particular polarization.
'.“teff This paper explores several concepts for advancing the analysis of
: interaction data to obtain the various SEM and EEM (eigenmode expansion
: method) parameters. Basically the various properties of natural modes and
anomenol-"E. ~ eigenmodes are explored for application to the problem of the taking and
rence on g analyzing of experimental data. Various techniques are explored including the
: enforcement of the SEM pole factors in multiple data records, separation of
) . the modes by object symmetry, separation of the modes into E and H modes by
, Light-. measurement of surface charge density and equivalent magnetic charge density,
and separation of the natural modes and natural frequencies by association
] . with eigenmodes and use of eigenmode orthogonality. Basically these concepts
ir Force involve application of a priori physics to the design of experiments and data
analysis.
ine Tes
ir Force
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yf.' Introduction

S1ncé‘the 1ntroduct1on of the singularity expansion method (SEM) [8] as

,uAa character1zat10n of (linear) electromagnetic interaction with scatterers,

i‘there has been ‘fuch development of the general theory with numerous refer-

ﬂences. Here we mention only some of the general reviews [13,21,22] and a
pec1a1 issue with bibliography [18].

As noted in the beginning, the natural frequencies and modes of an
object are characteristic of the object, and not some particular electro-
magnetic formulation such as a particular integral equation. As such they are
in principle experimentally observable., There has been much work aimed at
analyzing transient waveforms and frequency spectra for electromagnetic
responses with the aim of accurately determining natural frequencies from such
data [15,16,17].

The aim of this paper is to propose some ideas about the recovering of
SEM parameters from experimental data. In this endeavor let us look at some
results and speculations concerning electromagnetic theory, not from the point
of view of theoretical developments per se, but from the point of view that EM
theory has something to say about experiment, including what is to be
measured, how it is to be measured, and what is to be done with the data once
one has it. Let us attempt to apply as much a priori physics to the data-
analysis problem as possible so as to best extract the requisite information.

We assume that the data can be represented by a sum of SEM terms
corrupted by noise. This noise may be often thought of as additive, but not
necessarily so. It should be made clear that the goal of our endeavor is not
to best fit some individual or set of waveforms (or spectra in frequency
domain). The goal- is to best determine fundamental EM parameters from the
data to characterize the EM interaction in an efficient and accurate way which
allows us to best understand EM interaction phenomena over ranges of param-
eters of interest., Furthermore one can hopefully use this understanding to
control the EM interaction process in ways useful to engineering.

In this paper we discuss the application of various properties of the
SEM pole terms (natural frequencies, natural modes, and coupling coefficients)
and of the eigenmodes (of EM integral equations) to the analysis of experi-
mental data. These are lumped into four categories discussed in the following
sections,
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II. Factoring of SEM Pole Terms

Consider the pole terms in the singularity expansion., Write an SEM form
of the surface current density on a finite-dimension, perfectly conducting
object in free space in time domain as

. s t :
> - (maX) (1) > > Q .
J (F.t) = Eg 2 Folsg) ng o ng (1, 1)) Jsa(f‘s) e® u(t-t)
+ other SEM terms + noise
to = turn-on time
(2.1)
35 (Fs) = natural mode (appropriately normalized)
a
S, = natural frequency
nil) = coupling coefficient (appropriately normalized)
(max) _ e iy .
UM = normalization constant (for coupling coefficient)
-Tl_s direction of incidence
Tp z polarization vector
?p(s) = Laplace transform of incident waveform f,(t)
E0 z scaling constant for incident wave (in V/m)
Fs = coordinate on the surface S of the object

Here we have assumed an incident plane wave as the excitation., However, other
forms of excitation can also be used.

Let the object have a surface S, On S let us suppose that we make
measurements at N positions FS for n=1,2,...,N. At each of these positions
measure the component of the sUrface current density in some particular direc-

tion In parallel at that Fs . Furthermore 1let us postulate M different
n




incident waves characterized by directions of dincidence Il and polariza-

m
tion 1 for m = 1,2,...,M. The incident waveforms could also be different if
convenignt or if dictated by experimental conditions. The individual waveform
measurements are then scalars given by

T3 (F ,t) =

n sn’
s €
Ey E ?pm(sa) “imaX)“a(Tlm’Ipm) Tn * jsa(Fsg) e ® u(t - £

+ other SEM terms + noise (2.2)

In general the time is also sampled, say for tz with ¢ = 1,2,...,L. Here we
have written the formulas in time domain, but they could equally well be
written in frequency domain, say with L samples w, on the jw axis of the s
plane, corresponding to frequency-domain measurements.

