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Some Bounds Concerning the Response of Linear
Systems with a Nonlinear Element

Carl E. Baum
Air Force Weapons Laboratory

Abstract

This paper addresses the problem of nonlinear elements present in otherwise
Tinear electromagnetic systems., What effect doas such an element have on a
linear analysis of such systems? Here we obtain some bounds on such
effects. At a minimum these bounds can give some criteria as to under what
conditions some nonlinearities can be neglected in the analysis of the system
electromagnetic response. '
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1. Introduction

Much analysis of the properties of  electromagnetic scattering (or
interaction) problems, as well as the properties of electrical networks,
relies on the assumption of linearity and time invariance. This permits the
ready introduction of the Laplace (or Fourier) transform, replacing convolu-
tion (or equivalently integro-differential operators) with respect to time by
multiplication in complex frequency domain. In one sense this assumption is
in principle rather restrictive, representing & subset of electromagnetic
systems. On the other hand, systems are often constructed to be at least
approximately linear precisely so that they can be more simply analyzed (or
synthesized) using the properties implied by linearity.

To say that a system is nonlinear does not say much in that nonlinearity
represents an infinity of possibilities. One needs to specify what kinds of
nonlinearities he has in mind so as to proceed with the analysis. In this
context linearity is only one of a large number of possible assumptions con-
cerning the system, i.e., is only a special case.

In this paper we address the problem of what happens wheﬁ there is an
identifiable nonlinear element in the system which can be isolated from the
system by definition of a single two-terminal port so that the nonlinearity
can be thought of as being removed from the system (the remainder being now
linear), Examples of nonlinear elements meeting such conditions are simple
elements such as resistors or capacitors (perhaps under breakdown conditions),
diodes, arcs between two nearby conductors in the system, etc.

Using the linearity of the remaining system, linear time-invariant
passive loads (impedances) are maneuvered into and out of the system via the
ports to form what we refer to as the modified system. This modified system
is defined in a form that simplifies the wave transport via the associated
scattering matrix. Treating the nonlinear element we assume that it is
passive. This allows us to get a bound on the 2-norm of the signal scattered
from the nonlinear element, the 2-norm being related to energy. This bound is
transported through the system via the scattering matrix to obtain bounds of
the effect produced by the nonlinearity at other ports including a source
driving the system and an arbitrarily chosen impedance somewhere in the
system. '




II. General Considerations

Let us first consider the simpler problem of a 2-port linear time-
invariant system (or network) as indicated in fig. 2.1. We assume that the
system is driven by some source at port 1 with a Thevenin equivalent voltage
source V¢ (t) with a Laplace transform (two sided) Vs(s) and an impedance

Zs(s) with

[ f(t) e St at

- 00

£(t) = ok 3 st 4
) VZTT?]'-J’Br‘ (s) e ’ (2.1)

f(s)

Br = Bromwich contour parallel to jw axis in strip
of convergence (assumed to exist)

s = Q+ jw = Lapace-transform variable or complex
frequency

Note that the Laplace transform applies to vector and matrix‘functions as
well.

Now consider a general N-port which is a linear time-invariant system (or
network) as illustrated in fig. 2.1. This is characterized by a scattering

matrix (gn m(s)) or an admittance matrix (Y_ _(s)) with [1,3]

n,m

(¥  (s)) =

|
~—
N

n,m

(Bpn()) = [(Zy )] + (FED () + (1




2 2 Scattering Matrix

n in : (Sn,m

(s)) E -

(s))

Fig. 2.1. N-Port Linear Time-Invariant System (Network)




= [, ) -:(2#"‘;1”(5)) ¢ (Tp.n(s))] (2:2)
() * @78 s)) - (v, 0]
(v{ref)(s)) = (2{ref (st
The normalizing or referénce adnittance matrix (V') (s)) and impedance
matrix (Z{78F)(s)) are used to define the wave variables (vectors)

n,m

V()5 = (T4()) + (2{Te0(s)) - (T (5))

n
(2.3)
(a(Nue = () = (D))« (1,00)
where the voltage and current vectors are related by
(¥,(8)) = (2 o))« (T,(s)) o)

(1,(5)) = (T () + (V,(5))

with voltage and current conventions as indicated in fig. 2.1. The scattering
matrix is used to relate the wave variables as

(Vo (s))gue = (5

out

am(S)) = (V0))4, (2.5)

Given a scattering matrix the impedance and admittance matrices can be
reconstructed via [3]

T ()« Ty () = [ ) + 6

-




In a previous paper [3] constraints were established on the allowable
form for this reference admittance or impedance matrix. In particular,
requiring an energy (or 2 norm) relation for the wave variables and bounding
the 2 norm of the scattering matrix by unity {(on the jw axis of the s plane)

as
0 < n(sn,m(qw))n2'< 1 - (2.7)
gave
(e () = Ao, )
Mjw) > 0 (2.8)

Hence on the jw axis, the N x N normalizing admittance and impedance matrices
must be diagonal with all elements the same and positive. In this form we
have on the jw axis

