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ABSTRACT

The analysis of EMP effects depends on parameters which in effect may be random variables.

One such example is the physical orientation of a cable within a structure. Further there are

‘ situations where o parameter may be deterministic, e.g., terminal impedance, but to nvestigate
- system behavior over a broad range of possible terminations one is forced to treat terminal
impedance as a random variable. In this report we develop a model for a random lay cable with

random termination and derive the stochastic properties of the associated electromagnetic

matrices of interest.
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1. INTRODUCTION

Given a particular visualization of a cable and its terminations such parameters of interest
as the scattering matrix can be calculated and the system's response to EMP determined for
that particular visualization. Howevexl', there are other visualizations that might be encoun-
tered. For example, one may find pin #2 in the uppermost position of a connector rather than
pin #1 as was assumed. Will the EMP response of this second visualization differ significantly
from that of the first? This question can in principle be answered by a recalculation of all
parameters for this second visualization. But the number of possible visualizations that need to
be calculated can get rapidly out of hand even for relatively simple systems. This direct calcula-
tion approach fails even more rapidly when one extends his area of inquiry beyond a specific

cable to a generic type of cable, e.g., aircraft communications cables in general.

The approach we will take in this effort is to treat the parameters of the cable and its termi-
navicns as random variables. We mil develop a stochastic modei for a random lay cable. Based
on this modei, the question: “Will the EMP response of this second visuaiization differ

significantly from that of the first?” will be answered probabilistically.

2. OBJECTIVES OF THE RESEARCH EFFORT

The first goal of this effort is to develop a stochastic model that describes a random lay
cable. Clearly there are as many random lay cable models as there are possible definitions for
what constitutes a random lay. In this study we adopt the approach that the parameters of the
cable elements are fixed and that it is their spatial orientation and terminal impedances that are

random.

Having defined our model, our next goal is to develop the stochastic properties of the model.

Finally, we derive the distribution theory for scattered current in a random lay cable.



3. PERMUTATICN MATRICES

In constructing our model of the random lay cable we wiil make extensive use of the concept .
of a permutation matrix. [t is therefore appropriate at this point to review the properties of

such matrices.
A. ALGEBRAIC PROPERTIES

Property 1:

Let I'I,-_,- be an identity matrix with its fth and jth rows interchanged. Then II;;M is

the matrix M with its 1th and jth rows interchanged.

Property 2:

MIL;; is the matrix M with its fth and jth columns interchanged.

Property 3: .

I;; MII;; is the matrix M with its {th and Jth rows and columns interchanged.

Property 4:

The II;;’s are symmetric, orthogonal matrices; n!'=r17T.

Property 5:

Define a permutation matrix P:

yz

Then P is an orthogonal matrix; P! = PT-

Property 8:




PTMP is the matrix M with a sequence of row and column interchanges.

Property 7:

P is of the form that each column (row) contains one 1. The rest of the elements in the
column (row) are 0.
Property 8:

P is of full rank.

Property 9:

[PTMP]! = PTM-IP

Property 10:

(PTMPYPTNP) = PTMNP

Property 11:

The effect of PTMP is to relocate diagonal elements of M onto the diagonal of PTMP

and to relocate off diagonal elements of M onto off diagonal elements of PTMP.

B. STOCHASTIC PROPERTIES

Stochastic Property 1:

Assuming that all permutations are equally likely, then the expected value of the permuta-

tion matrix P is

E[P] = J,

L
N



where J is an N X /N matrix all of whose elements are 1.

Stochastic Property 2:

The expected value of the matrix PTMP is

my on diagonal
E[PTMP] =

m,

of f diagonal

where 7y is the average of the diagonal element of M , 7, is the average of the off diagonal

elements of M and M is an arbitrary square matrix.