There are various ways one might try to determine the SEM pole param-
eters from experimental data. First, one might determine some set of sa from
some combination (one or more) of the experimental waveforms (or frequency
spectra). Second, fixing the incident wave (including direction of incidence
and polarization), one might look at the variation-of the appropriate pole
residues over the object and use this to determine the corresponding natural
modes (appropriately normalized). Third, fixing the measurement location and
orientation, one might look at the variation of the pole residues with respect
to the direction of incidence and polarization, and use this to determine the
corresponding coupling coefficients (again appropriately normalized) and the

normalization constants nimax).

An alternate approach might attempt to utf]ize the redundancy 1in a
targer set of response waveforms (or frequency spectra), In this approach one
fits (2.2) to the entire set of data with a common set 6f SEM pole param-
eters, Consider as discussed previously that there are N position/orientation
combinations on the body and M incidence/polarization combinations for the
incidence- wave, and that waveforms for a11'NxM combinations of the above are
obtained. With L samples of the waveform (or frequency spectrum) then NML
pieces of information (real or complex) are available,




Assume that there are say K independent (not counting complex conjugate
pairs) natural frequencies, together with the corresponding natural modes and
coupling coefficients, that are significant and of interest in the data.
After normalization there are N-1 independent position/orientation samples for
the natural modes, M-1 independent incidence/polarization samples for the
coupling coefficients, and 1 corresponding normalization constant (for each
mode and corresponding coupling coefficient). Assuming no mode degeneracy (or
allowing for such degeneracy by counting the relevant natural frequency the
appropriate number of times) then we have (N + M - 1)K pieces of SEM informa-
tion we are trying to recover. '

Comparing the NML pieces of available information to the desired
(N+ M- 1)K pieces of SEM information, one has the possibility of improving
the accuracy of the SEM information, particularly as N and M both become large
in some sense, Here the basic idea is to enforce not only the commonality of
the natural frequencies throughout the data, but to enforce the factorization
of each of the residues into the product of a natural mode and a coupling
coefficient, Of cdurse, there is still the noise to be dealt with, as well as
other SEM terms which may contribute (such as an entire function, particularly
- at early times).




IIT. Modal Filtering According to Symmetry

In order to "identify" the various natural modes one could try to
separate them in various ways such that the experiment allowed only some of
them to appear in the data. This would in effect increase the signal-to-noise
ratio as far as identifying the modes in the remaining set is concerned. One
can think of this as partitioning the natural modes into various subsets for
separate identification., This is a kind of spatial filtering (instead of
filtering according to frequencies) which we can call modal filtering,

One method for such partition involves the use of the symmetries of the
object of concern, There are many kinds of such symmetry., Let us illustrate
the concept here in the case of an object with a symmetry plane. This applies
to a typical aircraft as far as its external interaction (or scattering)
properties are concerned. As illustrated in figure 3.1 a typical aircraft has
a vertical plane of symmetry P (vertical with respect to the local aircraft

coordinates if it is in flight).

One can separate the electromagnetic fields around an object with a
symmetry plane into two parts designated symmetric and antisymmetric. The
theory of this is discussed in detail in [7]. This is applied to the design
of EM sensor platforms in [1,3], including the use of an aircraft as a sensor
platform [41. '

Briefly summarizing we have

1 0 0
01 0 = reflection dyad

0 0 -1
= gt
(3.1)
[ xTx + yTy + zTZ = position or coordinates
Fm =R« F = mirror position or mirror coordinates

u

S g 4

Qur object with a symmetry plane (or equivalently with reflection symmetry)
has the property that every position Fon S is in a one-to-one correspondence
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with a mirror position Fm also on S. This concept can be extended to conduc-
tivities, permeabilities, and permittivities in scalar or dyadic form to give
a more general definition [7]. For the present we are only concerned with the
exterior of a perfectly conducting surface S which is symmetric in the sense
above with respect to a plane P (the z = 0 plane).

For a given electromagnetic field distribution around our object we can
find the symmetric parts (subscript sy) by

B, (Fat) = 7 Bty + B o B L0}

B, (Fat) = 3 (A(F,e) - R o B L))

3Ssy(F,t) =3 (LB + R F O (3.2)
ps,, (1) = 5 {og(Fat) + o (F 1))

gy (F8) = 3 (k(F,) - k(Fpt))

_where k is the equivalent magnetic charge density discussed in [5]. Similarly
we have the antisymmetric parts (subscript as) as