1V (Gw))s 0, > 1V, Ge))gyueto > 0 | (2.9)

which 1is discussed in Appendix C. Note that for a lossless network we also

have

1S, (Jw))u =1 (2.10)
nsm 2 lossless :

and that for a perfect terminating network, i.e.,

it (2. (s)) = (Zétﬁf)(s)), then (3. (s)) = (0 (2.11)

n,m n,m n,m)

In Appendix D of this paper it .is also shown that a passive realizable
normalizing admittance (or impedance) matrix makes

A(s) = A >0 (a positive constant) (2.12)

the only possible choice. Hence we set




(2.13)




IIT. Modified Scattering Matrices

Now the scattering matrix (gn’m(s)) represents the system in some config-
uration as one may find it, the matrix elements perhaps being determined by
experiment. In order to simplify the analysis, in this paper let us combine
the system (as in fig. 2.1) with other impedance (or admittance) elements as
indicated in fig. 3.1, Here the intent, as will be made specific later, is to
control the reflection at some of the ports béck into the system, as least in
its formal representation. ‘

As indicated in fig. 3.1 we start with some "original" form of the system
as in fig. 3.1A. (For later, note that nonlinear elements, one in our present
analysis, have been pulled out and included in the elements attached to the
ports.) In this form we assume that there are Thevenin equivalent sources at
each port including voltage sources Vsn and series “impedances." These may be
impedances in the strict sense or may be nonlinear elements as designated in a
generic way by e Let us move some or all of these elements, in whole or
part, into the system representation and move other elements out of the system
into the loads at the ports, at our convenience, to givé what we refer to as
the modified system in fig. 3.1B with elements {(linear or nonlinear) at the
ports designated by cﬁl). Of course, no nonlinear elements are to be moved
into the system representation so that this representation will remain
linear. While our current procedure involves Thevenin equivalent voltage

sources Vs or Vél) and associated "impedance-like" elements g, OF cél), one
n n

can also approach this problem from a set of Norton equivalent current sources
and associated "admittance-like" elements,

Following up on our Thevenin-equivalent approach let us modify the impe-
dance representation of the system as

n

@9) = (2, (9] + 24y, D - @ ) (3.1)

where the diagonal matrix [2§+)1n )

matrix associated with moving certain series impedances from the ports into
the system, and the diagonal matrix (Zé')l

represents the augmentation impedance

n m) represents a diminution matrix
3

from the system into its ports.
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Fig. 3.1. Modification of N-Port System by Addition of and/or
Removal of Impedances at Ports
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Now the modified impedance matrix (7&1%(5)) will be restricted to
' 3

passive, or positive real, in the parlance of circuit theory. This restricts

the allowable choices of [Zé+)1n ) - [Zﬁ')l ) depending on the specific

n
character of the unmodified impedance matrix (Zn m(s)) which is also assumed
H]

to be passive.

Note that at least in a formal sense we have

1
(T = (2 n(9))

B (Cnln,m) B (Cgl)ln,m) (3.2)

(1)
nsm(s)) for the system

Now we can define the modified scattering matrix (3
) as before, but with

(ref)(s)) and (V(ref)(s)

n,m n,m

(s)) replaced respectively by (Zél%(s)) and (751%(5)).

by using (2.2) with the same (Z
[7n’m(s)) and (Yn,m

With the aforegoing restrictions then the modified scattering matrix [Sﬁlé(s))
b

is linear and passive as desired. In terms of the modified scattering matrix

we have

1 _ orell
(1 (5))gy = (311 (3.3)

out

for the modified system.

11




IV. 2-Port Case: Linear Source and Nonlinear Element

Now consider a 2~porf network or system (N = 2) as illustrated in fig.
4.1. let there be some (in general) nonlinear load ¢ attached to port 2.
This nonlinear Toad 1is chosen to represent some nonlinearity in a system of
interest which has been identified and "removed" so that the linear remainder
n’m(s)),l[zn’m(s)) and/or (gn’m(s)). This
nonlinearity might be an arc between 2 wires, a single-port element (like a
resistor, capacitor, etc.), or whatever, provided it can be represented by a

of the system is represented by (¥

single port (i.e., a single voltage-current pair). Port 1 has a source Vs(s)
and a source impedance (passive) Zs(s). Summarizing symbolically

. V. (s) 2.(s) O
(¥, () - (05 ) v (gl ) = (OS ;> (4.1)

Figure 4.2 shows the modified system and port networks. The port net-
works are now described by

Vs (S) R 0 |
~(1 S 1

The sources are unchanged but the loads are in general changed. At port 2 no
change is made; the same nonlinear load, z, is present. At port 1, however,

ZS(S) has been absorbed into the system, and a frequency-independent resis-
tance, R, has been pulled out. Not coincidentally, and consistent with sec-
tion 2, the resistance at port 1 is made to equal the normalizing constant
resistance used in the normalizing impedance (2.13) to defined the wave vari-
ables which are used to define in turn the (now modified) scattering matrix.