Stochastic Property 3

The expected value of the matrix (PTMP)?2 = PTM?P is

< Y myumy;  on diagonal

) ) My My g dtagonal
1\/2 f\_f ;_J_‘g i ff g

Stochastic Property 4

The variance of PTMP is

< Y mi - (7,;)?  on diagonal
Var|PTMP] = *

N21 N Z:,, mym; — (@,)2  off diagonal
N 5

4. THE RANDOM LAY CABLE MODEL

Consider a cable consisting of /N parallel conductors and an infinite ground plane.
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Figure 1

The ¢th conductor is characterized by

Ty = the radius of the wire

{; = the thickness of the insulation

d;; = the distance form the center of the fth wire to the center of the jth wire
h; = the distance of the center of the §th wire above the ground plane.

Following Paul and Feather’s {1] development, let the per unit length bound charge distribu-

tion at the dielectric surface be expanded as

A B,
pl0) = big + % dipeos(mby) + 5 Biysin(mé;)
m==i m==1

and the per unit length total charge distribution {bound plus free) at-the conductor surface as

A; B
p(8;) = a;0 + ¥, aucos(mb;) + 3 biysin(mé;)

ma=] ]

where 8; is an arbitrary reference angle for the fth conductor. Boundary conditions are
enforced by requiring the potential of the fth conductor due to all charge distributions in the
system at a set of matched points on this surface to be ¢; , and the normal component of the
displacement vector due to all charge distributions to be continuous at a set of match points on

each dielectric surface. The boundary conditions yield a set of simultaneous equations

¢ et 2 AR st i m e - = P




Paul and Feather show that the per unit length capacitance matrix is of the form

¢! = ky(17)2mry; + ko(i7)2m(ry+t;) (1)
k(i7) is the sum of all elements in D! which are in the row associated with a;, and the
columns associated with ¢; . kg(ij) is the sum of all elements in D! which are in the row
associated with @;, and the columns associated with ‘%j . They show further that when the
wires are sufficiently separated from each other and the ground plane, an approximate per unit

length inductance matrix is of the form

(2)

3)

From our point of view, the importance of these results is that the 17 elements of these

matrices are direct functionals of parameters of the fth and jth wires only.

Let L' and C' be respectively the per unit length inductance and capacitance matrices
associated with some reference cable orientation. Then from (1), (2), (3) and Property 3 it fol-

lows that L' and ;C' ,for the kth permutation (;FP) , can be written as
$C' = PTYC" ):P)

(4)



L' = (PT(L" )N, P)

Having modeled the capacitance and inductance matrix associated with an arbitrary cable
lay in terms of a permutation matrix, we now apply our knowledge of the properties of such

matrices to derive the stochastic properties of the random lay cable.

A. EXPECTED VALUE OF THE PER UNIT LENGTH INDUCTANCE, THE
PER UNIT LENGTH CAPACITANCE AND CHARACTERISTIC IMPEDANCE

MATRICES FOR A RANDOM LAY CABLE:

From (4), the kth permutation of the cable will result in capacitance and inductance

matrices of the form

(C') = PT)C" )4P)

(L") = (PTYL" ), P) . ‘

Since every permutation is considered equaily likely, the expected value of the L and C

matrices of a random lay cable comes directly from Stochastic Property 2.

_}V- Y e on diagonal

E{C'] =
Nzl 5 Y 6 of f diagonal
1 .
~ SNl on diegonal
E[L'] =
Nzl 5 IR of f diagonal

where N is the number of conductors in the cable and ¢;; and l; are the elements of the

10

e [ P




per unit length capacitance and inductance matrices as defined in (1), (2} and {3) for the arbi-

trarily selected refererce orientation of the cable.

The expected value of the characteristic impedance and admittance matrices follow in a simi-

lar manner. Defining the characteristic impedance matrix Z, as [2]
Zc = ! "IT[X]lﬂT-I

where [\] is the diagonal matrix of eigenvalues and T the matrix of eigenvectors associated

with the decomposition
C' L' =T\ T-!
then the characteristic impedance matrix for the kth permutation is
§Z, = O TITM2T

By Properties 3 and 10

) = TYPTC' L' P)T
Since C' L' = T\ T

N = TPT TN TPT

22, = [PTC' PI'T-T'PT T-I\V3 TPTT-!