E(Fot) = 3 [B(Re) - Ro B L)

o (Fot) = 2 (AF,t) + R« R(F L))

i (Fe) =3 (3 (Bt) - R 3 b)) (3.3)
b, (Fot) - 3 {og(Fit) = o (B0}

kos(Fot) = 7 (k(F,t) + k(F ,t)}

The above can be interpreted in terms of mirror quantities as




‘ ?m(F,t) =R . E(Fm,t) (electric field)

i

B (F,t) = -R . ﬁ(?m,t) (magnetic field)

m
Us (F,t) =R » js(Fm,t) (surface current density on S) - (3.4)
m 5
o, (Fst) = p_(F ,t) (surface charge density on S)
S s''m ;
km(F,t) = -k(Fm,t) (equivalent magnetic charge density on S)

Note that some mirror quantities are defined with a plus sign; these corres-
pond to electric quantities. Other mirror quantities are defined with a minus
sign; these correspond to magnetic quantities. In effect electric and
magnetic quantities reflect with opposite signs. . The symmetric and anti-
symmetric parts are merely 1/2 the sum or difference of a .quantity with its
mirror quantity. This concept can be extended to all electromagnetic quanti-
ties including various kinds of potentials.

’ ~ Now let us apply these concepts to natural modes. From (2.1) we have an’
SEM representation of the surface current density. Suppose that the incident
field is purely symmetric (as in (3.2)). Then we would expect the scattered
field to be purely symmetric, since that is what is required to match the
boundary conditions on a scatterer with a symmetry plane. Then only natural
modes that were symmetric would be excited. Similarly if the incident field
were antisymmetric, only antisymmetric natural modes would be excited,

Let us then divide the surface-current-density natural modes into two

kinds as
35 (f) =R » 35 (Fm) (symmetric)
sy,a' sy ,a'
3S (F) = -K » J (F ) (antisymmetric) (3.5)
aS,a' aS,a'
a = (:i,a') = natural mode index set
. This result can also be deduced from an integral equation for the scat-
tering. Let us write an E-field integral equation over S as

\




Ttptpe s Tdne> = 1) - 800z e

€S (3.6)
Tt =1 - TSTS = transverse dyad on S

1.- Txtx + Tyfy + TZTZ = identity dyad

IS = unit normal (outward) on S

with the symmetric product notation denoting integration over the common
coordinates F;. We need not concern ourselves here with details of the
kernel. Now the natural modes for surface current density (and natural
frequencies) are defined by

gty 3, (> = 8 (3.7)

It is shown in [7] that, under the conditions of a symmetry plane such
as we have here, any solutjon of Maxwell's equations admits a mirror solu-
tion. So coEresponding to a natural mode there must be a mirror natural mode
(with the same natural frequency) as

NGELES AICR (3.8)

which also satisfies (3.7). Then linear combinations of 35 with its mirror
Q

must satisfy (3.7). In particular the combinations that give symmetric and
antisymmetric as in (3.2) and (3.3) and exhibited in (3.5) must satisfy
(3.7). Hence all natural modes can be constructed in this way.

As to whether a mode can possibly be neither purely symmetric nor purely
antisymmetric, one can construct such cases involving modal degeneracy. In
effect if, for example, a symmetric and an éntisymmetric natural mode were to
have the same natural frequency, then a linear combination of the two is also
a natural mode. One can find such cases if even higher order symmetry is
present, as in the cases of bodies of revolution., However, this allows one to
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divide the natural modes into symmetric and antisymmetric modes with respect
to the chosen symmetry plane,

Now the coupling coefficient can be expressed as [21] in class 1 form

(3.9)

Looking at the numerator of this expression, let us invoke the symmetry of the
object surface S which is the domain of integration. If 35 is symmetric

and €(1nc) is antisymmetric this integral will be zero, and si%i]ar]y if 35

is antisymmetric and E(lnc) is symmetric. This reflects the observation that

a symmetric incident field excites only symmetric natural modes, and an anti-
symmetric incident field excites only antisymmetric natural modes.

The foregoing discussion indicates one way to separate the natural modes
into two sets in an experiment. Let the incident field be first symmetric,
Only symmetric natural modes and their corresponding natural frequencies will
appear in the data, In measuring the natural frequencies and modes such an
experiment reduces the number of significant natural frequencies and modes in
the data before us, and thereby should increase the effective signal-to-noise
ratio for obtaining these symmetric-mode parameters.

As a separate experiment let the incident field be antisymmetric. The
corresponding natural frequencies and modes will be antisymmetric param-
eters, Again certain parameters (antisymmetric) will have been enhanced by
§uppressing others (symmetric).

The reader can consult [7] to give examples of excitation (incident
fields) which exhibit the above., It is quite possible to design experiments
which (within experimental error) do so separate the symmetric and anti-
symmetric natural modes in the response.