Of course, we now require that the modified impedance matrix from (3.1) be
(1) - (9
(zn’m(s)) (Zn,m(s)) + (4’3)

noting that ¢ is not included here so that (Zél%(S)] is still an impedance in
the strict sense (in particular, no nonlinearities). Let us further assume

12
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Fig. 4.1. Representation of Linear Source and Nonlinear Element Connected
to a 2-Port System (or Network)
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Fig. 4.2. Modified Scattering Matrix for 2-Port
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that (Zél%(s)) and 75(5) are passive (restricting values for R) so that
(1) . ,
(§n’m(s)) is passive.

We are now in a position to identify R with the diagonal reference-
impedance matrix in (2.13), This is done so that the wave leaving port 1 is
terminated (i.e., not rescattered back into the system). The wave variables
are defined in (2.3). There are two waves at each port, designated by sub-
scripts “in" and "out" related by the modified scattering matrix as in
(3.3). Writing out this relation in component form we have

1 _ a1 1 (1 1

v§03t(s) - S§’{(s) v§iz(s) + s§’; véii(s)
| (4.4)
1 (1 1 (1 1

véoit(s) - Sé’%(s) v§iz(s) + Sé,%(s) Véii(s)

Next consider the relation of Vél)(s) and V§1) (s) at port 1. Here we

have in out
(1 1 1 1 1
T(s) - R 1 (s) = 1l (s) = 1 V§iz(s) ; v§olt(s)
| (4.5)
v(s) = UM (s) + r 1{b)s) = v(ii(s) |
Then, (4.4) bécomes
1 21 a1 1
v(oit(s) = 3810s) 14(0) + 58 s) véiz(s)
(4.6)
1 - o(1 21 1
v(ozt(s) RORABIRIE Véil(s>

Now we need to relate Vél)(s) and V§1> (s) at port 2 through the non-
in out

linear load z. From Appendix C and using the assumption that ¢ is passive we
have in time and frequency domains

15




(1) ' (1)

1Y (t)u > Vs (t) >0
Zour et T T2yt (4.7)
(1) (s (1) sy,

uVZOUt(Jw)uz,w > Hvzin(Jw)stw > 0

noting the interchange of the roles "in" and "out" in going from a reference
to the system to a reference to the load at the port.

Applying the 2-norm with respect to frequency to (4.6) gives

1) . (1), . o |
uvioit(aw)nz’w ¢ "S§,2(3w) Vo(Joliy , + 15y H(Jw) Vzin(Jw)"
(4.8)
1 . <(1),. ' " .
nVéoit(Jw)nz,w < "Sz’z(Jw) VS(Jw)HZ’w + u%é 5 (§w) Vzin(Jw)uz’w
Define
158 | up = sup [S81030)] (4.9)

where the supremum is over all w {real) or at least the range of w of inter-
est. Then using (A.5) the inequalities (4.8) can be extended to

1

EV§1) (Gw)u §’

< |§
out

"vs(jw)HZ,w * |§§1%isup ”vz. <jm)"2,w

!
1tsup in

2,

(4.10)
nVél) (o)1

out

HVS(Jw I

1 . .
) 2.0 " |3§’%|sup MVZ (Jw)ﬂz’

2w 2,1'sup in

For a port-2 result substitute the second of (4.7) into the second of
(4.10) to give

uV(l) (Ju)u

08 Guye, < 38
1 - ] out

out

19y (jw)uz’w + |§é1)l

sup 2,w

(4.11)

16




which can be rearranged as’

RO 13(1)| VRIS (4.12)

1 .
uVé ) (Jw)uz,w 2,2|sup

out

and carried directly into time domain as

(1)
'Ry (t)n
2out

<[1- lg(l

IZ,.%'sup].1 |3£{{| v_(t)u

sup S 2,t (4.13)

2,t

Combined with (4.7) we thus have bounds for the 2-norm in time and frequency
domains for both outgoing and incoming waves at port 2, even though the load
at port 2 1is by hypothesis in general nonlinear. Note the direct (first
power) dependence on the supremum of the magnitude of the scattering from port
1 to port 2.

Turning to port 1 the first of (4.10) combined with (4.12) and the second
of (4.7) gives : :

19 (1) (Gu)t §(1)
Loyt O 2a0 |

¥ (Ju)iy  (4.19)

However, if we note that the S&li term represents the scattering back into the
source from port 1 with no reflection from port 2 with the nonlinear load,
then we can obtain another, perhaps more interesting, bound. Rewriting the
first of (4.6) and taking 2-norms with respect to w (and using (4.7)) gives

ﬁVil) (juw) - gl,l(jw) Vs(jw)HZ,w

out

i
on

n
—
fo—y
'
(%24
—~ [ ont
- ©
N~




The Tlast expression then represents a bound on the wave (in 2-norm sense)
scattered from port 2 back to port 1, and hence some bound of the effect of
the nonlinearity at port 2 back on port 1. Note the first power dependence on
the scattering elements from port 1 to port 2 and from port 2 to port 1. This
is effectively a second power dependence on the transfer function through the
system between ports 1 and 2.