By Property 9

22, = PTC! -lpPT TN/ TP
kz = PTc' -lT-In\NV/3 TP

W2, = PTzZ P

11



Further

.‘:Yc = ch—l = [PTZCP]—I
.Y, = PTz;p
Y. = PTY,P

By Stochastic Property 2 the expected value of the impedance matrix is

%[- Y oz on diagonal
E(Z] =

m > of f diagonal

and the expected value of the admittance matrix is

—}V 3 v on diagonal

—NTL_Z\—I > ¥ of f diagonal '

B. THE EXPECTED VALUE OF THE SCATTERING MATRIX

Let the terminal admittance of the random lay cable be Y, . Assume that the elements of

Y7 are fixed. Then [3]
#S =1~ G2GYIII + Z2G: Y™

¢S = [PT(I -2, Yy, )PIIPT(I + 2, Y1, )P

¢S = [PT(I - Z,; Y7, )PIPT(I + Z,, Yr,,)'P

Since PTP = [ (Property 5)

— — e s e wm s wmeras e s awn omeee G L v s e e i [,




Using Stochastic Property 2, the expected value of the scattering matrix is

%E 8; = 3;  on diagonal
E[S] =
1
N*-N

D% =F of f diagonal

C. VARIABILITY OF EM MATRICES:

So far we have looked at the expected value of some matrices of interest under our random
lay cable model. We have found that they all have essentially the same form of expected value.
While the values of 't,he elements of the matrix will tend to have the expected value, any one
visualization of a random cable is likely to produce ciiﬂ'erent results. The question to be
addressed now is the extent to which the elements of an EM matrix are likely to vary from their

expected value.

Worst case variability is of interest. Clearly the maximum possible variation in any of the
electromagnetic matrices considered is simply the difference between the largest and smallest on
(off) diagonal elements of the reference matrix for diagonal (off diagonal) terms. In addition we

will find a measure of the average expected variation of matrix elements.

A common measure of variability is the Coefficient of Variation defined as

__ standard deviation of y (5)
expected value of y

Clearly v = 0 implies no variability what so ever. Hence the expected value of y is a per-

fect description of y . While on the other hand, ¥ = co implies that the random variable y

13



is so variable that its expected value is of little use in describing the variable. In our treatment

we will use a form equivalent to (5) . .

vy = {—Euﬂj— - 1} v (8)

(E[Y])?

The electromagnetic matrices of interest have all been representable in the form

4M = PTMP and their expected values have had the form

P

DR~ L~
KN o

b O

We will find the same true for variation. Therefore, we will develop the variation only for the

scattering matrix since these results are immediately transferable to any other matrix of

interest. .

From Stochastic Property 3 we have the expected value of the #)th element of the matrx

S22 = STS as

Then by (4) and (5) the coefficient of variation for on diagonal elements is

14
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For the off diagonal elements the coeﬁicient of variation is from (5) and (8)

r 1 11/2
NQ—N . skt'skj
v = . 2t — — 1 (7)
~ ; 8 |

5. PROPERTIES OF A RANDOM LAY CABLE WITH STOCHASTIC RESISTIVE TER-

MINATION

Consider a random lay cable of N conductors with a ground plane. Assume that its

. N characreristic impedance is of the form

b ¢
Let the fth conductor be terminated with a resistance r; which is an independent random

variable taking on values zero to infinity with a probability density f(r;) . Then

(7} ]

To

Consider the Scattering Matrix in the form [3]

15



§=(2r - 2] - {Zr + Z.I"!