An alternate approach allows the incident field to be arbitrary as long
as the scattering is characterized by the requisite symmetry plane P. As
discussed in [7] one can incorporate symmetry into the measurement scheme to
separately measure the symmetric and antisymmetric parts of the response,
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Consider first the case of measurements on P, This is discussed in some
detail in [4]. Referring to fig. 3.1A note measurement locations and orienta-
tions on P designated A and B. Assuming the measurement is that of surface
current density, then at A a measurement parallel to P (and S) is sensitive
only to symmetric natural modes, Conversely at B a measurement perpendicular
to P (but parallel to S) is sensitive only to antisymmetric natural modes.

Next consider measurements off P, As illustrated in fig., 3.1A consider
a pair of measurements at C and D with vector orientation parallel to S and
each a mirror of the other (in the electric sense), i.e., define unit vectors
at these two locations parallel to S such that

(3.10)

These unit vectors denote the sense in which the surface current density is to
be measured at each of these locations.

As discussed in [7] the signals from the sensors can be added and
subtracted as in (3.2) and (3.3) to give in scalar form
-IC L4 j

(Fot) = 2 {1« I, (Feut) + 1y - TRt} = 1, - 30 (7

t)
Ssy © gy

D’
(3.11)

> 1 > + >
1 - jsas(rc,t) =5 {1 « J(Feot) - Iy « I (Fpu0)} = -1 Usas(ro,t)

In this concept the sum responds to the symmetric part and the difference
responds to the antisymmetric part. '

Heretofore we have discussed the surface-current-density natural
modes., There are other (related) parameters on S that one can measure. One
scalar measure is the surface charge density given by '

v e 3 (Fat) = - 2o (Fut) | (3.12)
This can be used to define corresponding natural modes via

. (F) (3.13)

> e
pg (F) =29, « ]
[e 3 [+ 3
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] where 2 is some characteristic dimension of the object of interest. 1In turn

the surface-charge-density modes are also symmetric and antisymmetric with
properties as in (3.2) and (3.3). The normalization in (3.13) is'somewhat
arbitrary, but preserves dimensions,

In addition, there is the equivalent magnetic charge deﬁsity on S
discussed in [5]. This second scalar measure on S is given by '

t
k(Fat) = vg » BUV(E, ) = T« v, x 3 (F,0)] (3.14)
where the subscript t indicates the components of the magnetic field parallel
to S (on the exterior where applicable). Again natural modes can be defined
for the equivalent magnetic charge density as

ka(F) =g IS » [vg x jsa(F)] (3.15)

These modes are also symmetric and antisymmetric (in the magnetic sense) as in
(3.2) and (3.3). Again the normalization in (3.15) is somewhat arbitrary, but
preserves dimensions,
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IV. Modal Filtering According to E and H Modes

Another property of the natural modes which we can use to aid in separ-
ating them for separate identification in the data is their curl/ divergence
property. As in (3.12) and (3.13) one can relate the surface charge density
to the surface divergence of the surface current density and define surface-
charge-density natural modes. Correspondingly in (3.14) and (3.15) one can
relate the equivalent magnetic charge density to the normal component of the
surface curl of the surface current density and define equivalent-magnetic-
charge-density natural modes. '

An interesting question is whether each natural mode has zero normal
surface curl or zero surface divergence (but not both), and whether some
natural modes have zero normal surface curl while some others have zero
surface divergence. Let us denote modes symbolically with

E => zero normal surface curl (k = 0),
non-zero surface divergence (pS £ 0)
(4.1)
H => zero surface divergence (ps z 0),

non-zero normal surface curl (k # 0)

So the question is whether some or all of the natural modes can be classified
this way. If they can, then separate measurements of Pq and k can filter the
modes by separating them and their corresponding natural frequencies in the
data according to the above property.

Let us generalize this question of E and H modes to the case of eigen-
modes. As discussed in [11,13] one can define eigenmodes of the scattering
integral-equation operators, Using for convenience the symmetric E-field or
impedance integral equation (3.6) we have

Q(FS,F;;Q ; 3, (?;,> 7 ()5 (%s) (4.2)
B B

Analogous to (2.1) an eigenmode expansion method (EEM) representation of the
surface current density on S can be written in complex frequency domain as
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{

3 | 1 Qs (F1,9) ;E““"(F;,> .
I (Fgos) = Lo o= 2 T Js (Fors) (4.3)
B JSB( eoS) Ess(rs,s)

If desired one can set the denominator symmetric product to 1 giving ortho-
normalized eigenmodes. Alternatively the above form can be used to allow us
to normalize the eigenmodes to some peak or typical value, as is often done
with natural modes,

Consider the E-mode and H-mode properties of such eigenmodes. As a
canonical problem consider the perfectly conducting sphere of radius a., In
this case the eigenmodes are well known [8,10]. They are the vector spherical
harmonics § and R given by [8]