Note, however, the dependence of the results i? (4f12) - (4.15) on the
-1 ref .

factor | |§ 2'sup n.m (s)) as a positive

constant times the identity matrix as in (2.13) we have insured that if our

modified system is passive then [3]

. By our choice of (2

a[§gf%(jw))n2 <1 (4.16)

Now §§1%(3w) represents the scattering of a wave incident on port 2 towards
the nonlinear load. Energy must also be conserved here and hence for all
elements on the diagonal

3G <1 forn=12, ... N (4.17)
if the system is passive. However, the result is "less than or equal to 1."
q n'sup = 1 and the factor
|§2 2, (in this case) blows up and the bounds are not applicable,

If equa11ty app11es for some w then, for that n, IS

Th1s points to the necessity for loss in the modified system, precisely to
avoid this problem,

Note that R has not yet been chosen. 1t must be small enough (and still
positive) that (2£1%(s)) in (4.3) is passive. Aside from this restriction one
might choose R so as to minimize the bounds in (4.12) - (4.15), noting the

importance of moving |3 away from 1.
2,21sup

Noting that the 2-norm of a wave over frequency or time is proportional
to energy, but not exactly the same, let us consider the energy delivered out
of port 2. In the time domain the power delivered to the load (in general
nonlinear) at port 2 is

18




(W (W ey 1 (1 1) v Loy (D ey (1
P,(t) = iy (o) = 7'[V(1z(t) + V(olt(t)] §§-[V(1;(t) ; V(oat(t)]
2 2
- i ) - vl ) (4.18)
out in

The energy received at the nonlinear load at port 2 is

[=~]

- 21 (1) 2 (1) 2
Uc = f_m Pc(t) dt = ﬁﬁ‘[nVZOUt(t)nz’t - "Vzin(t)uz,t]
1 (1) a2 (1), 1.2
= == IV (Gw)u - VAT () (4.19)
ol 20ut 2 0 250 w Z,w]

For a given R this energy has an upper bound from setting

in in

"Véiz(jw)”z,m =0 , nvéii(t)nz’t =0 _ ', (4.20)
which is achieved by setting
W =0, ) =0 e

except for discrete points, which when integrated over o (in a square sense)
give 0. This case is achieved, for example, by zero scattering from g, or
formally, a particular linear case

z =R : . (4.22)

which is "perfect" termination. Hence

v < 1o yyid) (t)n2 = L9l

1)(. 2
Jo)i (4.23)
z | 4R Zout o

Combining this with (4.12) or (4.13) gives an upper bound on Uc in terms of
V(t) or Vs(jw). The new factor introduced is 1/R, so that if one wishes to

19




choose R so as to minimize this bound on Vg,then one needs to minimize the
coefficients in this bound

- iﬁgﬂlz 1V (t)ng,t (4.24)

2,2'sup sup s

20




V. 3-Port Case: Linear Source, Linear Victim, and Nonlinear Element

Now consider a 3-port network or system (N = 3) as illustrated in fig.
5.1. As in section 4 we have some linear source Vs(s) and source impedance
(passive) Zs(s) attached to port 1. There 1is the nonlinear load z, now
attached to port 3. Consider some element 7V(s) which is attached to port
2. This element is pulled out of the system for special attention and initi-
ally defines port 2. This element is further assumed linear, passive, and
time invariant. Our concern is what effect z will have on the signals reach-
ing Zv(s), and whether one need be concerned about damage or upset there, at
least in a bound sense. In this sense Zv(s) represents an arbitrarily chosen
element from the system which we regard as a potential victim to the source
Vs(s) as influenced by the nonlinearity z.  Summarizing symbolically the
sources and elements at the ports are

V. (s) 2.(s) 0 0
(Vsn(S)) = g v (gl = 4O Is) 0 (5.1)
0 4

Figure 5.2 shows the modified system and port networks. The port net-
works are now described by

<7
w
o~
w
N

=§ 0 R O (5.2)

The sources are unchanged, but the loads are in general changed. Port 3 still
has the nonlinear load ¢. However, both ports 1 and 2 have the loads replaced
by R. The modified impedance matrix from {(3.1) is now

Z(s)-R O 0
(241)s)) = CAOIEY KRR NN (5.3)
' 0 0 4
21
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Fig. 5.1. Representation of Linear Source, Linear Victim, and Nonlinear
Element Connected to a 3-Port System (or Network)
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Fig. 5.2. Modified Scattering Matrix for 3-Port
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In this configuration any waves scattered through the system into ports 1 and
2 are terminated (i.e., not réescattered back into the system). As indicated
in fig. 5.2 we immédiate1y have

‘Vé?)(S) = 0 (5.4)

simplifying the problem soméwhat. The effect of having a resistance R as the
loads on ports 1 and 2 is summarized in fig. 5.3 where, as one can see, only
six scattering elements are needed to characterize the scattering of the
various waves. Three scattering elements, representing the scattering at port
2, are not needed since there is no source there and all waves incident on the
load, R, are terminated. Again, as in section 2, the inclusion of 7S(s)
and Zv(s) which are passive impedances into the modified system keep the
system passive and linear, but one must be cautious about the removal of the
resistance R out of the system via ports 1 and 2 since it is desirable that
the modified system remain passive; this limits the allowable range of R .
(positive).