An invigorating exercise in matrix algebra using (8) and {9) yields for the ¢th row and jth .

column of the scattering matrix 3

~kb(r;—a) (rj+a-b-bk)d
(ri+a-b)(r;+a-b) (r;+a-b)*

+ Wlij) 155

(r;+a-b=bk)(r;—a)

+ W) i=3j 10
rasb) (£,5) J (10)
where
1
AR )
2
W(ij) = T kb

T (r+a-b)(n+a-d)
54,5

Example Calculation 1

We first consider a single conductor cable and ground plane with a resistive termination.

Let N=1 Zpy =R Z, = 1. In this case the scattering matrix reduces to the scalar

R-1
S = -EH . (11)

We wish to find the distribution function of R , f(IT) , such that S will be distributed uni-

form on the interval -1 to 1. From (11) the Jacobian of the transformation is

oS

—— . -2
5B 2(R+1)
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and by hypothesis f(S) = 1/2 . Thus the distribution function of R is
f(R)=[R+1]? O0<R< . (12)

Example Calculation 2

We now wish to determine the proBability that a differential mode current is larger than the

common mode current. Let I be the current vector at the termination. Then from [4]

1
I = _2'Yc[V+ - V]

where Y, is the characteristic admittance of the cable, ¥V is the voltage associated with the

outgoing wave and V_ is the voltage associated with the incoming wave. Take

4 Io

where 1 is a column of 1's. It follows that

I, » ]
_{W—][I-Zc 52 -1

For the jth element of the current vector I to be larger than the bulk current I it is neces-

sary that
{1-27'5-2 -1}; >N. (13)

For the N = 2 case, take Z, asin (8) and from (10)

17



Simplifying notation

r(‘ri--a)(r:,-{»a) + 4%

-2b6(r,-a)

(ri+a)(ryte) - 8F

3= ~2b(rg-a)

(ri+a)(rot+a) - b2
(ro—a)(r;+a) + b2

(ri+a)(ro+a) - b2

(ry+a)(ro+a) - b°

11 312
391 322

&R
H
| |

Then condition (13) is equivalent to

where it has been assumed that ¢ - & > 0.

~(a=b) > a(syy+s12) - b(s91+520)

If not, reverse the inequality.

w @

(15)

Assume that r, and r, are independent random variables with probability density func-

tions

Then

where

Prob{-(a-b) > a(sy+812) — b(s91+392)}

= a[b+1][1-k]2n(k) - [k-ab-a-2(a®+b2))k!

_ 20%-4a%5-3ab%+ b3+ ab+a

k
2(a’+5?)

18
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Note that for (15) to be possible & must be non negative and (18) must yield a resuit between

zero and one.

8. RECOMMENDATIONS

I believe that there are two areas for further research and at least one immediate application

for these results.

‘1. Intuitively it appears that the random lay cable results will be applicable far beyond the

simplistic assumptions of the model. Indeed any equally probable random perturbations which
can be expressed as ¢j interactions should produce Stochastic Property 2. This assertion needs

proof.

2. The treatment of random resistive termination can be extended to random impedance in a
straightforward manner. However, in general, the resulting probability integrals will require
numerical techniques for solution. This is fine for a specific calculation but hinders development

of the distribution theory.

In approaching the general distribution theory one can perhaps identify assumptions about
the distributions of the Z; and Z; matrices that lead to tractable probability integrals. The
preferred approach, however, is to identify probability distributions for Zy and Zg that in
some sense agree with the real world and then do battle with & . This will almost certainly
produce an intractable result. But, since the result must be a probability distribution function
it can almost certainly be approximated with a tractable expression. Such a result would not
only further development of the general distribution theory but knowledge of the behavior of

the functions is likely to yield physical insight into the random lay cable problem.

Finally, even in this rudimentary from the random lay cable model has an immediate practi-
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cal application to EMP experiments. The mode] can at least give an indication whether in a

particuiar experiment ‘‘random lay’’ wiil be an important factor that might alter results. .

20
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