Vmo(098) = Pgm)(cos(a)) {§$;Eggg}

m=1,2,...,n and ¢ = 1 (upper), 2 (Tower)

P mo(8s0) = Yn,m,?(e,¢) 1. (4.4)
Q. m.o(808) = av Yn,m,c(e;‘b)

a Ie'%€ 5(8:0) I¢-—;H(§7 55 'n,m,o(¢0)

nm,ol8s8) = [Irvn m,ol8s¢)]
- 1, ﬁﬂ% Voom,o(820) = T, 35 ¥, 1 (6.4)
These are related by | ,
5n,m,o(°’¢) =1 §n,m,o(9’¢) (4.5)
nmyo = 1r % Q.o (86)

Summarizing some results for surface curl and divergence [5,20] we have
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VS X TS = 6

[F x TS

— — «J <]
. . . .

<]
.

s ¢ [vg9] =

» Vg x [ol.] = [v,9]1 x I

] = TS . [Vs x ?]

(v, x F1=0 if F is normal to S

(4.6)

S [Vs x [ng]] =0

[vg x [TS » [v9ll] = Vgg

2
ng

There are other formulas in [20] involving surface operators. Note that the

above nowhere explicit

Applying these f

By

with a minus sign in
us to identify for the

?éE)(FS,S)

[
v
—
¥
(72}
-
w
~
[11]

ly include the princ¢ipal radii of curvature of S.

ormulas to the eigenmodes of a sphere we have

+(E)(FS’S)] = TP . [VS x an,m,a(e’¢)]

]

al o [vg x [9gY, o (8,4)]] =0

(4.7)

Vg + Ry o o(850)

AN [TrYn,m,o]} =0

the second equation for later convenience. This allows
sphere

) = E (or TM) eigenmodes for
surface current density
s (4.8)

q

n,m,a(e’¢

=z -R (6,6) = H (ar TE) for eigenmodes for

n,m,o surface current density
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Note that in the case of the sphere these eigenmodes can be taken as purely
real valued. They are also frequency independent and are hence in this case
also the natural modes.

Now compute the surface-charge-density and equivalent-magnetic-charge-
density eigenmodes for the perfectly conducting sphere (with ¢ in (3.13) and
(3.15) chosen as a) as

5. (Rs) = 3BV 50 = ang o 4, L (000)
81 Bl
= afvly, L (0,9)
2
13 resgay 3 1 3
= 5Tey 55 [S1(8) 55 Yo,m,o(®0)] * o 7 Yom,ol000)
(4.9)
Es '(Fs,s) = aTr . [vg x jéH)(Fs,s)] = -aTr . [vg x §n,m’°(e,¢)]
B, B,
23 .
= -a"1 e [vg x [V x [TrYn,m’o(e,¢)]]]

s n,m,o

= -afl . (v, x [OVY, _ _(0,4)1 x 1.1]

"
o
<3

S Yn,m,&(e’é)

Here we have chosen 31 and 32 as the eigenmode indices for these two kinds of
modes above. Note that Bl and 32 have to be related to the index set {n,m,c}
of the spherical harmonics as well as the E and H mode indices. What we have
here is the result that, at least for the perfectly conducting sphere, it is
possible to define an eigenmode index g such that

~ > ~e <> :

B B8 '
indicating that the eigenmodes can be paired with each E mode corresponding to
an H mode and conversely. This result can also be seen in terms of the
surface-current-density eigenmodes in (4.5) which can be written as
E)(%_,5)

T(H) 2 -
JsB (rs,s) r qu s? (4.11)
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§§§’(Fs,s) g g '§§:)<Fs,s)

These results for the perfectly conducting sphere in (4.,10) and (4.11) show
that one need only have determined one kind of eigenmode (E or H)} and the
other kind is also immediately determined.

Consider now the surface Laplacian as in (4.9). In spherical coordin-
ates on a surface r = a we have

2
2.2 -1 3 : 3 1 3
a VsYn,m,a(e’¢) - 3?77557'55'[51"(3) 20 Yn,m,a(e’¢)] ;:::'a;;'—ﬁ? ACH)
(4.12)
Now we have from (4.4)
2
3—; G(8:0) =AY (0,0) (4.13)
giving
2
2.2 d
a Vs (6,¢ {_TET§T de[s1n(6) Eg (m)(CoS( ))] - ;;fgzgy pgm)(cos(e))}
{cgs(m)} Co (4,14)

sin(mg)

Now the Legendre functions satisfy the differential equation [19 (Chap. 7)]