Identifying R with the diagonal reference-impedance matrix in (2.13), let
us write out the scattering equations for the modified system as

01 (s) = 3 sy (M) « 51 sy vl (s) + 5(2)(sy 9iD)

lout(S) 1’1(5) 1in(S) ¥ 192(5) Zin(S) ¥ 1,3(5) 3in(S)

LWCRE SO RUEE PR SERE R WIS
' 34! L 1 1 1 1

Véozt(S) = Sé,%(s) V§ii(5) + §§’%(s) Véin(s) + 3§’%(s) v(]n(s)

This is further simplified by noting as in (5.4) that the incoming wave at
port 2 is zero,

At port 1 we again have

Pt

in 1out

Nisy = 2195y + M) (s)}
' (5.6)

mn

V(s) = W5y v R 1M (gy = v (s)
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Then (5.5) becomes

q(l) = 5l

IOUt(S) 1 S 1 ™
1 (1 (1 1

véozt(s> - Sé,%(s? T (s) + sé,g(s) vgii(s) (5.7)
1 {1 a1 1

v<03t(s) = 5{1(s) V() + 3§1(s) v(1n(s)

Now-Vél)(s) and Vgl) (s) at port 3 can be related through the assumed
in out

passive nonlinear load z giving the results

i 1
ﬂvé::t(t)nz’t > uV§iz(t)n2,t >0

(5.8)
nVél) (Guw)u

> 198 (o)
out

in

>0

2,w 2w

which are of the same form as (4.7).

Applying the 2-norm with respect to frequency to (5.7) gives

uV%l) (jw)h < u§§

1)
out o1

%(jw) Vé%)(jw)nz

mn

2. (jw) Vs(jm)nz,w +_n3 "

jm)Hz’w (5.9)

N —~
v
A e

ot n%é%%(jw) Vé%)(jw)uz

in @

Defining the supremum over frequency of the scattering elements as in (4.9)
and using (A.5) the inequalities become

aV§1) (Gu)i

out

1 1), .
,glsup nvgii(Jw)HZ,w

< I3

(l)l
1,1

o~

2.0 sup nVS(Jw)uz’w + |3
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"Véilt(j“)“z,w < 358 gup 105G, + 13816y uv§:;(Jw)n2,w (5.10)
1) . 1 . .
ﬂvéoz‘t(\]m)nz,w < ‘gg’zlsup llvs(,]w)llz’w + ' 3‘Sup HV( )( ) 2’w

For a port-3 result substitute the second of (5.8) into the third of
(5.10) to give

1981 Gy < + 13811 W (GG 5.11
300 2,0 135,11 sup Vs (30)1z o * 13574 sup 3 020 (541D
which can be rearranged as
(1) ¢; (1) -1 ;
uV3OUt(Jw)n2,w < [1- |§3’3}sup |§ |Sup uVs(Jm)uz’w (5.12)
and expressed also in time domain as
(1) - 1:(1) -1 :
uV3OUt(t)uZst <1 |§3’3|5up |§ 1lsup “Vs(t)"z,t (5.13)

These results for the port with the nonlinear load z directly parallel those
in section 2. Note again the importance of having I§§f3'sup
while a general condition of passivity will only require that it be less than
or equal to one as in (4.17). Again R needs to be optimally chosen to mini-
mize the bound in (5.12) and (5.13). By including 1/(4R) in (5.13) this bound

can be put on an energy basis as in (4.24) for minimization with respect to R.

less than one,

For a port-1 result the first of (5.10) can be combined with (5.12) and
the second of (5.8) to give

1) (1 (1 -1 ja(1) 1
uv§out(3w)n2’“ ) 'S§’{ sup * - |§§’% SUP] lg§,3|sup lgé,%‘sup
W (Gl (5.14)

which is like the result in (4.14). Another bound is obtained by rearranging
the first of (5.7) and taking 2-norms with respect to w (and using (5.8) and
(5.12)) to give
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D) (i) - 80 (5 90
w{oit(gw) - sg,{(w).vg Yo,
= u§§1%(jw) Vg?)(gw)uz .
’ in E4
5(1 1)
< |S§’§ sup HVéii(Jw)Hz’
UGl b L 1o S A TP CR )

This is a 2-norm bound on the wave scattered from port 3 back to port 1, and
hence some bound of the effect of the nonlinearity at port 3 on port 1. Note
that this effectively is a second power dependence on the transfer function
through the system between ports 1 and 3.

Now consider port 2, the victim port. The second of (5.7) gives, with 2-
norm over w {and using (5.8)), ‘

nV(zZt(jw)uz’w < u§§1%(3w) V. (Ju) 2.0 F n§§f%(jw) V§:;(3w)u2’
< I35 g Tstedn, , + [38] uvgx ),
< 118 ap + 11 = 138107 158 eup 1550
ﬂvs(jw)uz’w 0 (5.16)

In this last form we have terms which represent bounds on the norms of signals
arriving at port 2 from ports 1 and 3., Now the nonlinear load ¢ can be con-
sidered to have negligible effect on the victim at port 2 provided generally
that

55,

ey > 11+ 155331 00p )84,

3,315up] ! 2,§lsup ’ 3 (6.17)

BN —~

This gives some measure of the significance of the nonlinear load when consid-
ering some .other element (victim) elsewhere in the system. Note that (5.16)
can-also beAcbnsidéred.direct1y in time domain as
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1) 1) - 1) -1 (1 1
O 01y < | ¢ 0 S B 155 1
hvs(t)n2 " ' (5.18)

Now a certain problem presents itself. We have some bounds in terms of
the 2-norm of the wave incident on the load at port 2 of the modified system,
but the modified system has R at the port instead of Zv(s) in the case of he
original or unmodified system. In order to relate the aforegoing results to
the situation of the original (unmodified) system, note that the difference

between the two involves a change from the original waves (Vn(t))in to the
: out
modified waves (Vél)(t))in . In the process the currents at the ports remain
out
the same while the voltages are changed due to the fact that the changes

involve series (not parallel) movement of impedance elements, i.e.,
(I§1)(t)) = (1.(t)) (5.19)

Since the currents are unchanged then, in particuTar at poft 2, we have
the same current through R as through Zv(s). At port 2 we have

Vél)(t) =0 = Vél)(t) + R Iél)(t)

in
(5e20)
(1) = y(1) (1)
Y t) =V t) - R I t
g (8) =V (e) - R I ()
From thch we have
= 1,(1)
V(t) =5V
(1) = 535 (¥)
(5.21)

I(t) = - 2= Vi1 (1)

3

Hence we have:
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ulél)(t)nz,t = 1112(t)u2’t
<'—‘ ‘S 'sup
5\73(1.‘.)112,t (5.22)
Consider now the energy deposited in-?v(s), the impedance at port 2 in

the original (or unmodified) system. Noting that the port currents are not
changed by the system modification we have energy delivered out of port 2 as

=g | Tylin) T,(5u) do (5.23)
using {C.3). Using 7V(s) we can eliminate Vz(s) giving
1 s sy e
U, = 5= [ T,030) Z,(ju) T,(ju) do
1 T LTy
= [ 15050 Z,(e) T,(jw) de

=L 7 Rel2 (300 |1, (50) |2 da

i?"Re[Z ]|Sup uT Jw)ﬂg’

= [Rel2,1] g 11p(8)05 ¢ | (5.24)

using (A.5). Then from (5.21)
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i) (en? | (5.25)

U, < = |Re[2 ”su;} "

v

which combines with (5.18) to give

1 . ~(1 ~(1 -1 '\(1 "(1) ) 2
by < ZE—"RQEZV]1sup %isé,zisup + - ‘Sg,%‘sup] 'SZ,%‘SUP ‘S3,113Up |
avs(t)ug,t (5.26)

This result contains the same two terms from ports 1 and 3 as in (5.16), but
they are now squared after summation because this result is in the form of
energy. Note the inclusion of lRe[zv]‘sup from the original (unmodified)
system in this result. By judicious choice of R one may minimize the bound on
Uys or on the parts of the bound associated with ports 1 or 3, but this
depends on presently unspecified characteristics of the system or network of
interest.
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VI. Summary

In this paper.we have obtained bounds on-the effect of a certain class of
passive nonlinear elements on linear elements elsewhere in a general linear
electromagnetic system. Note, however, these bounds are in general a function
of a resistance (R > 0) used in defining the reference impedance matrix which
in turn defines the wave variables and the modified system scattering
matrix. Perhaps one can vary R within éomé acceptable limits and find a
minimum value for the appropriate bound, but this may be very system speci-
fic. Note, in particular, that these bound formulas depend on bounding cer-
tain scattering-matrix elements by values less than unity. This in turn
requires that these elements contain loss, and in general that the modified
system contain loss (i.e., absorbs energy). Hence, these bounds do not apply
to every conceivable case, some of which may require other approaches.

The bounds in this paper show that for at least some cases a nonlinearity
need not be understood in detail because its effect can be negligibly small
and hence neglected. Note that the requisite scattering matrix elements can
be measured on a real system and transformed to the modified scattering matrix
to obtain empirical bounds to determine when such a nonlinearity can be
neglected.

Perhaps future papers can obtain additonal bounds concerning this and
other similar nonlinear problems.,
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Appendix A, Norm Conventions

Fundamental to our present considerations is the concept of a norm.
Various texts discuss norms of vectors and matrices and the continuous case of
functions and operators. The case of vectors and matrices has been discussed
in a previous note [4]. Norms of functions have been used in another previous
note [2]. In this note we distinguish these two kinds of norms.