2
sTereT 35 [s10(8) G5 P{M (cos(e))] + [n(n + 1) -———Si:z(e)] P (cos(e)) = 0
(4.15)
Substituting this into (4.14) we have
2 2 _ . )
a stn,m,c(e’¢) = -n(n + 1) Yn}m,c(e’¢) (4.16)
Stated in another way
2  n(n+1) o -
[vS + ] Yn’m,o(e,¢) =0 (4.17)

2%
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which means that the Youm s 2re the solutions of a scalar Helmholz equation on
9y

the surface of the sphere,

Let us then define some scalar potential function 38 which, at least in
the case of the perfectly conducting sphere, can be used to characterize the
eigenmodes for the surface current density, the surface charge density, and
the equivalent magnetic charge density. These can be reconstructed as

:(E) > - ~ > . . T(H),»
g [ (Fgs) = 27 Fg (Fus) I g | (Fgs)
:(H) > - ~ _ :(E) >
JSB (Pgss) = =27 x [Tsés(rs,s)] = Ig x JSB (Fg,s)
(4.18)
~ 2 2n
= ~(function g8, %, and s) 38(?3,5)
K (Fgas) = 2798, (Fg,s)
= -(function of g, 2, and s) 3B(FS,S)
where EB satisfies a Helmholz equation on S as
[v2 + (function 8, ¢, and $)] &, (F,s) = 0 (4.19)
Note that we have included a possible dependence on s in the Helmholz equation
since we expect the EéE’H) and the 38 to depend somewhat on frequency in the
8

general case.

At least for the sphere the eigenmodes have some important properties
which could be very useful. An important question concerns the degree to
which these properties apply to arbitrary perfectly conducting bodies of
finite linear dimensions in free space. A very interesting paper [14] has
considered the magnetic-field integral equation, giving a "“pseudosymmetric"
eigenmode expansion with a pairing of the eigenmodes like (4.11). Here we
would Tlike to conjecture that this pairing applies 1in. general to the
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electric-field integral equation and that the modes can be considered as E and
H modes as in (4.11) and (4.18).

This problem of separating the eigenmodes into E and H modes is related
to the problem of separating vector fields into parts with zero divergence and
zero curl, That this can be done is known as the Helmholz theorem. Explicit
formulas have been developed for a three-dimensional current density field in
[2]. An interesting paper [6] has discussed the application of this type of
decomposition to surface curl and surface divergence such as we are consider-
ing. The two parts also are related as in (4.11) which is consistent with our
conjecture,

It is known [11,13] that the eigenmodes and natural modes are related,
Referring to the integral equation (4.2) we have

PO i, .: > =
L(FgaFess,) JSS(PS,%;Z:> b (4.20)
so that comparing to (3.7)

7 =
8% (4.21)

J. (F_,s ) =3 (F.) (times an arbitrary constant)

S s’ e S S :
g a .

The eigenmodes are natural modes at certain natural frequencies S, for which

the corresponding eigenvalues (eigenimpedances) are zero. The natural mode

index a can then be partitioned as

a = (8,8") (4.22)

where g' indicates the g'th zero of the gth eigenvalue, As indicated
previously, g can also be partitioned according to E and H modes, and
symmetric and antisymmetric modes (or partitioning according to higher order
symmetries). In the present context one might set

8 = (i 200 1)

‘ (4.23)

E s
@ = (s 340 M ')
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with n' denoting the n'th zero of the nth eigenvalue after separating out
(E,H) and (sy,as).

Now one difference between the modes of an arbitrary perfectly conduct-
ing surface S and the perfectly conducting sphere concerns the real-valued
nature of the modes. For the perfectly conducting sphere the eigenmodes for
the surface current density are the vector spherical harmonics in (4.4).
These are purely real-valued vector functions., However, in [10] some of the
natural modes are computed for the prolate sphere, a limiting case of which is
the sphere. For the prolate sphere the natural modes are not purely real but
include an imaginary part. Fortunately, the imaginary part is small compared
to the peak magnitude of the mode, at least for the first few (lowest order
axial) natural modes considered. Furthermore, it is known that in the limit
of a thin wire the natural modes can also be represented as purely real
[12,23]. Since the natural modes are special cases of the eigenmodes the
above observations can also be applied to the eigenmodes. Thus the property
of pure realness of the eigenmodes does not generalize from the sphere to more
general shapes. Furthermore, since the natura1'frequencies occur in complex
conjugate pairs and the corresponding natural modes are also complex conjugate
to each other, then any eigenmode with not all purely real natural modes must
also vary as a function of s. '