First we have the vector norm in its common manifestation, the p norm, as

) ‘ N 1/p

H(xn)llp (nzl |xn|p (A.1)

Now (xn) may be a function of some variable such as time, t, or complex
frequency (or Laplace transform variable), s (= @ + juw), which can be special-
ized as the usual radian frequency variable, w. One could consider a norm as
in (A,l) as a function of t or w or whatever. Let us define vector norms
which also consider such variables as

© N 1/p
= p
g,y = 0 ) L [x, ()" dy
y = a real variable ‘ (A.2)

where, of course, this norm is defined only for vector functions for which the
integral exists. As a special case (xq(y)) can be a scalar x{(y) for which N =
1 and the above definition (A.2) still applies.

Observe that with the integration over the variable, y, there are mathe-
matical peculiarities in the norm depending on the continuity properties of
the x (y). Specifically isolated points of the x,(y) which are not continuous
on both sides of the function for, say, y = .¥p» do not contribute to the
integration. In terms of the commonly used « norm

ix ), = e, |x, ()] | | (A.3)
1<n<N
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such isolated points of discontinuity must be excluded from consideration in
the supremum since they contribute nothing to the integral. Note that (A.3)
is a special case which is not necessarily normalized in the same way as
(A.2), and might better have a special symbol, such as sup.

A uséfu] result for these functional norms is

) ()i = ;f:o nzl |£)x ()] y }l/p
- { f: HOIk n§1 % ()P & }1/p
S R PR LE }l/p
- %If cup ngl e (]P ay }l/p
= f: “gl l)? e }l/p (A.4)

Summarizing then

W (0 < [ Flgyp 1040001,

(A.5)
f = sup fly)
| 'SUP y real I |
assuming that ]f‘sup and u(xn(y))up y exist.
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Appendix B. Parseval's Theorem and The 2-Norm

In this paper our concern is primarily with the 2-norm, particularly
because of its association with energy considerations "which are directly
connected with the concept of passivity, including passive nonlinear ele-
ments. Central to our considerations is the relation between time and fre-
quency domains 1in such energy considerations, as can be found in Parseval's
theorem, -

We have the two-sided Laplace transform

R(s) = [ f(t) =St gt

-l

f(t) = oo [ F(s) eSt ds
Br (B.1)

Br = Bromwich contour in strip of convergence parallel

to jw axis

s =0+ juw = Laplace transform variable or complex frequency

We have the common convolution theorems

«©

t

[ fe)T,(e) e7F dt = g JTis)flems) a5

(B.2)
® t - P - -st :F
f f f(e7)F (t-t7) dt e dt = ?l(s) 2(s)

-0 -0

which expresses the well-known result that multiplication of two functions in
one domain corresponds to convolution of the two functions 1in the other
domain. Of course, certain restrictions must be placed on the functions so
that the transforms exist. Without getting into detail one can note that a
sufficient condition is the square integrability of the functions [5].

Specializing the above result (the first of (B.2) to the case of s = 0)
we have with appropriate change of variables,

[ f0)f,(t) dt = -2715 fBr FL(s)F,(=s) ds | (B.3)
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If we further restrict fy(t) and fo(t) to be real valued (for real t) then
f1(s) and fo(s) are conjugate symmetric. Specializing the Bromwich contour to
the jw axis then gﬁves

oo (= -]

[ R () = [ F(jw) Fo(-ju) do
IR RARAY: w0 2
=l R Gw Tl da (B.4)

-l

A more limited form is obtained if we take fl(t) and fz(t) as the same
function giving

[t dt = [ R0 |? do (8.5)

-00 -0

which is the usual form of the Parseval theorem. One can think of this as a
statement relating energy in time domain to energy in fréquency domain.

Looking at the norms discussed in Appendix A one can readily see that
(B.5) takes the form of a relation between 2 norms as

uf(t)nz’t =L HF (Gl (B.6)

/7 250

which is a compact statement of the Parseval theorem.
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Appendix C. Passivity and The 2-Norm.

Consider an N-port network (or more general distributed elctromagnetic
system). Let the port variables be '

<Z
>
—
«t
~—
Hi

voltage at nth port
(C.1)

[}
>
—
=3
~—
1"

current at nth port

with the convention that positive V,(t)I,(t) represents power flow into the
port.

Now this network may be linear or nonlinear. However, we assume that the
network is passive, i.e., that
't .
Foov@en)) « (1,(87)) dt > 0 | (C.2)

-0

with zero initial stored energy in the network. Referring back to (B.4) we
then have '

-0

f: (v (6)) + (1(t)) dt .—-,}Efl (¥ (50)) + (1 (-30)) do
=L W) - (1) (c.3)

This result is remarkable in that it does not imply that the power into the
network is positive for any given w, but that the integral of such power over
all w is still positive. 1If the network is linear then one can say that the
power into the network is non-negative for each w.