Now as to measurements, one can measure the various natural modes. By
measuring Ps and k as functions of time or frequency one can. determine the
natural frequencies and corresponding natural modes. To the extent that the
natural modes separate (or even approximately separate) into E and H modes,
such a separation can be used to improve the determination of the natural
frequencies by reducing the number of significant natural frequencies in each

measurement, If, as indicated in the case of the sphere, the Ss and ?8 are

the same, even though they have different natural frequencies in ggneral, this
should simplify matters somewhat.
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V. Modal Filtering According to Modal Quasi-OrthogonaIiiy

An important property of the eigenmodes is their orthogonality, i.e.,

4 ~ = Q for gy # B
<:::§s (Fgss) 5 I (FS{EZZ> { Lo (5.1)
Bl 32 # 0 for By = 52

where we exclude possible peculiarities associated with modal degeneracy from
our present discussion., Let us use this orthogonality property as a modal
filter,

Expanding the surface current density in an eigenmode expansion as in
(4.3), let us take the symmetric product of the surface current density with
one of the eigenmodes giving

< ~ A ~
¥ + , : 3 > , - 1 > > , . E(inc) > >
<SB(PS S) S(rs> z (5) <\JSB(PS S) (PS S) (5.2)

This indicates that one might use an eigenmode (if one had such a thing, even
approximately) to filter the data in a way which produced something which was
proportional to Z;l, and which contained only those object poles which were
the zeros of ZB’ i.e., the SB,B}' The poles associated with other eigenmodes
would be suppressed, thereby increasing the effective signal-to-noise ratio in
determining the particular subset of the poles, the s

8,8""
Let us perform a gedankenexperiment. Suppose that as in section 2 we

measure the surface current density at N positions on S designed Fs for n =

n
1,2,...,N. At each Fs there are two components of the surface current

n
density. Designate one of the component directions as Tn and the other
as Tn+N with

T o1 ., =0 forn=1,2,...,N
no TN (5.3)

?S = FS for n = 1,2,...,N
. n¥tN  °n

Then by letting n vary from 1 to 2N all patches are covered twice, one for

each of the two orthogonal components of the surface current density.
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The integral in (5.1) can then be approximated by a sum giving

2N ~ ~
n§1 [Tn . 3531(?50’5)][1!" ) 3532(an’5)] A
- 3, (Fo9) 5 3, (FS,> { GG
By By # 0 for g, =8, (5.4)
Sn = surface patch with "center” an
An = area of §,

Let us apply this approximate orthogonality to the measured data.

Similarly approximating the integrals in (5.2) we have

DR SIGR e R AR
y-1 2N 1 T s Tl E(1nc) >
= g (S) ngl [ n . Jss(rsn’S)][ n ( n’S)] An
= Fyle) (5.5)

This ?S has the property then that

-1
?B (SB,Bl) = 0 (5.6)
so if we can construct the ?B from the data we have a means of determining

the SB,BIo

Well now we need one or more eigenmodes to make this waork. Eventually
there may be various ways that are known to be able to do this. Basically we
need a set of coefficients approximating Tn . EB(FS ) to weight our measure-
ments of the surface current density so as to bringrbut the'po1es sBsB' asso-
ciated with this eigenmode. One approach would be to select these coeffi-
cients so as to minimize the residues of poles associated with some s , or

81 ’B
set of these for which 31 # B.
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Another approach is to take some estimate of the gth eigenmode obtained
by other means. Say as in section 2 we have already determined some approxi-
mation of one or more natural modes. Then as in (4.21) note that natural
modes are associated with eigenmodes, Let us assume that

: > >
Jo (Fos8) =] () (6.7)
sB s SB,B' s
i.es, that at least some eigenmodes of interest can be approximated by natural
modes, the natural frequencies of which are zeros of the corresponding eigen-
values.

Now there is some evidence for the above. The case of the perfectly
conducting sphere in (4.4) has the eigenmodes independent of frequency. In
this case the eigenmodes are all natural modes as well, Furthermore, note
that the eigenmodes in this case can be represented as purely real-valued
vector functions tangential to S. Another case of interest is the thin wire
in which case the natural modes are also purely real functions (as the wire
thickness tends to zero) [12,23]. A numerical study of the thin wire shows
the almost realness of the principal natural modes [9]. A very interesting
study considers the prolate spheriod, exhibiting the natural modes for various
ratios of minor to major radii [10]. Varying this ratio from the case of the
sphere to that of the "thin wire" shows that the Towest order natural modes
are almost real over the range of this parameter,

Let us then take some natural mode 35 determined by some other means
8,8
(e.g., section 2). Note that we also have immediately 35 since the
I
natural modes occur in complex conjugate pairs, i.e., Bo=B
*
I F) =T (@)
B,-8 B8
* z complex conjugate - (5.3)
* -
%6,-8' ~ °g,8'

Here -g' is used in the indexing system to give the natural frequencies in the
third quadrant of the s plane, positive values of g' applying to the second
quadrant. From (5.8) one may also define an averge natural mode as
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+(avg) 1+ ¥ + >
(F) =5 [3 (F) +3 (F.)
F-. I T NI ]

(5.9)
5g,8"

"
©
®
[
P
3¢
w
L —
[ S—

This is also an approximation to the gth eigenmode. In the case of a real
eigenmode the average natural mode is the same as the actual eigenmode, at
least for the particular natural frequency under consideration,

Heretofore the problem in this section has been formulated in frequency
domain (complex). However, to the extent that eigenmodes can be characterized
as frequency independent the problem can be characterized in time domain. In
terms of natural modes, frequency-independent eigenmodes give the orthogonal-
ity condition '

=0 for g, # 8
<::§; .(Fs) ;,js “(é;z:> { | Lo (5.10)
81 '8 32 sB # 0 for 51 = 52

~ Note that this is only approximate since some frequency variation of the
eigenmodes, and hence some variation of the natural modes. over g' (for
fixed B8) is in general expected.

Applying this result to the SEM representation in (2.1) we have

S +5 t)
SE T Fols, o0) nimaX) ..I f)< (F) 5§ <F>
°g" P 8.8 Te,p" e P %8,8' ° Sg,p" S

BsB -
e u(t to)
+ other SEM terms + noise

ot

s
= B,8 -
f§.. Re,8',8" © u(e - )
+ other SEM terms + noise | (5.11)
Here the RB a'a" are the residues of the unsuppressed poles. Applying (5.7)

. and (5.9) we can regard
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I (Fs,s) = 3‘5 (Fs) - :}réavg)(gs) = purely real natural mode (5.12) .
8 g g

giving

s .t
<::§§:vg)(rs) . jS(%EEz:> = g' RB’B. e B8 u(t - to)

+ other SEM terms + noise (5.13)

Now approximate the integral over S by a sum as before giving

2? to.3ved it LI L] A =6 (t)
RN Jss s, bt T Ustls o n =Yg
s Wt
- BB -
g. RB,B' e u(t to)
+ other SEM terms + noise (5-145

Here we have constructed one or more G (t) which are dominated by the SB g
natural frequencies, The other natura] frequencies are hopefully signifi-
cantly suppressed. Note that this is a time-domain waveform. Our gedanken-
experiment in this case has taken 2N waveform measurements, preliminary
estimates of some important  natural modes, énd combination of the waveform
measurements by a set of weights which enhance the set of natural frequencies
associated with the particular gth eigenmcde of interest.

Note that while (5.14) is written in time domain a Laplace transform
gives ﬁs(s) and the exponentials becomes poles. Setting s = jw then this
technique for finding poles applies in frequency domain as well,

Another result of the development in this section is the implication of
the quasi-orthogonality formuias (5.5) and (5.14)., Not only do they have
application for finding natural frequencies, they also group the natural
frequencies according to the eigenvalues, Note that this grouping can be done
experimentally by these formulas which imply processing the experimental data
in certain ways. From (5.5) one can even in principle reconstruct the eigen-
values from the experimental data. Of course, the techniques discussed are
only approximate for this partitioning of the ss 8! according to the Z (s)
since the natural modes: only approximate the eigenmodes and their orthogona1-
ity property.
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VI.  Summary

Well, this paper has covered quite a lot of ground. Perhaps it will
stimulate some readers to explore some of the points contained and to imple-
ment some versions of the experimental” procedures discussed. There are
various properties of the various modes which are known for special cases.
Are they exactly or approximaté]y the same for more general cases? Some
evidence exists; more is needed.

The ideas explored here are grouped into four major categories. Section
2 discusses the implications of the factoring of the SEM pole terms and the
experimental determination of these parameters. Section 3 considers the use
of symmetry, in particular a symmetry plane, for separating the natural
frequencies, modes, etc,, into distinct sets present in distinct sets of
experimental data. Section 4 discusses the use of surface-charge-density and
equivalent-magnetic-charge-density measurements to separate the modes and
associated natural frequencies into two distinct sets of data. Section 5
considers the application of eigenmode orthogonality in an approximate way to
the natural modes to separaté the natural frequencies into sets associated
with each eigenvalue. '

~ As a last point it should be emphasized that .theory and experiment
should not be thought of as totally separate. Each should shed light on the
other, In particular, all possible a priori knowledge concerning the char-
“acter of the electromagnetic response should be applied to the problem of the
design of optimum experiments, including what is to be measured and how the
data is to be analyzed. On the other hand, well designed experiments can give
results which give insight into the theoretical description of the electro-
magnetic response.
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