Now a previous paper [3] has shown that a similar power relationship
applies to wave and scattering variables if the normalizing admittance (or
impedance) is appropriately chosen. Defining wave variables

(T04))gy = () + 28 (0)) + (T,(5))

JH]

vector wave into N-port
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«

(vn(s)]out B (Vn(s)) - (Zﬁfﬁf)ﬁé)) ) (Tn(s))

vector wave out of (scattered from) N-port

(i}

(C.4)
(?gr;f)(s)) = (7£r;f)(s))'1 = normalizing admittance matrix
» s s for wave vectors
Provided [3]
(ref) . \y _ /.
(et (3u)) = 3o (1, ) | (c.5)

X(jw) > 0 (and thereby real)

then in frequency domain the wave vectors do represent power flow, and for a

linear, passive, time invariant network we have

*

L0, Ge) - (3,60)) + (U Ge)) + (1 Ge)*] > 0 (e

which in terms of wave variables becomes [3]

(vn(jw))in ' (vn(jw)):n
? (vn(jw))out ) (Vn(jw)):ut
>0 (C.7)

Construct now in time domain a wave variable of the form

Va(t) )5, = (Vo(e)) + R(T (1))
V() )gue = (Vo (2)) - R(T(t)) (©.8)
R ='é >0

where R and G are now positive constants representing a simple resistance and
conductance, respectively. Having chosen the normalizing impedance as a
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positive constant times the identity matrix we have avoided the presence of a
convolution in (C.8). '

Since now power into the network is proportional to

(Vn(f))in < (Vp(8))y, - (Vn(t))out * (Vo)) out
= 4R(V, (t)) - (I,(1)) ‘ (C.9)
with

(Va8 )gn = (Vp(E))g, > 0
(C.10)

(Vn(t))out ) (Vn(t))out >0

Using (C.2) assuming that we are dealing with a passive, but perhaps non-
linear, network with zero initial energy, we have ' ‘

t

/ (Vn(t ))in : (Vn(t )]in dt

-C0

t
> [ (Vn(t’))out ' (Vn(t’))out dt~

>0 (C.11)
Extending the upper limit t + « gives
”(Vn(t))innz,t > “(Vn(t))out"z,t >0 | | (C.12)
Applying the Parseval theorem gives
E(vn(jw))innz,w ? “(vn(jw))outHZ,w >0 (C.13)
Again note that for nonlinear networks the inequality does not apply to indi-

vidual frequencies in a pulse, but to an integral over all frequencies in the
2-norm sense.
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Appendix D. Passive Realizability Condition for Normalizing Impedance or
Admittance Matrix for Wave Variables
In a previous paper [3] the desirabi]ity of having wave variables have a
power relationship (1ike the usual product of voltage and current) led to the
result that the normalizing admittance for defining the wave variables takes
the form .

(38720 (30)) = R (1, )

®

AX(ju) >0 (D.1)

Here let us extend the argument further,

Let us constrain that X(s) be passive so that it may be physically real-
izable in a convenient form. Since X(s) is a self or driving-point admit-
tance, then passivity requires that X(s) (as well as i(s)'l) be a p.r. (posi-
tive real) function in the usual sense [7].

Furthermore, let us constrain that A(s) have no singularities or zeros on
the ju axis. This is required by our requirement for s = jw that the normal-
izing admittance actually represent a linear combination of voltage and
current variables into wave variables; A{jw) = 0 would eliminate voltage from
the combination and X(jw) = = would eliminate current from the ;ombination.
Hence we require ‘

0<€1<'X(jw)<e:2<oo
for -~ < w < = (D.2)

One can also consider the question of zeros and singularities of X{(s) on the
Jw axis by noting that the phase is argli(jw)] = 0 since Im[X{(ju)] =0 and
Re[X(s)] » 0 for Rels] > 0. The continuity of the phase staying approximately
zero in the vicinity of the jw axis (Re[s] » 0) removes the possibility of
such zeros or singularities.

With this restriction on X(juw) let us look at the relation between the
real and the imaginary parts of a p.r. function, X(s), as discussed in various
texts [7], i.e.,
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REE'X(JU))] = Re[‘}‘\(jw)] - :[2? f W Im[;\(Jw’%] dw
, : W' o-w
" (D.3)
InfX(jw)] = _?_“_{f Re[A(Jw)] dw”
m 0 w"™ - w
Now applying our result that
Im[A(jw)] = 0 (0.3)
gives
Re[X(ju)] = Re[X(j=)]
= 1, (a constant) (D.4)
and hence
Ajw) = X
(D.5)

Since A(s) = Ay ON the jw axis then let us apply the concept of analytic
~ continuation into the right half of the s plane. Clearly

>?

(s) = X, for Refs] » 0 (D.6)

is a solution and the uniqueness of the analytic continuation [6] makes this
solution the only one. Note that the above solution is easily analytically
continued into the left half plane as well,
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